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Preface

This is a book about arithmetic subgroups of semisimple Lie groups,
which means that we will discuss the group SL(n,Z), and certain of its
subgroups. By definition, the subject matter combines algebra (groups
of matrices) with number theory (properties of the integers). However,
it also has important applications in geometry. In particular, arithmetic
groups arise in classical differential geometry as the fundamental groups
of locally symmetric spaces. (See Chapters 1 and 2 for an elaboration of
this line of motivation.) They also provide important examples and test
cases in geometric group theory.

My intention in this text is to give a fairly gentle introduction to sev-
eral of the main methods and theorems in the subject. There is no at-
tempt to be encyclopedic, and proofs are usually only sketched, or only
carried out for an illustrative special case. Readers with sufficient back-
ground will learn much more from [Ma] and [PR] (written by the masters)
than they can find here.

The book assumes knowledge of algebra, analysis, and topology that
might be taught in a first-year graduate course, plus some acquaintance
with Lie groups. (Appendix A quickly recounts the essential Lie theory,
and Appendix B lists the required facts from graduate courses.) Some
individual proofs and examples assume additional background (but may
be skipped).

Generally speaking, the chapters are fairly independent of each other
(and they all have their own bibliographies), so there is no need to read
the book linearly. To facilitate making a plan of study, the bottom of
each chapter’s first page states the main prerequisites that are not in ap-
pendices A and B. Individual chapters (or, sometimes, sections) could be
assigned for reading in a course or presented in a seminar. (The book has
been released into the public domain, so feel free to make copies for such
purposes.) Notes at the end of each chapter have suggestions for further
reading. (Many of the subjects have been given book-length treatments.)
Several topics (such as amenability and Kazhdan’s property (T)) are of
interest well beyond the theory of arithmetic groups.

Although this is a long book, some very important topics have been
omitted. In particular, there is almost no discussion of the cohomology

ix
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of arithmetic groups, even though it is a subject with a long history and
continues to be a very active field. (See the lecture notes of Borel [B2] for
a recent survey.) Also, there is no mention at all of automorphic forms.
(Recent introductions to this subject include [De] and [SS].)

Among the other books on arithmetic groups, the authoritative mono-
graphs of Margulis [Ma] and Platonov-Rapinchuk [PR] have already been
mentioned. They are essential references, but would be difficult reading
for my intended audience. Some works at a level more comparable to
this book include:

[B1] This classic gives an explanation of reduction theory (discussed
here in Chapter 19) and some of its important consequences.

[Hu] This exposition covers reduction theory (at a more elementary level
than [B1]), adeles, ideles, and fundamentals of the Congruence Sub-
group Property (mentioned here in Remark 17.1.3(4)).

[Ji] This extensive survey touches on many more topics than are cov-
ered here (or even in [Ma] and [PR]), with 60 pages of references.

[MR] This monograph thoroughly discusses arithmetic subgroups of the
groups SL(2,R) and SL(2,C).

[Ra] This is an essential reference (along with [Ma] and [PR]). It is the
standard reference for basic properties of lattices in Lie groups
(covered here in Chapter 4). It also has proofs of the Godement
Criterion (discussed here in Section 5.3), the existence of both co-
compact and noncocompact arithmetic subgroups (discussed here
in Section 18.7), and reduction theory for arithmetic groups of Q-
rank one (discussed here in Chapter 19). It also includes several
topics not covered here, such as cohomology vanishing theorems,
and lattices in non-semisimple Lie groups.

[Su] This textbook provides an elementary introduction to the Congru-
ence Subgroup Property (which has only a brief mention here in
Remark 17.1.3(4)).

[Zi] After developing the necessary prerequisites in ergodic theory and
representation theory, this monograph provides proofs of three
major theorems of Margulis: Superrigidity, Arithmeticity, and Nor-
mal Subgroups (discussed here in Chapters 16 and 17). It also
proves a generalization of the superrigidity theorem that applies
to “Borel cocycles.”

Dave Morris
April 2015
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Chapter 1

What is a
Locally Symmetric Space?

In this chapter, we give a geometric introduction to the notion of a sym-
metric space or a locally symmetric space, and explain the central role
played by simple Lie groups and their lattice subgroups. (Since geome-
ters are the target audience here, we assume familiarity with differential
geometry that will not be needed in other parts of the book.) This ma-
terial is not a prerequisite for reading any of the later chapters, except
Chapter 2; it is intended to provide a geometric motivation for the study
of lattices in semisimple Lie groups. Since arithmetic subgroups are the
primary examples of lattices, this also motivates the main topic of the
rest of the book.

§1.1. Symmetric spaces

Recall that a Riemannian manifold is a smooth manifold M, together
with the choice of an inner product ⟨· | ·⟩x on the tangent space TxM,
for each x ∈ M, such that ⟨· | ·⟩x varies smoothly as x varies. The nicest
Riemannian manifolds are homogeneous. This means that every point
looks exactly like every other point:

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: understanding of geodesics, and
other concepts of Differential Geometry.
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4 1. WHAT IS A LOCALLY SYMMETRIC SPACE?

(1.1.1) Definition. A Riemannian manifold X is a homogeneous space if
its isometry group Isom(X) acts transitively. That is, for every x,y ∈ X,
there is an isometry ϕ of X, such that ϕ(x) = y.

(1.1.2) Notation. We use G◦ to denote the identity component of the
group G.

(1.1.3) Examples. Here are some elementary examples of (simply con-
nected) homogeneous spaces.

1) The round sphere Sn = {x ∈ Rn+1 | ∥x∥ = 1 }. Rotations
are the only orientation-preserving isometries of Sn, so we have
Isom(Sn)◦ = SO(n + 1). Any point on Sn can be rotated to any
other point, so Sn is homogeneous.

2) Euclidean space Rn. Every orientation-preserving isometry of Rn is
a combination of a translation and a rotation, and this implies that
Isom(Rn)◦ = SO(n)⋉Rn. Any point in Rn can be translated to any
other point, so Rn is homogeneous.

3) The hyperbolic plane H2 = {z ∈ C | Imz > 0 }, where the inner
product on TzH2 is given by

⟨u | v⟩H2 = 1
4(Imz)2

⟨u | v⟩R2 .

It is not difficult to show that

Isom(H2)◦ is isomorphic to PSL(2,R)◦ = SL(2,R)/{±1},
by noting that SL(2,R) acts on H2 by linear-fractional transfor-
mations z , (az + b)/(cz + d), and confirming, by calculation,
that these linear-fractional transformations preserve the hyper-
bolic metric.

4) Hyperbolic space Hn = {x ∈ Rn | xn > 0 }, where the inner prod-
uct on TxHn is given by

⟨u | v⟩Hn =
1

4x2
n
⟨u | v⟩Rn .

It is not difficult to see that Hn is homogeneous (see Exercise 1).
One can also show that that the group Isom(Hn)◦ is isomorphic to
SO(1, n)◦ (see Exercise 4).

5) A cartesian product of any combination of the above (see Exer-
cise 6).

(1.1.4) Definitions. Let ϕ : X → X.

1) We say that ϕ is involutive (or that ϕ is an involution) if ϕ2 = Id.

2) A fixed point of ϕ is a point p ∈ X, such that ϕ(p) = p.

3) A fixed point p of ϕ is isolated if there is a neighborhood U of p,
such that p is the only fixed point of ϕ that is contained in U.
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Besides an isometry taking x to y, each of the above spaces also has
a nice involutive isometry that fixes x.

1) Define ϕ1 : Sn → Sn by

ϕ1(x1, . . . , xn+1) = (−x1, . . . ,−xn, xn+1).
Thenϕ1 is an isometry of Sn, such thatϕ1 has only two fixed points:
namely, en+1 and −en+1, where en+1 = (0,0, . . . ,0,1). Therefore,
en+1 is an isolated fixed point of ϕ1.

2) Defineϕ2 : Rn → Rn byϕ2(x) = −x. Thenϕ2 is an isometry of Rn,
such that 0 is the only fixed point of ϕ2.

3) Define ϕ3 : H2 → H2 by ϕ3(z) = −1/z. Then i is the only fixed
point of ϕ3.

4) There are involutive isometries ofHn that have a unique fixed point
(see Exercise 3), but they are somewhat difficult to describe in the
upper-half-space model that we are using.

The existence of such an isometry is the additional condition that is re-
quired to be a symmetric space.

(1.1.5) Definition. A Riemannian manifold X is a symmetric space if

1) X is connected,

2) X is homogeneous, and

3) there is an involutive isometry ϕ of X, such that ϕ has at least one
isolated fixed point.

(1.1.6) Remark. If X is a symmetric space, then all points of X are essen-
tially the same, so, for each x ∈ X (not only for some x ∈ X), there is
an isometry ϕ of X, such that ϕ2 = Id and x is an isolated fixed point
of ϕ (see Exercise 9). Conversely, if Condition (3) is replaced with this
stronger assumption, then Condition (2) can be omitted (see Exercise 10).

We constructed examples of involutive isometries of Sn, Rn, and Hn

that have an isolated fixed point. The following proposition shows that
no choice was involved: the involutive isometry with a given isolated
fixed point p is unique, if it exists. Furthermore, in the exponential co-
ordinates at p, the involution must simply be the map x , −x.

(1.1.7) Proposition. Supposeϕ is an involutive isometry of a Riemmanian
manifold X, and suppose p is an isolated fixed point of ϕ. Then

1) dϕp = − Id, and

2) for every geodesic γ with γ(0) = p, we have ϕ
(
γ(t)

) = γ(−t), for
all t ∈ R.

Proof. (1) From the Chain Rule, and the fact that ϕ(p) = p, we have

d(ϕ2)p = dϕϕ(p) ◦ dϕp = (dϕp)2.
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Also, because ϕ2 = Id, we know that d(ϕ2)p = d Idp = Id. We conclude
that (dϕp)2 = Id; hence, the linear transformation dϕp : TpX → TpX
satisfies the polynomial equation x2 − 1 = 0.

Suppose dϕp ≠ − Id. (This will lead to a contradiction.) Since the
polynomial x2 − 1 has no repeated roots, we know that dϕp is diagonal-
izable. Furthermore, because 1 and −1 are the only roots of x2 − 1, we
know that 1 and −1 are the only possible eigenvalues of dϕp. Therefore,
because dϕp ≠ − Id, we conclude that 1 is an eigenvalue; so we may
choose some nonzero v ∈ TpX, such that dϕp(v) = v. Let γ be the
geodesic with γ(0) = p and γ′(0) = v. Then, because ϕ is an isometry,
we know that ϕ ◦ γ is also a geodesic. We have

(ϕ ◦ γ)(0) = ϕ(γ(0)) = ϕ(p) = p = γ(0)
and

(ϕ ◦ γ)′(0) = dϕγ(0)
(
γ′(0)

) = dϕp(v) = v = γ′(0).
Since every geodesic is uniquely determined by prescribing its initial po-
sition and its initial velocity, we conclude that ϕ ◦ γ = γ. Therefore,
ϕ
(
γ(t)

) = γ(t), so γ(t) is a fixed point of ϕ, for every t. This contra-
dicts the fact that the fixed point p = γ(0) is isolated.

(2) Define γ(t) = γ(−t), so γ is a geodesic. Because ϕ is an isometry,
we know that ϕ ◦ γ is also a geodesic. We have

(ϕ ◦ γ)(0) = ϕ(γ(0)) = ϕ(p) = p = γ(0)
and, from (1),

(ϕ ◦ γ)′(0) = dϕγ(0)
(
γ′(0)

) = −γ′(0) = γ′(0).
Since a geodesic is uniquely determined by prescribing its initial position
and its initial velocity, we conclude that ϕ ◦ γ = γ, as desired. □

(1.1.8) Definition. Let M be a Riemannian manifold, and let p ∈ M. It is
a basic fact of differential geometry that there is a neighborhood V of 0
in TpM, such that the exponential map expp maps V diffeomorphically
onto a neighborhood U of p in M. By making V smaller, we may assume
it is:

• symmetric (that is, −V = V), and

• star-shaped (that is, tV ⊆ V, for 0 ≤ t < 1).

The geodesic symmetry at p is the diffeomorphism τ of U that is defined
by

τ
(
expp(v)

) = expp(−v),
for all v ∈ V.

In other words, for each geodesic γ inM, such that γ(0) = p, and for
all t ∈ R, such that tγ′(0) ∈ V, we have τ

(
γ(t)

) = γ(−t).
Note. The geodesic symmetry τ is a local diffeomorphism, but, for most
manifolds M, it is not a local isometry (cf. Remark 1.3.2).
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In this terminology, the preceding proposition shows that if an invo-
lutive isometry ϕ has a certain point p as an isolated fixed point, then,
locally, ϕ must agree with the geodesic symmetry at p. This has the
following easy consequence, which is the motivation for the term sym-
metric space.

(1.1.9) Corollary. A connected Riemannian manifold M is a symmetric
space if and only if, for each p ∈ M, the geodesic symmetry at p extends
to an isometry of M.

Exercises for §1.1.

#1. Show that Hn is homogeneous.
[Hint: For any t ∈ R+, the dilation x , tx is an isometry of Hn. Also, for any
v ∈ Rn−1, the translation x , x + v is an isometry of Hn.]

#2. Let Bn = {x ∈ Rn | ∥x∥ < 1 } be the open unit ball in Rn, equip
TxBn with the inner product

⟨u | v⟩Bn = 1(
1− ∥x∥2

)2 ⟨u | v⟩Rn ,

and let en = (0,0, . . . ,0,1) ∈ Rn. Show that the map ϕ : Bn → Hn

defined by

ϕ(x) = x + en
∥x + en∥2

− 1
2
en

is an isometry from Bn onto Hn. (In geometric terms, ϕ is obtained
by composing a translation with the inversion centered at the south
pole of Bn.)

#3. Show that x , −x is an isometry of Bn (with respect to the Rie-
mannian metric ⟨· | ·⟩Bn defined in Exercise 2).

#4. For u,v ∈ Rn+1, define

⟨u | v⟩1,n = u0v0 −
n∑
j=1

ujvj .

(Note that, for convenience, we start our numbering of the coordi-
nates at 0, rather than at 1.) Let

X+1,n = {x ∈ Rn+1 | ⟨x | x⟩1,n = 1, x0 > 0 },
so X+1,n is one sheet of a 2-sheeted hyperboloid. Equip TxX+1,n with
the inner product obtained by restricting ⟨· | ·⟩1,n to this subspace.

a) Show that the bijection ψ : Bn → X+1,n defined by

ψ(x) = 1
1− ∥x∥2

(1, x)

is an isometry. (Note that this implies that the restriction of
⟨· | ·⟩1,n to TxX+1,n is positive definite, even though ⟨· | ·⟩1,n is
not positive definite on all of Rn+1.)
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b) Show SO(1, n)◦ acts transitively on X+1,n by isometries.

#5. For G = SO(1, n)◦ = Isom(Hn)◦, show there is some p ∈ Hn, such
that StabG(p) = SO(n).
[Hint: This is easy in the hyperboloid model X+1,n.]

#6. Show that ifX1, X2, . . . , Xn are homogeneous spaces, then the carte-
sian product X1 ×X2 × · · · ×Xn is also homogeneous.

#7. Show that every homogeneous space is geodesically complete.
That is, for every geodesic segment γ : (−ϵ, ϵ) → X, there is a
doubly-infinite geodesic γ : R → X, such that γ(t) = γ(t) for all
t ∈ (−ϵ, ϵ).

#8. Show that if X1, . . . , Xn are symmetric spaces, then the cartesian
product X1 ×X2 × · · · ×Xn is also a symmetric space.

#9. Show that if X is a symmetric space, then, for each x ∈ X, there
is an isometry ϕ of X, such that ϕ2 = Id and x is an isolated fixed
point of ϕ.

#10. Let X be a connected Riemannian manifold, and assume, for each
x ∈ X, that there is an isometry ϕ of X, such that ϕ2 = Id and x
is an isolated fixed point of ϕ. Show that X is homogenous, and
conclude that X is a symmetric space.

#11. Show that the real projective spaceRPn (with the metric that makes
its universal cover a round sphere) has an involutive isometry ϕ,
such that ϕ has both an isolated fixed point, and a fixed point that
is not isolated. Is RPn a symmetric space?

§1.2. How to construct a symmetric space

In this section, we describe how Lie groups are used to construct sym-
metric spaces. Let us begin by recalling the well-known group-theoretic
structure of any homogeneous space.

SupposeX is a connected homogeneous space, and letG = Isom(X)◦.
Because Isom(X) is transitive on X, and X is connected, we see that G
is transitive on X (see Exercise 1), so we may identify X with the coset
space G/K, where K is the stabilizer of some point in X. Note that K is
compact (see Exercise 2).

Conversely, if K is any compact subgroup of any Lie group G, then
there is a G-invariant Riemannian metric on G/K (see Exercise 4), so G/K
(with this metric) is a homogeneous space. (For any closed subgroup H
of G, the group G acts transitively on the manifold G/H, by diffeomor-
phisms. However, when H is not compact, G usually does not act by
isometries of any Riemannian metric on G/H, so there is no reason to
expect G/H to be a homogeneous space in the sense of Definition 1.1.1.)
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(1.2.1) Example.

1) For X = Sn, we have G = SO(n+ 1), and we may let

K = StabG(en+1) = SO(n), so Sn = SO(n+ 1)/ SO(n).
Note that, letting σ be the diagonal matrix

σ = diag(−1,−1, . . . ,−1,1),
we have σ 2 = Id, and K = CG(σ) is the centralizer of σ in G.

2) For X = Rn, we have G = SO(n)⋉Rn, and we may let

K = StabG(0) = SO(n), so Rn = (SO(n)⋉Rn)/ SO(n).
Note that the map σ : (k, v) , (k,−v) is an automorphism of G,
such that σ 2 = Id, and

CG(σ) = {g ∈ G | σ(g) = g } = K.
3) For X = H2, we have G ≈ SL(2,R), and we may let

K = StabG(i) ≈ SO(2), so H2 = SL(2,R)/ SO(2).
4) For X = Hn, we have G = SO(1, n)◦, and we may take K = SO(n)

(see Exercise 1.1#5). Note that, for σ = diag(1,−1,−1, . . . ,−1), we
have σ 2 = Id, and K = CG(σ).

Therefore, in each of these cases, there is an automorphism σ of G, such
that K is the centralizer of σ . (In other words, K = {k ∈ G | σ(k) = k }
is the set of fixed points of σ in G.) The following proposition shows, in
general, that a slightly weaker condition makes G/K symmetric, not just
homogeneous.

(1.2.2) Proposition. Let

• G be a connected Lie group,

• K be a compact subgroup of G, and

• σ be an involutive automorphism of G, such that K is an open sub-
group of CG(σ).

Then G/K can be given the structure of a symmetric space, such that
the map τ(gK) = σ(g)K is an involutive isometry of G/K with eK as an
isolated fixed point.

Proof. To simplify the proof slightly, let us assume that K = CG(σ)
(see Exercise 5).

Because K is compact, we know there is a G-invariant Riemmanian
metric on G/K (see Exercise 4). Then, because ⟨τ⟩ is finite, and normal-
izes G, it is not difficult to see that we may assume this metric is also
τ-invariant (see Exercise 6). (This conclusion can also be reached by let-
ting G+ = ⟨σ⟩⋉G and K+ = ⟨σ⟩×K, so K+ is a compact subgroup of G+,
such that G+/K+ = G/K.) Therefore, τ is an involutive isometry of G/K.

Suppose gK is a fixed point of τ, with g ≈ e. Then σ(g) ∈ gK, so we
may write σ(g) = gk, for some k ∈ K. Since σ centralizes k (and σ is an
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automorphism), we have

σ 2(g) = σ(σ(g)) = σ(gk) = σ(g)σ(k) = (gk)(k) = gk2.
On the other hand, we know σ 2(g) = g (because σ is involutive), so we
conclude that k2 = e.

Since g ≈ e, and σ(e) = e, we have σ(g) ≈ g, so k = g−1σ(g) ≈ e.
Since k2 = e, we conclude that k = e. (There is a neighborhood U of e
in G, such that, for every u ∈ U ∖ {e}, we have u2 ≠ e.) Therefore
σ(g) = gk = ge = g, so g ∈ CG(σ) = K; hence, gK = eK. □

Conversely, for any symmetric space X, there exist G, K, and σ as in
Proposition 1.2.2, such that X is isometric to G/K (see Exercise 7).

(1.2.3) Example. Let G = SL(n,R), K = SO(n), and define σ(g) = (g−1)T
(the transpose-inverse). Then σ 2 = 1 and CG(σ) = K, so the theorem im-
plies thatG/K is a symmetric space. Let us describe this space somewhat
more concretely.

Recall that any real symmetric matrix A can be diagonalized over R.
In particular, all of its eigenvalues are real. If all the eigenvalues of A are
strictly positive, then we say that A is positive definite.

Let

X = {A ∈ SL(n,R) | A is symmetric and positive definite },
and define α : G ×X → X by α(g,x) = gxgT . Then:

a) αdefines an action ofGonX; i.e., we haveα(gh,x) = α(g,α(h,x))
for all g,h ∈ G and x ∈ X.

b) This action is transitive, and we have K = StabG(Id), so X may be
identified with G/K.

c) TIdX = {u ∈ Matn×n(R) | u is symmetric and trace(u) = 0}. (By
definition, we have X ⊆ SL(n,R). The condition trace(u) = 0 is
obtained by differentiating the restriction det(A) = 1.)

d) The inner product ⟨u | v⟩ = trace(uv) on TIdX is K-invariant, so it
may be extended to a G-invariant Riemannian metric on X.

e) The map τ : X → X, defined by τ(A) = A−1, is an involutive isome-
try of X, such that τ

(
α(g,x)

) = σ(g)τ(x) for all g ∈ G and x ∈ X.

(1.2.4) Example. Other examples of symmetric spaces are:

1) SL(n,C)/ SU(n), and

2) SO(p, q)◦/
(
SO(p)× SO(q)

)
.

These are special cases of a consequence of Proposition 1.2.2 that
will be stated after we introduce some terminology.

(1.2.5) Definitions.

1) A symmetric space X is irreducible if its universal cover is not
isometric to any nontrivial product X1 ×X2.
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2) A Riemannian manifold is flat if its curvature tensor is identically
zero, or, equivalently, if every point in X has a neighborhood that
is isometric to an open subset of the Euclidean space Rn.

(1.2.6) Proposition. Let G be a connected, noncompact, simple Lie group
with finite center. Then G has a maximal compact subgroup K (which
is unique up to conjugacy ), and G/K is a simply connected, noncompact,
irreducible symmetric space. Furthermore, G/K has non-positive sectional
curvature and is not flat.

Conversely, any noncompact, non-flat, irreducible symmetric space is
of the form G/K, where G is a connected, noncompact, simple Lie group
with trivial center, and K is a maximal compact subgroup of G.

(1.2.7) Remark. Let K be a compact subgroup of a connected, simple
Lie group G with finite center, such that G/K is a symmetric space (cf.
Proposition 1.2.2). Proposition 1.2.6 shows that if G is not compact, then
Kmust be a maximal compact subgroup ofG, which is essentially unique.

On the other hand, if G is compact, then the subgroup K may not be
unique, and may not be maximal. For example, both SO(n)/ SO(n − 1)
and SO(n)/{e} are symmetric spaces. The former is a round sphere,
which has already been mentioned. The latter is a special case of the fact
that every connected, compact Lie group is a symmetric space (see Exer-
cise 10).

É. Cartan obtained a complete list of all the symmetric spaces (both
compact and noncompact) by finding all of the simple Lie groups G
(see Theorem A2.7), and determining, for each of them, which compact
subgroups K can arise in Proposition 1.2.2.

Exercises for §1.2.

#1. Suppose a topological group G acts transitively (and continuously)
on a connected topological space M. Show that the identity com-
ponent G◦ is transitive on M.

#2. Let {gn} be a sequence of isometries of a connected, complete Rie-
mannian manifold M, and assume there exists p ∈ M, such that
gnp = p for all n.) Show there is a subsequence {gnk} of {gn} that
converges uniformly on compact subsets of M. (That is, there is
some isometry g of M, such that, for every ϵ > 0 and every com-
pact subset C of M, there exists k0, such that d(gnkc, gc) < ϵ for
all c ∈ C and all k > k0.)
[Hint: This is a special case of the Arzelà-Ascoli Theorem. For each c ∈ C, the se-
quence {gnc} is bounded, and therefore has a convergent subsequence. By Cantor
diagonalization, there is a subsequence that works for all c in a countable, dense
subset of C.]
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#3. Let K be a compact group, and let ρ : K → GL(n,R) be a continuous
homomorphism. Show that there is a K-invariant inner product
⟨· | ·⟩K on Rn; that is, such that

⟨
ρ(k)u | ρ(k)v⟩K = ⟨

u | v⟩K for
all k ∈ K and all u,v ∈ Rn.
[Hint: Define ⟨u | v⟩K =

∫
K
⟨
ρ(k)u | ρ(k)v⟩dµ(k), where µ is Haar measure on K.]

#4. Let K be a compact subgroup of a Lie group G. Use Exercise 3 to
show that there is a G-invariant Riemannian metric on G/K.
[Hint: A G-invariant Riemannian metric on G/K is determined by the inner product
it assigns to the tangent space TeK(G/K).]

#5. Complete the proof of Proposition 1.2.2, by removing the simplify-
ing assumption that K = CG(σ).

#6. Let F be a finite group of diffeomorphisms (not necessarily isome-
tries) of a Riemannian manifold

(
M, ⟨· | ·⟩x

)
. Define a new inner

product ⟨· | ·⟩′x on each tangent space TxM by

⟨u | v⟩′x =
∑
f∈F

⟨dfx(u) | dfx(v)⟩f(x).

a) Show that the Riemannian metric ⟨· | ·⟩′ on M is F-invariant.
b) Show that if G is a group of isometries of

(
M, ⟨· | ·⟩x

)
, and G is

normalized by F, then ⟨· | ·⟩′ is G-invariant.

#7. For any symmetric space X, show that there exist G, K, and σ as in
Proposition 1.2.2, such that X is isometric to G/K.
[Hint: Suppose τ is an involutive isometry of X with an isolated fixed point p. Let
G = Isom(X)◦ and K = StabG(p). Define σ(g) = τgτ. Show K ⊂ CG(σ) and, using
the fact that p is isolated, show that K contains the identity component of CG(σ).]

#8. Verify assertions (a), (b), (c), (d), and (e) of Example 1.2.3.
[Hint: To prove transitivity in (b), you may assume that every symmetric matrix A
is diagonalizable by an orthogonal matrix. That is, there exists g, such that gAg−1

is diagonal and ggT = Id. Note that every positive-definite diagonal matrix has a
square root that is also a diagonal matrix.]

#9. Show that if X is a connected homogeneous space, then Isom(X)
has only finitely many connected components.
[Hint: Every component of G = Isom(X) intersects the compact group Stabg(x).]

#10. Show that if G is compact, then there is a G-invariant Riemannian
metric on G that makes G a symmetric space.
[Hint: The involutive isometry is g , g−1.]

§1.3. Locally symmetric spaces

The gist of the following definition is that a locally symmetric space is a
Riemannian manifold that is locally isometric to a symmetric space; that
is, every point has a neighborhood that is isometric to an open subset of
some symmetric space.
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(1.3.1) Definition. A complete Riemannian manifold M is locally sym-
metric if its universal cover is a symmetric space. In other words, there
is a symmetric space X, and a group Γ of isometries of X, such that

1) Γ acts freely and properly discontinuously on X, and

2) M is isometric to Γ\X.

(1.3.2) Remark. At every point of a symmetric space, the geodesic sym-
metry γ(t) , γ(−t) extends to an isometry of the entire manifold
(see Corollary 1.1.9). In a locally symmetric space, the geodesic sym-
metry τ at each point is an isometry on its domain, but it may not be
possible to extend τ to an isometry that is well-defined on the entire
manifold; that is, the geodesic symmetry is only a local isometry. That
is the origin of the term locally symmetric .

(1.3.3) Example. Define g : H2 → H2 by g(z) = z + 1, let Γ = ⟨g⟩, and let
M = Γ\H2. Then (obviously) M is locally symmetric.

However, M is not symmetric. We provide several different geomet-
ric proofs of this fact, in order to illustrate the important distinction
between symmetric spaces and locally symmetric spaces. (It can also be
proved group-theoretically (see Exercise 2).) The manifold M is a cusp:

M

M

1) Any point far out in the cusp lies on a short loop that is not null-
homotopic, but points at the other end do not lie on such a loop.
Therefore, M is not homogeneous, so it cannot be symmetric.

2) The geodesic symmetry performs a 180◦ rotation. Therefore, if it
is a well-defined diffeomorphism ofM, it must interchange the two
ends of the cusp. However, one end is thin, and the other end is
(very!) wide, so no isometry can interchange these two ends. Hence,
the geodesic symmetry (at any point) is not an isometry, so M is
not symmetric.

3) Let us show, directly, that the geodesic symmetry at some point
p ∈ H2 does not factor through to a well-defined map on Γ\H2 = M.
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• Let x = −1 + i and y = 1 + i, and let p ∈ iR be the midpoint
of the geodesic segment joining x and y:

x y � ��x�

p

i

��i�

• Let τ be the geodesic symmetry at p. Then τ(x) = y = 1+ i.
• Because the imaginary axis is a geodesic, we have τ(i) = ai,

for some a > 1.
• Now i = x+1 = g(x), so x and i represent the same point inM.

However, τ(i)−τ(x) = −1+(a−1)i is not an integer (it is not
even real), so τ(x) and τ(i) do not represent the same point
in M. Therefore, τ does not factor through to a well-defined
map on M.

(1.3.4) Remarks.

1) Some authors do not require M to be complete in their definition
of a locally symmetric space. This would allow the universal cover
of M to be an open subset of a symmetric space, instead of the
entire symmetric space.

2) A more intrinsic (but more advanced) definition is that a complete,
connected Riemannian manifoldM is locally symmetric if and only
if the curvature tensor of M is invariant under all parallel transla-
tions, and M is complete.

Any complete, connected manifold of constant negative curvature is
a locally symmetric space, because the universal cover of such a mani-
fold is Hn (after normalizing the curvature to be −1). As a generalization
of this, we are interested in locally symmetric spaces M whose universal
cover M̃ is of noncompact type, with no flat factors; that is, such that
each irreducible factor of M̃ is noncompact (and not flat). From Proposi-
tion 1.2.6, we see, in this case, that M̃ can be written in the form M̃ = G/K,
where G = G1 × · · · ×Gn is a product of noncompact simple Lie groups,
and K is a maximal compact subgroup of G. We haveM = Γ\M̃, for some
discrete subgroup Γ of Isom

(
M̃
)
. We know that Isom

(
M̃
)

has only finitely
many connected components (see Exercise 1.2#9), so, if we replace M
with an appropriate finite cover, we can arrange that Γ ⊂ Isom

(
M̃
)◦ = G.
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Figure 1.3A. A fundamental domain F for SL(2,Z) in SL(2,R).

Then
M = Γ\G/K, and Γ is a discrete subgroup of G.

A topologist may like M to be compact, but it turns out that a very
interesting theory is obtained by making the weaker assumption that M
has finite volume. Hence, the subgroup Γ should be chosen so that Γ\G/K
has finite volume. Because Γ\G is a principal K-bundle over Γ\G/K, and
K has finite measure, it is not difficult to see, from Fubini’s Theorem,
that Γ\G has finite volume (see Exercise 6). This leads to the following
definition.

(1.3.5) Definition. A subgroup Γ of G is a lattice in G if Γ is discrete and
Γ\G has finite volume (which respect to the Haar measure on G).

(1.3.6) Example. If Γ is discrete and Γ\G is compact, then Γ is a lattice inG,
because any compact Riemannian manifold obviously has finite volume.

(1.3.7) Example. SL(2,Z) is a lattice in SL(2,R). To see this, let

F = {z ∈ H2 | |z| ≥ 1 and −1/2 ≤ Rez ≤ 1/2} (1.3.8)

(see Figure 1.3A). It is well known (though not obvious) that F is a fun-
damental domain for the action of SL(2,Z) on H2 (see Exercises 7 and 8);
it therefore suffices to show that F has finite volume, or, more precisely,
finite hyperbolic area.

The hyperbolic area dA of an infinitesimal rectangle is the product
of its hyperbolic length and its hyperbolic width. If the Euclidean length
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is dx and the Euclidean width is dy, and the rectangle is located at the
point x+ iy, then, by definition of the hyperbolic metric, the hyperbolic
length is (dx)/(2y) and the hyperbolic width is (dy)/(2y). Therefore,

dA = dx dy
4y2

.

Since Imz ≥ √3/2 for all z ∈ F, we have

vol(F) =
∫
x+iy∈F

dA ≤
∫∞
√

3/2

∫ 1/2

−1/2

dxdy
4y2

= 1
4

∫∞
√

3/2

1
y2
dy <∞.

Unfortunately, SL(2,Z)\H2 is not a locally symmetric space, because
SL(2,Z)does not act freely on H2 (so the quotient space is not a Riemann-
ian manifold). However, there are finite-index subgroups of SL(2,Z) that
do act freely (cf. Theorem 4.8.2), and these provide interesting locally
symmetric spaces.

Calculations similar to (but more complicated than) Example 1.3.7
show:

• SL(n,Z) is a lattice in SL(n,R), and

• SO(p, q)∩ SL(n,Z) is a lattice in SO(p, q).
As in the example of SL(2,Z)\H2, the hard part is to find a fundamental
domain for Γ\G (or an appropriate approximation of a fundamental do-
main); then it is not difficult to see that its volume is finite. These are
special cases of the following general theorem, which implies that every
simple Lie group has a lattice.

(1.3.9) Theorem (Arithmetic subgroups are lattices (see Theorem 5.1.11)).
Assume

• G = G1 × · · · ×Gm is a product of simple Lie groups,

• G ⊆ SL(ℓ,R), and

• G ∩ SL(ℓ,Q) is dense in G.

Then GZ = G ∩ SL(ℓ,Z) is a lattice in G.

Lattices constructed by taking the integer points of G in this way are
said to be arithmetic (see Definition 5.1.19). (For most simple Lie groups,
these are the only lattices (see Theorem 5.2.1).) When ℓ is large, there is
more than one way to embed G in SL(ℓ,R), and we will see that different
embeddings can lead to quite different intersections with SL(ℓ,Z). In
particular, if G is a noncompact, simple Lie group, then:

• By taking an appropriate embedding of G in some SL(ℓ,R), we will
construct a lattice Γ in G, such that Γ\G is not compact (see Corol-
lary 5.1.17).

• By taking a different embedding, we will construct a different lattice
Γ ′, such that Γ ′\G is compact (see Theorem 18.7.1).
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We will also see that algebraic properties of Γ influence the geometry
of the corresponding locally symmetric spaceM. In particular, the struc-
ture of Γ determines whether M is compact or not. (For example, the
“Godement Criterion” (5.3.3) implies that M is compact if and only if ev-
ery element of Γ is a diagonalizable matrix over C.) Much more generally,
the following important theorem implies that every geometric property
of M is faithfully reflected in some group-theoretic property of Γ .

(1.3.10) Theorem (Mostow Rigidity Theorem (see Chapter 15)). Let M1

andM2 be finite-volume locally symmetric spaces (not both 2-dimensional),
such that

• the universal covers ofM1 andM2 are neither compact, nor flat, nor
reducible, and

• the volumes ofM1 andM2 are normalized (i.e., volM1 = volM2 = 1).

If π1(M1) ≊ π1(M2), then M1 is isometric to M2.
In fact, every homotopy equivalence is homotopic to an isometry.

The theorem implies that locally symmetric spaces have no nontrivial
deformations, which is why it is called a “rigidity” theorem:

(1.3.11) Corollary. Let {gt} be a continuous family of Riemannian metrics
on a manifold M with dimM > 2, such that, for each t:

• (M,gt) is a finite-volume locally symmetric space whose universal
cover is neither compact, nor flat, nor reducible, and

• vol(M,gt) = 1.

Then (M,gt) is isometric to (M,g0), for every t.

(1.3.12) Definition. A locally symmetric space is irreducible if no finite
cover of M can be written as a nontrivial cartesian product M1 ×M2.

It is important to note that the universal cover of an irreducible lo-
cally symmetric space need not be an irreducible symmetric space. In
other words, there can be lattices in G1 × · · · × Gn that are not of the
form Γ1 × · · · × Γn (see Example 5.5.3).

(1.3.13) Remark. Theorem 1.3.10 (and the corollary) can be generalized
to the case where only M1, rather than the universal cover of M1, is ir-
reducible. However, this requires the hypotheses to be strengthened: it
suffices to assume that no irreducible factor of M1 or M2 is either com-
pact or flat or 2-dimensional. Furthermore, the conclusion needs to be
weakened: rather than simply multiplying by a single scalar to normalize
the volume, there can be a different scalar on each irreducible factor of
the universal cover.
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Exercises for §1.3.

#1. Let
• X be a simply connected symmetric space,
• Γ\X be a locally symmetric space whose universal cover isX (so
Γ is a discrete group of isometries that acts freely and properly
discontinuously on X), and

• τ be an isometry of X.
Show that if τ factors through to a well-defined map on Γ\X, then
τ normalizes Γ (that is, τγτ−1 ∈ Γ , for every γ ∈ Γ ).

#2. Define g : H2 → H2 by g(z) = z + 1.
a) Show the geodesic symmetry τ at i is given by τ(z) = −1/z.
b) Show that τ does not normalize ⟨g⟩.
c) Conclude that τ does not factor through to a well-defined map

on ⟨g⟩\H2.

#3. Let
• X be a simply connected symmetric space, and
• Γ\X be a locally symmetric space whose universal cover isX (so
Γ is a discrete group of isometries that acts freely and properly
discontinuously on X).

Show that X is homogeneous if and only if the normalizer NG(Γ)
is transitive on X, where G = Isom(X).

#4. LetM = Γ\G/K be a locally symmetric space, and assume thatGhas
no compact factors. Show that if NG(Γ)/Γ is finite, then Isom(M)
is finite.

#5. Show that if K is any compact subgroup of a Lie groupG, then there
is a unique (up to a scalar multiple) G-invariant Borel measure ν on
G/K, such that ν(C) <∞, for every compact subset C of G/K.

#6. Let
• K be a compact subgroup of a Lie group G, and
• Γ be a discrete subgroup of G that acts freely on G/K.

Show that Γ\G has finite volume if and only if Γ\G/K has finite
volume.

#7. Let Γ = SL(2,Z), and define F ⊂ H2 as in (1.3.8). Show, for each
p ∈ H2, that there is some γ ∈ Γ with γ(p) ∈ F.
[Hint: If Imγ(p) ≤ Imp for all γ ∈ Γ, and −1/2 ≤ Rep ≤ 1/2, then p ∈ F.]

#8. Let Γ = SL(2,Z), and defineF ⊂ H2 as in (1.3.8). Show, for z,w ∈ F,
that if there exists γ ∈ Γ with γ(z) = w, then either z = w or
z,w ∈ ∂F.
[Hint: Assume Imw ≤ z. Then |γ2,1z+γ2,2| ≤ 1. Hence |γ2,1| ∈ {0,1}. If |γ2,1| = 1
and γ2,2 ≠ 0, then |Rez| = 1/2, so z ∈ ∂F. If |γ2,1| = 1 and γ2,2 = 0, then
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w = (az − 1)/z. Since |Re(1/z)| ≤ |Rez| ≤ 1/2, and |Rew| ≤ 1/2, we see that
either Rez = 1/2 or w = −1/z.]

Notes

Either of Helgason’s books [2, 3] is a good reference for the geometric
material on symmetric spaces and locally symmetric spaces, the connec-
tion with simple Lie groups, and much more. Lattices are the main topic
of Raghunathan’s book [8].

Theorem 1.3.9 is a result of Borel and Harish-Chandra [1] that will be
proved in Chapters 7 and 19.

Theorem 1.3.10 combines work of Mostow [5], Prasad [7], and Mar-
gulis [4]. We will discuss it in Chapter 15.

Example 1.3.7 appears in many number theory texts, including [9,
§7.1.2, pp. 77–79]. Our hints for Exercises 1.3#7 and 1.3#8 are taken
from [6, Prop. 4.4, pp. 181–182].
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Chapter 2

Geometric Meaning of
R-rank and Q-rank

This chapter, like the previous one, is motivational. It is not a prerequisite
for later chapters.

§2.1. Rank and real rank

Let X be a symmetric space (see Definition 1.1.5). For example, X could
be a Euclidean space Rn, or a round sphere Sn, or a hyperbolic space Hn,
or a product of any combination of these.

As is well known, the rank of X is a natural number that describes
part of the geometry of X, namely, the dimension of a maximal flat.

(2.1.1) Definition. A flat in X is a connected, totally geodesic, flat sub-
manifold of X.

(2.1.2) Definition. rankX is the largest natural number r , such that X
contains an r-dimensional flat.

Let us assume that X has no flat factors. (That is, the universal cover
of X is not isometric to a product of the form Y ×Rn. Mostly, we will be
interested in the case where X also does not have any compact factors.)

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: locally symmetric spaces
(Chapter 1) and other differential geometry.
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Let G = Isom(X)◦. Then G acts transitively on X, and there is a
compact subgroup K of G, such that X = G/K. Because X has no flat
factors, G is a connected, semisimple, real Lie group with trivial center
(see §1.2). (We remark that G is isomorphic to a closed subgroup of
SL(ℓ,R), for some ℓ.)

The real rank can be understood similarly. It is an invariant of G that
is defined algebraically (see Chapter 8), but it has the following geometric
interpretation.

(2.1.3) Theorem. rankRG is the largest natural number r , such that X
contains a closed, simply connected, r-dimensional flat.

(2.1.4) Warning. By closed, we simply mean that the flat contains all of its
accumulation points, not that it is compact. (A closed, simply connected
flat is homeomorphic to some Euclidean space Rr .)

For example, if X is compact, then every closed, totally geodesic, flat
subspace ofXmust be a torus, notRn, so rankRG = 0. On the other hand,
if X is not compact, then X has unbounded geodesics (for example, if X is
irreducible, then every geodesic goes to infinity), so rankRG ≥ 1. Hence:

rankRG = 0 a X is compact.
Thus, there is a huge difference between rankRG = 0 and rankRG > 0,
because no one would mistake a compact space for a noncompact one.

(2.1.5) Remark. rankRG = rankX if and only ifX has no compact factors.

There is also an important difference between rankRG = 1 and
rankRG > 1. The following proposition is an important example of this.

(2.1.6) Definition. X is two-point homogeneous if, whenever (x1, x2) and
(y1, y2) are two pairs of points in X with d(x1, x2) = d(y1, y2), there is
an isometry g of X with g(x1) = y1 and g(x2) = y2.

If rankRG > 1, then there exist maximal flatsH1 andH2 that intersect
nontrivially. On the other hand, there also exist some pairs x1, x2, such
that {x1, x2} is not contained in the intersection of any two (distinct)
maximal flats. This establishes one direction of the following result.

(2.1.7) Proposition. Assume X is noncompact and irreducible. The sym-
metric space X is two-point homogeneous if and only if rankRG = 1.

The following is an infinitesimal version of this result.

(2.1.8) Proposition. Assume X is noncompact and irreducible. The action
of G on the set of unit tangent vectors of X is transitive iff rankRG = 1.

(2.1.9) Corollary. rankR SO(1, n) = 1.

Proof. For G = SO(1, n), we have X = Hn. The stabilizer SO(n) of a point
in Hn acts transitively on the unit tangent vectors at that point. So G acts
transitively on the unit tangent vectors of X. □
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More generally, it can be shown that rankR
(
SO(m,n)

) = min{m,n}.
Also, rankR

(
SL(n,R)

) = n−1. Although they may not be obvious geomet-
rically, these real ranks are easy to calculate from the algebraic definition
that will be given in Chapter 8.

(2.1.10) Remark. For every r , there is a difference between rankRG = r
and rankRG > r , but this difference is less important as r grows larger:
the three main cases are rankRG = 0, rankRG = 1, and rankRG ≥ 2. (This
is analogous to the situation with smoothness assumptions: countless
theorems require a function to be C0 or C1 or C2, but far fewer theorems
require a function to be, say, C7, rather than only C6.)

Exercises for §2.1.

#1. Show rankR(G1 ×G2) = rankRG1 + rankRG2.

#2. Assume rankRG = 1. Show X is irreducible if and only if X has no
compact factors.

#3. Show that if X is reducible, then X is not two-point homogeneous.
(Do not assume the fact about maximal flats that was mentioned,
without proof, before Proposition 2.1.7.)

§2.2. Q-rank

Now let Γ\X be a locally symmetric space modeled on X, and assume that
Γ\X has finite volume. Hence, Γ is a (torsion-free) discrete subgroup of G,
such that Γ\G has finite volume; in short, Γ is a lattice in G.

The real rank depends only on X, so it is not affected by the choice of
a particular lattice Γ . We now describe an analogous algebraically defined
invariant, rankQ Γ , that does depend on Γ , and therefore distinguishes be-
tween some of the various locally homogeneous spaces that are modeled
on X. We will mention some of the geometric implications of Q-rank,
leaving a more detailed discussion to later chapters.

(2.2.1) Theorem (see Subsections 19.3(iii) and 19.3(iv)).

1) rankQ Γ is the largest natural number r , such that some finite cover
of Γ\X contains a closed, simply connected, r-dimensional flat.

2) rankQ Γ is the smallest natural number r , for which there exists col-
lection of finitely many closed, r-dimensional flats, such that all of
Γ\X is within a bounded distance of the union of these flats.

(2.2.2) Remark. It is clear from Theorem 2.2.1(1) that rankQ Γ always ex-
ists (and is finite). Furthermore, 0 ≤ rankQ Γ ≤ rankRG. Although not
so obvious, it can be shown that the extreme values are always attained:
there are lattices Γc and Γs in G with rankQ Γc = 0 and rankQ Γs = rankRG
(see Theorem 18.7.1 and Exercise 9.1#7). So it is perhaps surprising that
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there may be gaps in between. (For example, if G ≊ SO(2, n), with n ≥ 5,
and n is odd, then rankRG = 2, but Corollary 18.6.2 shows there does
not exist a lattice Γ in G, such that rankQ Γ = 1.)

(2.2.3) Example (see Example 9.1.5). From the algebraic definition, which
will appear in Chapter 9, it is easy to calculate

rankQ
(
SO(m,n)Z

) = min{m,n} = rankR
(
SO(m,n)

)
and

rankQ
(
SL(n,Z)

) = n− 1 = rankR
(
SL(n,R)

)
.

As for the real rank, the biggest difference is between spaces where
the invariant is zero and those where it is nonzero, because this is again
the distinction between a compact space and a noncompact one:

(2.2.4) Theorem (see Exercise 9.1#5). rankQ Γ = 0 iff Γ\X is compact.

Theorem 2.2.1(2) implies that the Q-rank of Γ is directly reflected in
the large-scale geometry of Γ\X, as described by the asymptotic cone
of Γ\X. Intuitively, the asymptotic cone of a metric space is obtained by
looking at it from a large distance. For example, if Γ\X is compact, then,
as we move farther away, the manifold appears smaller and smaller (see
the illustration below). In the limit, the manifold shrinks to a point.

(2.2.5)

An intuitive understanding is entirely sufficient for our purposes
here, but, for the interested reader, we provide a more formal definition.

(2.2.6) Definition. The asymptotic cone of a metric space (M,d) is the
limit space

lim
ϵ→0+

(
(M, ϵd),p

)
,

if the limit exists. Here, p is an arbitrary (but fixed!) point of M, and the
limit is with respect to Gromov’s Hausdorff distance. (Roughly speaking,
a large ball around p in (M, ϵd) is δ-close to being isometric to a large
ball around a certain (fixed) point p0 in the limit space (M0, d0).)

(2.2.7) Examples.

1) If Γ\X is compact, then the asymptotic cone of Γ\X is a point,
as is illustrated in (2.2.5). This point is a 0-dimensional simpli-
cial complex, which is a geometric manifestation of the fact that
rankQ Γ = 0.

2) If rankRG = 1, and Γ\X is not compact, then, as is well known,
Γ\X has finitely many cusps. The asymptotic cone of a cusp is
a ray, so the asymptotic cone of Γ\X is a “star” of finitely many
rays emanating from a single vertex (see Figure 2.2A). Therefore,
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the asymptotic cone of Γ\X is a 1-dimensional simplicial complex.
This manifests the fact that rankQ Γ = 1.

Figure 2.2A. Looking at a manifold with cusps from far-
ther and farther away.

(2.2.8) Theorem (see Remark 19.3.9). The asymptotic cone of Γ\X is a
simplicial complex whose dimension is rankQ Γ .

(2.2.9) Example. Let G = SL(3,R) and Γ = SL(3,Z). From Theorem 2.2.8,
we see that the asymptotic cone of Γ\G/K is a 2-dimensional simplicial
complex. In fact, it turns out to be (isometric to) the sector{

(x,y) ∈ R2

∣∣∣∣∣ 0 ≤ y ≤
√

3
2
x
}
.

(It is not a coincidence that this sector is a Weyl chamber of the Lie algebra
sl(3,R).)

(2.2.10) Remarks.

1) If rankQ Γ = 1, then the asymptotic cone of Γ\X is a star of finitely
many rays emanating from the origin (cf. Example 2.2.7(2)). Note
that this intersects the unit sphere in finitely many points.

2) In general, if rankQ Γ = k, then the unit sphere contains a certain
simplicial complex TΓ of dimension k−1, such that the asymptotic
cone of Γ\X is the union of all the rays emanating from the origin
that pass through TΓ .

3) For Γ = SL(3,Z), the simplicial complex TΓ is a single edge (cf. Ex-
ample 2.2.9). In general, the Tits building TG is a certain simplicial
complex defined from the parabolic Q-subgroups of G, and TΓ can
be obtained from TG by modding out the action of Γ .

4) The asymptotic cone is also known as “tangent cone at infinity.”

(2.2.11) Remark. Although we will not prove this, the Q-rank is directly
reflected in the cohomology of Γ\X. Namely, let c be the cohomological
dimension of Γ\X. Because Γ\X is a manifold of dimension dimX, we
have c = dimX if and only if Γ\X is compact. So the deficiency dimX−c
is, in some sense, a measure of how far Γ\X is from being compact. This
measure is precisely rankQ Γ (if X has no compact factors).
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Exercises for §2.2.

#1. Theorem 2.2.4 states that if Γ\X is compact, then rankQ Γ = 0.
a) Prove this directly from Theorem 2.2.1(1).
b) Prove this directly from Theorem 2.2.1(2).

Notes

Helgason’s book [4] has a thorough treatment of rank and R-rank.
Theorem 2.2.1(2) was proved by B. Weiss [8].
Theorem 2.2.4 was proved for arithmetic lattices by Borel and Harish-

Chandra [1] and, independently, by Mostow and Tamagawa [7]. For non-
arithmetic lattices, this theorem is part of the definition of Q-rank.

A more precise version of Theorem 2.2.8 (providing a description of
the geometry of the simplicial complex) was proved by Hattori [3]. Proofs
also appear in [5] and [6].

Remark 2.2.11 is due to Borel and Serre [2].

References

[1] A. Borel and Harish-Chandra: Arithmetic subgroups of algebraic
groups, Ann. Math. (2) 75 (1962) 485–535. MR 0147566,
http://dx.doi.org/10.2307/1970210

[2] A. Borel and J.–P. Serre: Corners and arithmetic groups, Comment.
Math. Helvetici 48 (1973) 436–491. MR 0387495,
http://dx.doi.org/10.5169/seals-37166

[3] T. Hattori: Asymptotic geometry of arithmetic quotients of
symmetric spaces. Math. Z. 222 (1996) 247–277. MR 1429337,
http://eudml.org/doc/174884

[4] S. Helgason: Differential Geometry, Lie Groups, and Symmetric
Spaces. Academic Press, New York, 1978. MR 0514561

[5] L. Ji and R. MacPherson: Geometry of compactifications of locally
symmetric spaces, Ann. Inst. Fourier (Grenoble) 52 (2002) 457–559.
MR 1906482, http://eudml.org/doc/115986

[6] E. Leuzinger: Tits geometry, arithmetic groups, and the proof of a
conjecture of Siegel, J. Lie Theory 14 (2004) 317–338. MR 2066859,
http://www.emis.de/journals/JLT/vol.14_no.2/6.html

[7] G. D. Mostow and T. Tamagawa: On the compactness of
arithmetically defined homogeneous spaces, Ann. Math. 76 (1962)
446–463. MR 0141672, http://dx.doi.org/10.2307/1970368

[8] B. Weiss: Divergent trajectories and Q-rank, Israel J. Math. 152
(2006), 221–227. MR 2214461,
http://dx.doi.org/10.1007/BF02771984

http://www.ams.org/mathscinet-getitem?mr=0147566
http://dx.doi.org/10.2307/1970210
http://www.ams.org/mathscinet-getitem?mr=0387495
http://dx.doi.org/10.5169/seals-37166
http://www.ams.org/mathscinet-getitem?mr=1429337
http://eudml.org/doc/174884
http://www.ams.org/mathscinet-getitem?mr=0514561
http://www.ams.org/mathscinet-getitem?mr=1906482
http://eudml.org/doc/115986
http://www.ams.org/mathscinet-getitem?mr=2066859
http://www.emis.de/journals/JLT/vol.14_no.2/6.html
http://www.ams.org/mathscinet-getitem?mr=0141672
http://dx.doi.org/10.2307/1970368
http://www.ams.org/mathscinet-getitem?mr=2214461
http://dx.doi.org/10.1007/BF02771984


Chapter 3

Brief Summary

This book is about arithmetic subgroups, and other lattices, in semisim-
ple Lie groups. Given a lattice Γ in a semisimple Lie group G, we will
investigate both the algebraic structure of Γ , and properties of the corre-
sponding homogeneous space G/Γ . We will also study the close relation-
ship between G and Γ . For example, we will see that G is essentially the
only semisimple group in which Γ can be embedded as a lattice (“Mostow
Rigidity Theorem”), and, conversely, we will usually be able to make a list
of all the lattices in G (“Margulis Arithmeticity Theorem”).

This chapter provides a very compressed outline of the material in
this book. To help keep it brief, let us assume, for the remainder of the
chapter, that

G is a noncompact, simple Lie group, and Γ is a lattice in G.
This means (see Definition 4.1.9):

• Γ is a discrete subgroup of G, and

• the homogeneous space G/Γ has finite volume (with respect to the
Haar measure on G).

(If G/Γ is compact, which is a very important special case, we say Γ is
cocompact .)

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none for most of the non-proof
material.
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Part I. Introduction

All three chapters in this part of the book are entirely optional; none of
the material will be needed later (although some examples and remarks
do refer back to it). Chapters 1 and 2 provide geometric motivation for
the study of arithmetic groups, by explaining the connection with locally
symmetric spaces. The present chapter (Chapter 3) is a highly condensed
version of the entire book.

Part II. Fundamentals

This part of the book presents definitions and other foundational mate-
rial for the study of arithmetic groups.

Chapter 4. Basic Properties of Lattices. This chapter presents a few
important definitions, including the notions of lattice subgroups, com-
mensurable subgroups, and irreducible lattices. It also proves a number
of fundamental algebraic and geometric consequences of the assumption
that Γ is a lattice, including the following.

(4.4.4) Recall that an element u of SL(n,R) is unipotent if its char-
acteristic polynomial is (x − 1)n (or, in other words, its only eigenvalue
is 1). If G/Γ is compact, then Γ does not have any nontrivial unipotent
elements. This is proved by combining the Jacobson-Morosov Lemma
(A5.8) with the observation that if a sequence ciΓ leaves all compact sets,
and U is a precompact set in G, then, after passing to a subsequence, the
sets Uc1Γ , Uc2Γ , . . . are all disjoint. However, G/Γ has finite volume, so
it cannot have infinitely many disjoint open sets that all have the same
volume.

(4.5#11) (Borel Density Theorem) Γ is not contained in any connected,
proper, closed subgroup of G. Assuming that G/Γ is compact, the key to
proving this is to note that if ρ : G → GL(m,R) is any continuous homo-
morphism, u is any unipotent element of G, and v ∈ Rm, then the co-
ordinates of the vector ρ(uk)v are polynomial functions of k. However,
if G/Γ is compact, and v happens to be ρ(Γ)-invariant, then the coordi-
nates are all bounded. Since every bounded polynomial is constant, we
conclude that every ρ(Γ)-invariant vector is ρ(G)-invariant. From this,
the desired conclusion follows by looking at the action of G on exterior
powers of its Lie algebra.

(4.7.10) Γ is finitely presented. When G/Γ is compact, this follows
from the fact that the fundamental group of any compact manifold is
finitely presented. For the noncompact case, it follows from the existence
of a nice fundamental domain for the action of Γ on G (which will be
explained in Chapter 19).
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(4.8.2) (Selberg’s Lemma) Γ has a torsion-free subgroup of finite index.
For example, if Γ = SL(3,Z), then the desired torsion-free subgroup can
be obtained by choosing any prime p ≥ 3, and taking the matrices in Γ
that are congruent to the identity matrix, modulo p.

(4.8#9) Γ is residually finite. For example, if Γ = SL(3,Z), then no
nontrivial element of Γ is in the intersection of the finite-index subgroups
used in the preceding paragraph’s proof of Selberg’s Lemma.

(4.9.2) (Tits Alternative) Γ contains a nonabelian free subgroup. This
is proved by using the Ping-Pong Lemma (4.9.6), which, roughly speaking,
states that if homeomorphism a contracts all of the space toward one
point, and homeomorphismb contracts all of the space toward a different
point, then the group generated by a and b is free.

(4.10.3) (Moore Ergodicity Theorem) If H is any noncompact, closed
subgroup of G, then every real-valued, H-invariant, measurable function
on G/Γ is constant (a.e.). The general case will be proved in Section 11.2,
but suppose, for example, that G = SL(2,R), H = {as} is the group of
diagonal matrices, and f is an H-invariant function that, for simplicity,
we assume is uniformly continuous. If we let {ut} be the group of upper-
triangular matrices with 1’s on the diagonal, then we have

ut · f = utas · f = asue−st · f s→∞
-→ asu0 · f = f ,

so f is invariant under {ut}. Similarly, it is also invariant under the group
of lower-triangular matrices. So f is G-invariant, and therefore constant.

Chapter 5. What is an Arithmetic Group? Roughly speaking, an
arithmetic subgroup GZ ofG is obtained by embeddingG in some SL(ℓ,R),
and taking the resulting set of integer points of G. That is, GZ is the in-
tersection of G with SL(ℓ,Z). However, in order for GZ to be called an
arithmetic subgroup, the embedding G ↩ SL(ℓ,Z) is required to satisfy a
certain technical condition (“defined over Q”) (see Definition 5.1.2).

(5.1.11) Every arithmetic subgroup of G is a lattice in G. This funda-
mental fact will be proved in Chapters 7 and 19.

(5.2.1) (Margulis Arithmeticity Theorem) Conversely, if G is neither
SO(1, n) nor SU(1, n), then every lattice in G is an arithmetic subgroup.
Therefore, in most cases, “arithmetic subgroup” is synonymous with “lat-
tice.” This amazing theorem will be proved in Section 16.3.

It is a hugely important result. The definition of “lattice” is quite
abstract, but a fairly explicit list of all the lattices in G can be obtained by
combining this theorem with the classification of arithmetic subgroups
that will be given in Chapter 18.

(5.3.1) (Godement Compactness Criterion) G/GZ is compact if and
only if the identity element is the only unipotent element of GZ. The
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direction (⇒) is very elementary and was proved in the previous chapter
(see 4.4.4). The converse uses the same main idea, combined with the
simple observation that if a polynomial has integer coefficients, and all
of its roots are close to 1, then all of its roots are exactly equal to 1.

(5.5) The embedding of G in SL(ℓ,R) is not at all unique, and different
embeddings can yield quite different arithmetic subgroups GZ. One very
important method of constructing non-obvious embeddings is called Re-
striction of Scalars. It starts by choosing a field F that is a finite extension
of Q. If we think of F as a vector space over Q, then it can be identified
with some Qn, in such a way that the ring O of algebraic integers of F is
identified with Zn. This implies that the group GO is isomorphic to G′Z,
where G′ is a semisimple group that has G as one of its factors. There-
fore, this method allows arithmetic subgroups to be constructed not only
from ordinary integers, but also from algebraic integers.

Chapter 6. Examples of Arithmetic Groups. This chapter explains
how to construct many arithmetic subgroups of SL(2,R), SO(1, n), and
SL(n,R), by using unitary groups and quaternion algebras (and other
division algebras). (Restriction of scalars is also used for some of the
cocompact ones.) It will be proved in Chapter 18 that these fairly simple
constructions actually produce all of the arithmetic subgroups of these
groups.

(6.5) There exist non-arithmetic lattices in SO(1, n) for every n. This
was proved by M. Gromov and I. Piatetski-Shapiro. They “glued together”
two arithmetic lattices to create a “hybrid” lattice that is not arithmetic.

Chapter 7. SL(n, Z) is a lattice in SL(n,R). This chapter explains
two different proofs of the fundamental fact (already mentioned in The-
orem 5.1.11) that GZ is a lattice in G, in the illustrative special case where
G = SL(n,R) and GZ = SL(n,Z).

The first proof is quite short and elementary, and is presented fairly
completely. It constructs a nice set that is (approximately) a fundamental
domain for the action of Γ on G. The key notion is that of a Siegel set. We
begin with the Iwasawa decomposition G = KAN.

• K = SO(n) is a maximal compact subgroup of G.

• The group A of diagonal matrices in G is isomorphic to Rn−1, so
we can think of it as a real vector space. Under this identification,
the “simple roots” are linear functionals α1, . . . , αn−1 on A. Choose
any t ∈ R, and let

At = {a ∈ A |αi(a) ≥ t for all i},
so At is a polyhedral cone in A.

• N is the group of upper-triangular matrices with 1’s on the diagonal.
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• Choose any compact subset N0 of N.

Then the product S = N0At K is a Siegel set (see Section 7.2). It depends
on the choice of t and N0.

A straightforward calculation shows that every Siegel set has finite
volume (see Proposition 7.2.5). It is also not terribly difficult to find a
Siegel set S with the property that GZ ·S = G (see Theorem 7.3.1). This
implies that G/GZ has finite volume, so GZ is a lattice in G, or, in other
words, SL(n,Z) is a lattice in SL(n,R).

Unfortunately, some difficulties arise when generalizing this method
to other groups, because it is more difficult to use Siegel sets to construct
an appropriate fundamental domain in the general case. The main ideas
will be explained in Chapter 19.

So we also present a different proof that is much easier to generalize
(see Section 7.4). Namely, the general case is quite easy to prove if one
accepts the following key fact that was proved by Margulis: If

• ut is any unipotent 1-parameter subgroup of SL(n,R), and

• x ∈ SL(n,R)/ SL(n,Z),
then there is a compact subset C of SL(n,R)/ SL(n,Z), and some ϵ > 0,
such that at least ϵ% of the orbit {utx}t∈R is in the set C (see Theo-
rem 7.4.7).

Part III. Important Concepts

This part of the book explores several fundamental ideas that are impor-
tant not only for their applications to arithmetic groups, but much more
generally.

Chapter 8. Real rank. This chapter defines the real rank of G, which
is an important invariant in the study of semisimple Lie groups. It also
describes some consequences of assuming that the real rank is at least
two, and presents the definition and basic structure of the minimal par-
abolic subgroups of G.

Chapter 9. Q-rank. This chapter, unlike the others in this part of
the book, discusses a topic that is primarily of interest in the theory
of arithmetic groups (and related algebraic groups). Largely parallel to
Chapter 8, it defines the Q-rank of Γ , describes some consequences of
assuming that theQ-rank is at least two, and presents the definition and
basic structure of the minimal parabolic Q-subgroups of G.
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Chapter 10. Quasi-isometries. Any finite generating set S for Γ yields
a metric dS on Γ : the distance from x to y is the minimal number of
elements of S that need to be multiplied together to obtain x−1y. Unfor-
tunately, this “word metric” is not canonical, because it depends on the
choice of the generating set S. However, it is well-defined up to a bounded
factor, so, to get a geometric object that is uniquely determined by Γ , we
consider two metric spaces to be equivalent (or quasi-isometric) if there
is a map between them that only distorts distances by a bounded factor
(see Definition 10.1.3).

(10.1.7) Some quasi-isometries arise from cocompact actions: it is
not difficult to see that if Γ acts cocompactly, by isometries on a (nice)
space X, then there is a quasi-isometry from Γ to X. Thus, for example,
any cocompact lattice in SO(1, n) is quasi-isometric to the hyperbolic
space Hn.

(10.2) Γ is Gromov hyperbolic if and only if rankRG = 1 and Γ is
compact, except that all lattices in SL(2,R) are hyperbolic, not only the
cocompact ones. One direction is a consequence of the well-known fact
that Z× Z is not contained in any hyperbolic group. The other direction
(for the cocompact case) is a special case of the fact that the fundamental
group of any closed manifold of strictly negative sectional curvature is
hyperbolic.

Chapter 11. Unitary representations. This chapter presents some
basic concepts in the theory of unitary representations, the study of
group actions on Hilbert spaces. The Moore Ergodicity Theorem (4.10.3)
is proved in Section 11.2, and the “induced representations” defined in
Section 11.3 will be used in Section 13.4 to prove that Γ has Kazhdan’s
Property (T) if rankRG ≥ 2.

(11.2.2) (Decay of matrix coefficients) If π is a continuous homomor-
phism from G to the unitary group of a Hilbert space H , then

lim
∥g∥→∞

⟨π(g)ϕ | ψ⟩ = 0, for allϕ,ψ ∈H .
This yields the Moore Ergodicity Theorem (4.10.3) as an easy corollary,
and the proof is based on the existence of a ∈ G and (unipotent) sub-
groups U+ and U− of G, such that ⟨U+, U−⟩ = G and anua−n → e as
n→∞ (or −∞), for all u ∈ U+ (or U−, respectively).

(11.4.2) Every unitary representation of any compact Lie group is a
direct sum of finite-dimensional, irreducible unitary representations.

(11.5.3) Every unitary representation of any abelian Lie group is a
direct integral of one-dimensional unitary representations.

(11.6.4) Every unitary representation of G is a direct integral of irre-
ducible unitary representations.
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Chapter 12. Amenable Groups. Amenability is such a fundamental
notion that it has very many quite different definitions, all of which de-
termine exactly the same class of groups (see Definition 12.1.3 and The-
orem 12.3.1). One useful choice is that a group Λ is amenable if every
continuous action of Λ on a compact, metric space has a finite, invariant
measure.

(12.4.2) The fact that the lattice Γ contains a nonabelian free subgroup
(see Corollary 4.9.2) implies that it is not amenable. This is because sub-
groups of amenable groups are amenable (see Proposition 12.2.8), and
free groups do have actions (such as the actions described in the Ping-
Pong Lemma (4.9.6)) that do not have a finite, invariant measure.

Even so, amenability plays an important role in the study of Γ , through
the following observation:

(12.6.1) (Furstenberg Lemma) If P is an amenable subgroup of G,
and we have a continuous action of Γ on some compact, metric space X,
then there exists a measurable, Γ-equivariant map from G/P to the space
Prob(X) of measures µ on X, such that µ(X) = 1. To prove this, let F
be the set of measurable, Γ-equivariant maps from G to Prob(X). With
an appropriate weak topology, this is a compact, metrizable space, and
P acts on it by translation on the right. Since P is amenable, there is a
P-invariant, finite measure µ on F. The barycenter of this measure is a
fixed point of P in F, and this fixed point is a function on G that factors
through to a well-defined Γ-equivariant map from G/P to Prob(X).

Chapter 13. Kazhdan’s Property (T). To say Γ has Kazhdan’s prop-
erty (T) means that if a unitary representation of Γ does not have any
(nonzero) vectors that are fixed by Γ , then it does not almost-invariant
vectors, that is, vectors that are moved only a small distance by the ele-
ments of any given finite subset of Γ (see Definition 13.1.1).

(13.1.5) Kazhdan’s property (T) is, in a certain sense, the antithesis
of amenability: a discrete group cannot have both properties unless it is
finite. This is because the regular representation of any amenable group
has almost-invariant vectors.

(13.1.7) Every discrete group with Kazhdan’s property (T) is finitely
generated. To see this, let H =⊕F +2(Λ/F), where F ranges over all the
finitely generated subgroups of Λ. Then, by construction, every finite
subset of Λ fixes some nonzero vector in H .

(13.2.4) G has Kazhdan’s property (T), unless G is either SO(1, n) or
SU(1, n). To prove this for G = SL(3,R), first note that the semidirect
product SL(2,R) ⋉ R2 can be embedded in G. Also note that there are
elements a and b of SL(2,R), such that, if Q is any of the 4 quadrants
of R2, then either aQ or bQ is disjoint from Q (except for the 0 vector).
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Applying this to the Pontryagin dual ofR2 implies that if a representation
of the semidirect product SL(2,R)⋉R2 has almost-invariant vectors, then
it must have a nonzero vector that is invariant under R2. This vector
must be invariant under all of SL(3,R), by a generalization of the Moore
Ergodicity Theorem that is called the Mautner phenomenon (11.2.8).

(13.4.1) Γ has Kazhdan’s property (T), unless G is either SO(1, n) or
SU(1, n). Any unitary representation π of Γ can be “induced” to a repre-
sentation πGΓ of G. If π has almost-invariant vectors, then the induced
representation has almost-invariant vectors, and, since G has Kazhdan’s
property (T), this implies that πGΓ has G-invariant vectors. Any such
vector must come from a Γ-invariant vector in π.

(13.5.4) A group has Kazhdan’s property (T) if and only if every ac-
tion of the group by (affine) isometries on any Hilbert space has a fixed
point. This is not at all obvious, but here is the proof of one direction.

Suppose Γ does not have Kazhdan’s property (T), so there exists a
unitary representation of Γ on some Hilbert space H that has almost-
invariant vectors, but does not have invariant vectors. Choose an in-
creasing chain F1 ⊆ F2 ⊆ · · · of finite subsets whose union is all of Γ .
Since H has almost-invariant vectors, there exists a unit vector vn ∈H ,
such that ∥fvn − vn∥ < 1/2n for all f ∈ Fn. Now, define α : Γ →H∞ by

α(g)n = n
(
gvn − vn

)
.

Then α is a 1-cocycle, so defining g∗v = gv+α(g) yields an action of Γ
on the Hilbert space H∞. Since H has no nonzero invariant vectors, it
is not difficult to see that α is an unbounded function on Γ , so α is not a
coboundary. This implies that the corresponding action on H∞ has no
fixed points.

Chapter 14. Ergodic Theory. Ergodic Theory can be defined as the
measure-theoretic study of group actions. In this category, the analogue
of the transitive actions are the so-called ergodic actions, for which every
measurable, invariant function is constant (a.e.) (see Definition 14.2.1).

(14.3.2) (Pointwise Ergodic Theorem) If Z acts ergodically on X, with
finite invariant measure, and f is any L1-function on X, then the average
of f on almost every Z-orbit is equal to the average of f on the entire
space X.

(14.4.3) Every measure-preserving action of G can be measurably de-
composed into a union of ergodic actions.

(14.5.10) If the action of G on a space X is ergodic, with a finite,
invariant measure, then the action of G on X ×X is also ergodic.
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Part IV. Major Results

Here are some of the major theorems in the theory of arithmetic groups.

Chapter 15. Mostow Rigidity Theorem.

(15.1.2) (Mostow Rigidity Theorem) Suppose Γi is a lattice in Gi, for
i = 1,2, and φ : Γ1 → Γ2. If Gi has trivial center and no compact factors,
and is not PSL(2,R), then φ extends to an isomorphism φ : G1 → G2.

In most cases, the desired conclusion is a consequence of the Mar-
gulis Superrigidity Theorem, which will be discussed in Chapter 16.
However, a different proof is needed when G1 = G2 = SO(1, n) (and
some other cases). Assuming that the lattices are cocompact, the proof
uses the fact (mentioned in Proposition 10.1.7) that Γ1 and Γ2 are quasi-
isometric to Hn. Comparing the two embeddings yields a quasi-isometry
φ from Hn to itself. By proving that this quasi-isometry induces a map
on the boundary that is conformal (i.e., preserves angles), it is shown that
the two embeddings are conjugate by an isometry of Hn.

(15.3.6) Mostow’s theorem does not apply to PSL(2,R): in this group,
there are uncountably many lattices that are isomorphic to each other,
but are not conjugate. This follows from the fact that there are uncount-
ably many different right-angled hexagons in the hyperbolic plane H2. A
compact surface of genus g can be constructed by gluing 4g−4 of these
hexagons together, in such a way that the fundamental group is a cocom-
pact lattice in PSL(2,R). The uncountably many different hexagons yield
uncountably many non-conjugate lattices.

(15.4.1) From Mostow’s Theorem, we know that lattices in two differ-
ent groups G1 and G2 cannot be isomorphic. In fact, the lattices cannot
even be quasi-isometric. Some ideas in the proof of this fact are similar
to the argument of Mostow’s theorem, but we omit the details.

Chapter 16. Margulis Superrigidity Theorem.

(16.1) (Margulis Superrigidity Theorem) Suppose ρ : Γ → GL(n,R) is a
homomorphism. If G is neither SO(1, n) nor SU(1, n), and mild hypothe-
ses are satisfied, then ρ extends to a homomorphism ρ : G → GL(n,R).

Assuming rankRG ≥ 2, a proof is presented in Section 16.5. Start
by letting H be the Zariski closure of ρ(Γ), and let Q be a parabolic sub-
group of H. Furstenberg’s Lemma (12.6.1) provides a Γ-equivariant map
ψ : G/P → Prob(RPn). By using “proximality,” ψ can be promoted to a
map ψ̂ : G/A → Rn (where A is a maximal R-split torus of G). Thus, we
have an A-invariant (measurable) section of the flat vector bundle over
G/Γ that is associated to φ. Since G is generated by the centralizers
of nontrivial, connected subgroups of A, this implies there is a finite-
dimensional, G-invariant space of sections of the bundle, from which it
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follows thatφ has the desired extension to a homomorphism defined on
all of G.

(16.2.1) This theorem of Margulis is a strengthening of the Mostow
Rigidity Theorem (15.1.2), because the homomorphism ρ is not required
to be an isomorphism. (On the other hand, Mostow’s theorem applies
to the groups SO(1, n) and SU(1, n), which are not allowed in the super-
rigidity theorem.)

(16.2.3) In geometric terms, the superrigidity theorem implies (under
mild hypotheses) that flat vector bundles over G/Γ become trivial on a
finite cover.

(16.3) (Margulis Arithmeticity Theorem) If G is neither SO(1, n) nor
SU(1, n), then the superrigidity theorem implies that every lattice in G is
an arithmetic subgroup (as was stated without proof in Theorem 5.2.1).

The basic idea of the proof is that if there is some ρ(γ)with a matrix
entry that is transcendental, then composing ρ with arbitrary elements
of the Galois group Gal(C/Q) would result in uncountably many differ-
ent n-dimensional representations of Γ . Since G has only finitely many
representations of each dimension, this would contradict superrigidity.
Thus, we conclude that ρ(Γ) ⊆ GL(n,Q). By using a p-adic version of the
superrigidity theorem, Q can be replaced with Z.

(16.8) For groups of real rank one, the proof of superrigidity de-
scribed in Section 16.5 does not apply, because A does not have any non-
trivial, proper subgroups. Instead, a more geometric approach is used
(but only a brief sketch will be provided). Let X and Y be the symmetric
spaces associated toG andH, respectively, whereH is the Zariski closure
of ρ(Γ). By minimizing a certain energy functional, one can show there
is a harmonic Γ-equivariant map ψ : X → Y . Then, by using the geometry
of X and Y , it can be shown that this harmonic map must be a totally
geodesic embedding. This provides an embedding of the isometry group
of X in the isometry group of Y . In other words, an embedding of G in H.

Chapter 17. Normal Subgroups of Γ .
(17.1.1) If rankRG ≥ 2, then Γ is almost simple. More precisely, every

normal subgroup of Γ either is finite, or has finite index. This is proved by
showing that if N is any infinite, normal subgroup of Γ , then the quotient
Γ/N is amenable. Since Γ/N has Kazhdan’s property (T) (because we saw
in Proposition 13.4.1 that Γ has this property), this implies Γ/N is finite.

(17.2.1) On the other hand, if rankRG = 1, then Γ is very far from
being simple — there are many, many infinite normal subgroups of Γ . In
fact, Γ is “SQ-universal,” which means that if Λ is any finitely generated
group, then there is a normal subgroup N of Γ , such that Λ is isomorphic
to a subgroup of Γ/N (see Theorem 17.2.5).



3. BRIEF SUMMARY 37

Chapter 18. Arithmetic Subgroups of Classical Groups. The main
result of this chapter is the table on page 380 that provides a list of all of
the arithmetic subgroups of G (unless G is either an exceptional group or
a group whose complexification GC is isogenous to SO(8,C)). Inspection
of the list establishes several results that were stated without proof in
previous chapters.

(18.4) It was stated without proof in Section 6.8 that every arithmetic
subgroup of SL(n,R) is either a special linear group or a unitary group
(if we allow division algebras in the construction). The proof of this fact
is based on a calculation of the group cohomology of Galois groups (or
Galois cohomology, for short). To introduce this method in a simpler
setting, it is first proved that the only R-forms of the complex Lie group
SL(n,C) are SL(n,R), SL(n/2,H), and SU(k, ℓ) (see Section 18.3).

(18.5) The same methods show that all the Q-forms of any classical
group G are classical groups (except that there is a problem when G is a
real form of SO(8,C) (see Remark 18.5.10)). However, we do not provide
the calculations.

(18.7.4) We say that a semisimple group H = G1×· · ·×Gr is isotypic
if all the simple factors of HC are isogenous to each other. A theorem of
Borel and Harder (18.7.3) on Galois cohomology implies that if H is iso-
typic, then it has an arithmetic subgroup that is irreducible: it is not com-
mensurable to a nontrivial direct product Γ1 × Γ2. (The converse follows
from the Margulis Arithmeticity Theorem unless H is either SO(1, n)×K
or SU(1, n)×K.)

Chapter 19. Construction of a Coarse Fundamental Domain. This
chapter presents some of the main ideas involved in the construction
of a nice subset of G that approximates a fundamental domain for G/Γ
(when Γ is an arithmetic subgroup). This generalizes the construction for
Γ = SL(n,Z) that was explained in Chapter 7.

As in Chapter 7, the key notion is that of a Siegel set. The main
difference is that, instead of the maximal R-split torus A, we must work
with a subtorus T of A that is Q-split, not merely R-split:

• K is a maximal compact subgroup of G (same as before),

• S is a maximal Q-split torus in G,

• St is a sector in S,
• P is a minimal parabolic Q-subgroup of G that contains S, and

• P0 is a compact subset of P.

Then KStP0 is a Siegel set for Γ in G (see Definition 19.1.2).
It may not be possible to find a Siegel set S, such that S · Γ = G

(see Example 19.2.1). (When dimS = 1, this is because each Siegel set
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can only cover one cusp, and G/Γ may have several cusps.) However,
there is always a finite union of (translates of) Siegel sets that will suffice
(see Theorem 19.2.2).

The existence of a nice set F, such that F · Γ = G, has important
consequences, such as the fact that Γ is finitely presented (see Subsec-
tion 19.3(i)). This fact was stated in Theorem 4.7.10, but could only be
proved for the cocompact case there.

Chapter 20. Ratner’s Theorems on Unipotent Flows. If {at} is any
1-parameter group of diagonal matrices inG, then there are {at}-orbits in
G/Γ that have bad closures: the closure is a fractal. M. Ratner proved that
if a subgroup V is generated by 1-parameter unipotent subgroups, then it
is much better behaved: the closure of every V-orbit is a C∞ submanifold
of G/Γ (see Theorem 20.1.3).

This theorem has important consequences in geometry and number
theory. As a sample application in the theory of arithmetic groups, we
mention that if Γ1 and Γ2 are any two lattices in G, then the subset Γ1 Γ2
of G is either discrete or dense (see Corollary 20.2.6). This is proved by
letting Γ = Γ1× Γ2 in G×G, and letting V be the diagonal embedding of G
in the same group.

Ratner proved that the actions of 1-parameter unipotent subgroups
onG/Γ also have nice measurable properties: every finite, invariant prob-
ability measure is the Haar measure on a closed orbit of some subgroup
of G (see Theorem 20.3.4), and every dense orbit is uniformly distributed
(see Theorem 20.3.3).

We will not prove Ratner’s theorems, but some of the ideas in the
proof will be described. One of the main ingredients is called “shearing”
(see Section 20.4). For example, suppose G = SL(2,R) and V = {ut} is a
1-parameter unipotent subgroup. Then the key point is that if x and y
are two nearby points in G/Γ (and are not on the same {ut}-orbit), then
the fastest relative motion between the two points is along the V-orbits.
More precisely, there is some t, such that utx is close to either ut+1y or
ut−1y.

Appendices

The main text is followed by three appendices. The first two (appen-
dices A and B) recall some facts that are used in the main text. The third
(Appendix C) defines the notion of S-arithmetic group, and quickly sum-
marizes how the results on arithmetic groups extend to this more general
setting.
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Chapter 4

Basic Properties of
Lattices

This book is about lattices in semisimple Lie groups (with emphasis on
the “arithmetic” ones).

(4.0.0) Standing Assumptions. Throughout this book:

1) G is a linear, semisimple Lie group (see Appendix A1 for
an explanation of these terms), with only finitely many
connected components, and

2) Γ is a lattice in G (see Definition 4.1.9).

Similar restrictions apply to the symbols G1, G2, G′, Γ1, Γ2, Γ ′, etc.

(4.0.1) Remark. Without losing any of the main ideas, it may be assumed,
throughout, that G is either SL(n,R) or SO(m,n) (or a product of these
groups), but it is best if the reader is also acquainted with the other “clas-
sical groups,” such as unitary groups and symplectic groups (see Defini-
tion A2.1).

Three definitions in this chapter are very important: lattice sub-
groups (4.1.9), commensurable subgroups (4.2.1), and irreducible lattices

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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(4.3.1 and 4.3.3). The rest of the material in this chapter may not be es-
sential for a first reading, and can be referred back to when necessary.
However, if the reader has no prior experience with lattices, then the
basic properties discussed in Section 4.1 will probably be helpful.

§4.1. Definition

(4.1.1) Lemma. If Λ is a discrete subgroup of G, then there is a strict
fundamental domain for G/Λ in G. That is, there is a Borel subset F
of G, such that the natural map F → G/Λ, defined by g , gΛ, is bijective.

Proof. Since Λ is discrete, there is a nonempty, open subset U of G, such
that (U−1U) ∩ Λ = {e}. Since G is second countable (or, if you prefer,
since G is σ-compact), there is a sequence {gn} of elements of G, such
that

∪∞
n=1 gnU = G. Let

F =
∞∪
n=1

(
gnU ∖

∪
i<n
giUΛ

)
.

Then F is obviously Borel, and it is a strict fundamental domain for G/Λ
(see Exercise 2). □

(4.1.2) Remark.

1) The above lemma is stated for the space G/Λ of left cosets of Λ,
but, in some situations, it is more natural to work with the space
Λ\G of right cosets. In this book, we will feel free to use whichever
is most convenient at a particular time, and leave it to the reader
to translate between the two, by using the fact that the function
gΛ, Λg−1 is a homeomorphism from G/Λ to Λ\G (see Exercises 3
and 4). Our choice will usually be determined by the preference for
most mathematicians to write their actions on the left. (Therefore,
if G is acting, then we will tend to use G/Λ, but if we are thinking
of Λ as acting on G, then we usually consider the quotient Λ\G.)

2) Definitions in the literature vary somewhat, but saying that a sub-
set F of G is a fundamental domain for G/Λ typically means:
(a) FΛ = G,
(b) F is a closed set that is nice: its interior F̊ is dense in F, and

its boundary F ∖ F̊ has measure 0, and
(c) Fλ∩ F̊ = ∅, for all nonidentity λ ∈ Λ.

It is not difficult to see that if F is a fundamental domain, then it
has a Borel subset F ′, such that F ′ is a strict fundamental domain
and F ∖ F ′ has measure 0. This means that, for many purposes
(such as calculating integrals), it suffices to have a fundamental do-
main, rather than finding a set that is precisely a strict fundamental
domain.
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(4.1.3) Proposition. Let Λ be a discrete subgroup of G, and let µ be Haar
measure on G. There is a unique (up to a scalar multiple) σ-finite, G-
invariant Borel measure ν on G/Λ. More precisely:

1) For any strict fundamental domainF, the measure ν can be defined
by

ν(A/Λ) = µ(A∩F), (4.1.4)

for every Borel set A in G, such that AΛ = A.

2) Conversely, for A ⊆ G, we have

µ(A) =
∫
G/Λ

#(A∩ xΛ)dν(xΛ). (4.1.5)

Proof. See Exercises 7 and 8 for (1) and (2). The uniqueness of ν follows
from (2) and the uniqueness of the Haar measure µ. □

(4.1.6) Remark. We always assume that the G-invariant measure ν on
G/Λ is normalized so that (4.1.4) and (4.1.5) hold.

(4.1.7) Corollary. Let Λ be a discrete subgroup of G, and let ϕ : G → G/Λ
be the natural quotient map ϕ(g) = gΛ. If A is a Borel subset of G, such
that the restriction ϕ|A is injective, then ν

(
ϕ(A)

) = µ(A).
(4.1.8) Remarks.

1) The Haar measure µ on G is given by a smooth volume form, so
the associated measure ν on G/Λ is also given by a volume form.
Therefore, we say that G/Λ has finite volume if ν(G/Λ) <∞.

2) The assumption thatΛ is discrete cannot be eliminated from Propo-
sition 4.1.3. However, a G-invariant measure on G/Λ can be con-
structed under the weaker assumption that Λ is closed and uni-
modular (see Exercise 9).

(4.1.9) Definition. A subgroup Γ of G is a lattice in G if

• Γ is a discrete subgroup of G, and

• G/Γ has finite volume.

(4.1.10) Remark. The definition is not vacuous: we will explain in Corol-
lary 5.1.16 that G does have at least one lattice (in fact, infinitely many),
although part of the proof will be postponed to Chapter 7.

(4.1.11) Proposition. Let Λ be a discrete subgroup of G, and let µ be Haar
measure on G. The following are equivalent:

1) Λ is a lattice in G.

2) There is a strict fundamental domain F for G/Λ, with µ(F) <∞.

3) There is a strict fundamental domain F ′ for Λ\G, with µ(F ′) <∞.

4) There is a Borel subset C of G, such that CΛ = G and µ(C) <∞.
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Proof. (1 a 2) From Equation (4.1.4), we have ν(G/Λ) = µ(F). Therefore,
G/Λ has finite volume if and only if µ(F) <∞.

(2 a 3) If F is any strict fundamental domain for G/Λ, then F−1 is a
strict fundamental domain for Λ\G (see Exercise 4). Since G is unimod-
ular, we have µ(F−1) = µ(F) (see Exercise 5).

(2 ⇒ 4) Obvious.
(4 ⇒ 1) We have C∩xΛ ≠∅, for every x ∈ G, so, from (4.1.5), we see

that

ν(G/Λ) =
∫
G/Λ

1dν(xΛ) ≤
∫
G/Λ

#(C ∩ xΛ)dν(Λx) = µ(C) <∞. □

(4.1.12) Example. As mentioned in Example 1.3.7, SL(2,Z) is a lattice in
SL(2,R).

(4.1.13) Definition. A closed subgroup Λ of G is cocompact (or uniform)
if G/Λ is compact.

(4.1.14) Corollary.

1) Every cocompact, discrete subgroup of G is a lattice.

2) Every finite-index subgroup of a lattice is a lattice.

Proof. Exercises 12 and 13. □

(4.1.15) Remark. Lattices inG are our main interest, but we will occasion-
ally encounter lattices in Lie groups H that are not semisimple. If H is
unimodular, then all of the above results remain valid withH in the place
of G. In contrast, if H is not unimodular, then Proposition 4.1.3 may fail:
there may exist a discrete subgroup Λ, such that there is no H-invariant
Borel measure onH/Λ. Instead, there is sometimes only a semi-invariant
measure ν:

ν(hA) = ∆(h)ν(A),
where ∆ is the modular function of H (see Exercise 14).

For completeness, let us specifically state the following concrete gen-
eralization of Definition 4.1.9 (cf. 4.1.11).

(4.1.16) Definition. A subgroup Λ of a Lie group H is a lattice in H if

• Λ is a discrete subgroup of H, and

• there is an H-invariant measure ν on H/Λ, such that ν(H/Λ) <∞.

(4.1.17) Example. Zn is a cocompact lattice in Rn.

(4.1.18) Proposition. If a Lie group H has a lattice, then H is unimodular.

Proof. LetF be a strict fundamental domain forH/Λ. The proof of Propo-
sition 4.1.3 shows ν(A/Λ) = ν(A ∩ F), for every Borel set A in G, such
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that AΛ = A. Then Exercise 14 implies ν(hA/Λ) = ∆(h)ν(A/Λ). In par-
ticular, we see that ν(H/Λ) = ∆(h)ν(H/Λ), by letting A = H (and noting
that hH = H). Since ν(H/Λ) <∞, this implies ∆(h) = 1, as desired. □

Exercises for §4.1. Recall that (in accordance with the Standing Assump-
tions (4.0.0)), Γ is a lattice in G, and G is a semisimple Lie group.

#1. Show that Γ is finite if and only if G is compact.

#2. Complete the proof of Lemma 4.1.1; that is, show that F is a strict
fundamental domain.

#3. Define f : G/Λ → Λ\G by f(gΛ) = Λg−1. Show that f is a homeo-
morphism.

#4. Show Lemma 4.1.1 easily implies an analogous statement that ap-
plies to right cosets. More precisely, show that if
• Λ is a discrete subgroup of G,
• F is a strict fundamental domain for G/Λ, and
• F−1 = {x−1 | x ∈ F },

then the natural map F−1 → Λ\G, defined by g , Λg, is bijective.

#5. Show that µ(A−1) = µ(A) for every Borel subset A of G.
[Hint: Defining µ′(A) = µ(A−1) yields a G-invariant measure on G. The uniqueness
of Haar measure implies µ′ = µ. Where did you use the fact that G is unimodular?]

#6. Let
• Λ be a discrete subgroup of G,
• F and F ′ be strict fundamental domains for G/Λ,
• µ be Haar measure on G, and
• A be a Borel subset of G.

Show:
a) For each g ∈ G, there is a unique λ ∈ Λ, such that gλ ∈ F.
b) For each λ ∈ Λ, if we let Aλ = {a ∈ A | aλ ∈ F }, then Aλ is

Borel, and A is the disjoint union of the sets {Aλ | λ ∈ Λ }.
c) µ(F) = µ(F ′).
d) If AΛ = A, then µ(A∩F) = µ(A∩F ′).

#7. Show, for every Haar measure µ on G, that the Borel measure ν
defined in Proposition 4.1.3(1) is G-invariant.
[Hint: For any g ∈ G, the set gF is a strict fundamental domain. From Exercise 6(d),
we know that ν is independent of the choice of the strict fundamental domain F.]

#8. If Λ is a discrete subgroup of G, and ν is a σ-finite, G-invariant
Borel measure on G/Λ, show that the Borel measure µ defined in
Proposition 4.1.3(2) is G-invariant.

#9. Let H be a closed subgroup of G. Show that there is a σ-finite,
G-invariant Borel measure ν on G/H if and only ifH is unimodular.
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[Hint: (⇒) For a left Haar measure ρ on H, define a left Haar measure µ on G by

µ(A) =
∫
G/H

ρ(x−1A∩H)dν(xH).

Then µ(A) = ∆H(h)µ(Ah) for h ∈ H, where ∆H is the modular function of H.
Since G is unimodular, we must have ∆H ≡ 1.]

#10. Show that if Λ is a discrete subgroup of G that contains Γ , then Λ
is a lattice in G, and Γ has finite index in Λ.
[Hint: Let F be a strict fundamental domain for G/Λ, and let F be a set of coset
representatives for Γ in Λ. Then F · F is a strict fundamental domain for G/Γ, and
therefore has finite measure.]

#11. Let Λ be a discrete subgroup of G. Show that a subset A of G/Λ is
precompact if and only if there is a compact subset C of G, such
that A ⊆ CΛ/Λ.
[Hint: (⇐) The continuous image of a compact set is compact. (⇒) Let U be a cover
of G by precompact, open sets.]

#12. Prove Corollary 4.1.14(1).
[Hint: Exercise 11 and Proposition 4.1.11(4).]

#13. Prove Corollary 4.1.14(2).
[Hint: Proposition 4.1.11. A finite union of sets of finite measure has finite mea-
sure.]

#14. Let
• H be a Lie group,
• Λ be a discrete subgroup of H,
• µ be the right Haar measure on H, and
• F be a strict fundamental domain for H/Λ.

Define aσ Borel measure ν onH/Λby ν(A/Λ) = µ(A∩F), for every
Borel set A inH, such that AΛ = A. Show ν(hA/Λ) = ∆(h)ν(A/Λ),
where ∆ is the modular function of H.
[Hint: Cf. Exercise 7.]

#15. Show that every discrete, cocompact subgroup of every Lie group
is a lattice.
[Hint: Define ν as in Exercise 14. Since ν(H/Λ) <∞ (why?), we must have∆(h) = 1.]

§4.2. Commensurability and isogeny

We usually wish to ignore the minor differences that come from pass-
ing to a finite-index subgroup. The following definition describes the
resulting equivalence relation.

(4.2.1) Definition. We say that two subgroups Λ1 and Λ2 of a groupH are
commensurable if Λ1 ∩Λ2 is a finite-index subgroup of both Λ1 and Λ2.
This is an equivalence relation on the collection of all subgroups of H
(see Exercise 1).
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(4.2.2) Examples.

1) Two cyclic subgroups aZ and bZ of R are commensurable if and
only if a is a nonzero rational multiple of b; therefore, commensu-
rability of subgroups generalizes the classical notion of commen-
surability of real numbers.

2) It is easy to show that every subgroup commensurable to a lattice is
itself a lattice. (For example, this follows from Corollary 4.1.14(2)
and Exercise 4.1#10.)

The analogous notion for Lie groups (with finite center and finitely
many connected components) is called “isogeny:”

(4.2.3) Definitions.

1) G1 is isogenous to G2 if some finite cover of (G1)◦ is isomorphic to
some finite cover of (G2)◦. This is an equivalence relation.

2) A (continuous) homomorphismφ : G1 → G2 is an isogeny if it is an
isomorphism modulo finite groups. More precisely:
• the kernel of φ is finite, and
• the image of φ has finite index in G2.

(4.2.4) Remark. The following are equivalent:

1) G1 is isogenous to G2.

2) Ad(G1)◦ ≊ Ad(G2)◦.
3) G1 andG2 are locally isomorphic , that is, the Lie algebras g1 and g2

are isomorphic.

4) There is an isogeny from some finite cover of (G1)◦ to G2.

The normalizer of a subgroup is very important in group theory. Be-
cause we are ignoring finite groups, the following definition is natural in
our context.

(4.2.5) Definition. An element g of G commensurates Γ if gΓg−1 is com-
mensurable to Γ . Let

CommG(Γ) = {g ∈ G | g commensurates Γ }.
This is called the commensurator of Γ .

(4.2.6) Remark. The commensurator of Γ is sometimes much larger than
the normalizer of Γ . For example, let G = SL(n,R) and Γ = SL(n,Z).
Then NG(Γ) is commensurable to Γ (see Corollary 4.5.5), but CommG(Γ)
contains SL(n,Q)(see Exercise 4.8#11), so CommG(Γ) is dense in G, even
though NG(Γ) is discrete. Therefore, in this example (and, more gener-
ally, whenever Γ is “arithmetic”), NG(Γ) has infinite index in CommG(Γ).

On the other hand, if G = SO(1, n), then it is known that there are
examples in which Γ , NG(Γ), and CommG(Γ) are commensurable to each
other (see Exercise 5.2#3 and Corollary 6.5.16).



48 4. BASIC PROPERTIES OF LATTICES

(4.2.7) Definition. We say that two groups Λ1 and Λ2 are abstractly com-
mensurable if some finite-index subgroup of Λ1 is isomorphic to some
finite-index subgroup of Λ2.

Note that if Λ1 and Λ2 are commensurable, then they are abstractly
commensurable, but not conversely.

Exercises for §4.2.

#1. Verify that commensurability is an equivalence relation.

#2. If Γ1 is commensurable to Γ2, show CommG(Γ1) = CommG(Γ2).

§4.3. Irreducible lattices

Note that Γ1 × Γ2 is a lattice in G1 ×G2. A lattice that can be decomposed
as a product of this type is said to be reducible.

(4.3.1) Definition. Γ is irreducible if ΓN is dense in G, for every noncom-
pact, closed, normal subgroup N of G◦ (and Γ is infinite, or, equivalently,
G is not compact).

(4.3.2) Example. If G is simple (and not compact), then every lattice in G
is irreducible. Conversely, if G is not simple, then not every lattice in G
is irreducible. To see this, assume, for simplicity, that G is connected
and has trivial center (and is not compact). Then we may write G as
a nontrivial direct product G = G1 × G2, where each of G1 and G2 is
semisimple. If we let Γi be any lattice in Gi, for i = 1,2, then Γ1 × Γ2 is a
reducible lattice in G.

The following proposition shows (under mild assumptions) that ev-
ery lattice is commensurable to a product of irreducible lattices. There-
fore, the preceding example provides essentially the only way to con-
struct reducible lattices, so most questions about lattices can be reduced
to the irreducible case. We postpone the proof, because it relies on some
results from later in this chapter.

(4.3.3) Proposition (see proof on page 56). Assume

• G has trivial center, and

• Γ projects densely into the maximal compact factor of G.

Then there is a direct-product decomposition G = G1 × · · · × Gr , such
that Γ is commensurable to Γ1 × · · · × Γr , where Γi = Γ ∩ Gi, and Γi is an
irreducible lattice in Gi, for each i.

For readers familiar with locally symmetric spaces, these results can
be restated in the following geometric terms.
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(4.3.4) Definition. Recall that a locally symmetric space Γ\X is irre-
ducible if there do not exist (nontrivial) locally symmetric spaces Γ1\X1

and Γ2\X2, such that the product (Γ1\X1)× (Γ2\X2) finitely covers Γ\X.

The following is obvious by induction on dimX.

(4.3.5) Proposition. There exist locally symmetric spaces Γ1\X1, . . . , Γr\Xr
that are irreducible, such that the product (Γ1\X1)×· · ·× (Γr\Xr ) finitely
covers Γ\X.

The following is a restatement of Proposition 4.3.3 (in the special
case where G has no compact factors).

(4.3.6) Proposition. LetM be an irreducible locally symmetric space, such
that the universal coverX ofM has no compact factors, and no flat factors.
For any nontrivial cartesian product decomposition X = X1 ×X2 of X, the
image of X1 is dense in M.

We will see in Example 5.5.3 that SL(2,R)×SL(2,R)has an irreducible
lattice (for example, a lattice isomorphic to SL

(
2,Z[

√
2]
)
). More generally,

Corollary 18.7.4 shows that G has an irreducible lattice if all the simple
factors of the “complexification” of G are isogenous to each other. The
converse is proved in Theorem 5.6.2, under the additional assumption
that G has no compact factors.

Exercises for §4.3.

#1. Show that if Γ is irreducible, then Γ projects densely into the maxi-
mal compact factor of G.

§4.4. Unbounded subsets of Γ\G
Geometrically, looking at the fundamental domain described in Exam-
ple 1.3.7 makes it clear that the sequence {ni} tends to∞ in SL(2,Z)\H2.
In this section, we give an algebraic criterion that determines whether or
not a sequence tends to ∞ in G/Γ , without any need for a fundamental
domain.

Recall that the injectivity radius of a Riemannian manifold X is the
maximal r ≥ 0, such that, for every x ∈ X, the exponential map is a
diffeomorphism on the open ball of radius r around x. If X is compact,
then the injectivity radius is nonzero. The following proposition shows
that the converse holds in the special case where X = Γ\G/K is locally
symmetric of finite volume.

(4.4.1) Proposition. For g ∈ G, defineϕg : G → G/Γ byϕg(x) = xgΓ . The
homogeneous spaceG/Γ is compact if and only if there is a nonempty, open
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subset U of G, such that, for every g ∈ G, the restriction ϕg|U of ϕg to U
is injective.

Proof. (⇒) Define ϕ : G → G/Γ by ϕ(x) = xΓ . Then ϕ is a covering map,
so, for eachp ∈ G/Γ , there is a connected neighborhoodVp ofp, such that
the restriction of ϕ to each component of ϕ−1(Vp) is a diffeomorphism
onto Vp. Since {Vp | p ∈ G/Γ} is an open cover of G/Γ , and G/Γ is
compact, there is a connected neighborhood U of e in G, such that, for
each p ∈ G/Γ , there is some p′ ∈ G/Γ , with Up ⊆ Vp′ (see Exercise 1).
Then ϕg|U is injective, for each g ∈ G.

(⇐) We prove the contrapositive. LetU be any nonempty, precompact,
open subset of G. (We wish to show, for some g ∈ G, that ϕg|U is not
injective.) If C is any compact subset of G/Γ , then, because G/Γ is not
compact, we have

(G/Γ)∖ (U−1C) ≠∅.
Hence, we may inductively construct a sequence {gn} of elements of G,
such that the open sets ϕg1(U),ϕg2(U), . . . are pairwise disjoint. Since
G/Γ has finite volume, these sets cannot all have the same volume, so,
for some n, the restrictionϕgn|U is not injective (see Corollary 4.1.7). □

Let us restate this geometric result in algebraic terms.

(4.4.2) Notation. For elements a and b of a groupH, and subsets A and B
of H, let

ba = bab−1, Ba = { ba | b ∈ B },
bA = { ba | a ∈ A }, BA = { ba | a ∈ A,b ∈ B }.

(4.4.3) Corollary. G/Γ is compact if and only if the identity element e is
not an accumulation point of GΓ .

Proof. We have

ϕg|U is injective a ∄u1, u2 ∈ U, u1gΓ = u2gΓ and u1 ≠ u2

a gΓ ∩ (U−1U) = {e}. □

This has the following interesting consequence.

(4.4.4) Corollary. If Γ has a nontrivial, unipotent element, then G/Γ is not
compact.

Proof. Ifu is a nontrivial, unipotent element of Γ , then, from the Jacobson-
Morosov Lemma (A5.8), we know there is a continuous homomorphism

ϕ : SL(2,R)→ G, with ϕ
[
1 1
0 1

]
= u. Let a = ϕ

[
1/2 0
0 2

]
∈ G. Then
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anua−n = ϕ
([

2−n 0
0 2n

][
1 1
0 1

][
2n 0
0 2−n

])

= ϕ
([

1 2−2n

0 1

])
→ ϕ

([
1 0
0 1

])
= e.

Therefore, e is an accumulation point of Gu, so Corollary 4.4.3 implies
that G/Γ is not compact. □

(4.4.5) Remarks.

1) If G has no compact factors, then the converse of Corollary 4.4.4 is
true. However, we will prove this only in the special case where Γ
is “arithmetic” (see Section 5.3).

2) In general (without any assumption on compact factors), it can be
shown that G/Γ is compact if and only if every element of Γ is
semisimple (see Exercise 5.3#6).

The proofs of Proposition 4.4.1 and Corollary 4.4.3 establish the fol-
lowing more general version of those results.

(4.4.6) Proposition (see Exercise 2). Let Λ be a lattice in a Lie group H,
and let C be a subset of H. The image of C in H/Λ is precompact if and
only if the identity element e is not an accumulation point of CΛ.

The following is a similar elementary result that applies to the im-
portant special case where G = SL(ℓ,R) and Γ = SL(ℓ,Z), without relying
on the fact that SL(ℓ,Z) is a lattice.

(4.4.7) Proposition (Mahler Compactness Criterion). LetC ⊆ SL(ℓ,R). The
image of C in SL(ℓ,R)/ SL(ℓ,Z) is precompact if and only if 0 is not an
accumulation point of

CZℓ = { cv | c ∈ C,v ∈ Zℓ }.
Proof. (⇒) Since the image of C in SL(ℓ,R)/ SL(ℓ,Z) is precompact, there is
a compact subset C0 of G, such that C ⊆ C0 SL(ℓ,Z) (see Exercise 4.1#11).
There is no harm in assuming that C = C0 SL(ℓ,Z) (by enlarging C). Then
C
(
Zℓ ∖ {0}) = C0

(
Zℓ ∖ {0}) is closed (since Zℓ ∖ {0}, being discrete, is

closed and C0 is compact), so C
(
Zℓ∖{0}) contains all of its accumulation

points. In addition, since 0 is fixed by every element of C, we know that
0 ∉ C

(
Zℓ∖{0}). Therefore, 0 is not an accumulation point of C

(
Zℓ∖{0}).

(⇐) To simplify the notation (while retaining the main ideas), let us
assume ℓ = 2 (see Exercise 6). Suppose {gn} is a sequence of elements
of SL(2,R), such that 0 is not an accumulation point of

∪∞
n=1 gnZ2. We

wish to show there is a sequence {γn} of elements of SL(2,Z), such that
{gnγn} has a convergent subsequence.
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For each n, let

• vn ∈ Z2 ∖ {0}, such that ∥gnvn∥ is minimal,

• πn : R2 → Rgnvn and π⊥n : R2 → (Rgnvn)⊥ be the orthogonal pro-
jections, and

• wn ∈ Z2 ∖Rvn, such that ∥π⊥n (gnwn)∥ is minimal.

By replacing wn with wn + kvn, for an appropriately chosen k ∈ Z, we
may assume ∥πn(gnwn)∥ ≤ ∥gnvn∥/2. Then, since the minimality of
∥gnvn∥ implies ∥gnvn∥ ≤ ∥gnwn∥, we have

∥gnvn∥ ≤ ∥π⊥n (gnwn)∥ + ∥πn(gnwn)∥ ≤ ∥π⊥n (gnwn)∥ +
∥gnvn∥

2
,

so

∥π⊥n (gnwn)∥ ≥
∥gnvn∥

2
. (4.4.8)

Let C be the convex hull of {0, vn,wn} and (thinking of vn and wn
as column vectors) let γn =

[
vn wn

] ∈ Mat2×2(Z). From the minimality
of ∥gnvn∥ and ∥π⊥n (gnwn)∥, we see that C ∩ Z2 = {0, vn,wn} (see Exer-
cise 7), so detγn = ±1 (see Exercise 8). Therefore, perhaps after replacing
wn with −wn, we have γn ∈ SL(2,Z). Since γn

[
1
0

] = vn and γn
[

0
1

] = wn,
we may assume, by replacing gn with gnγn, that

vn =
[

1
0

]
and wn =

[
0
1

]
.

Note that
∥π⊥n (gnwn)∥ · ∥gnvn∥ = detgn = 1. (4.4.9)

By combining this with (4.4.8), we see that {gnvn} is a bounded sequence,
so, by passing to a subsequence, we may assume gnvn converges to some
vector v. By assumption, we have v ≠ 0.

Now, from (4.4.9), and the fact that ∥gnvn∥ → ∥v∥ is bounded away
from 0, we see that ∥π⊥n (gnwn)∥ is bounded. Because ∥πn(gnwn)∥ is
also bounded, we conclude that ∥gnwn∥ is bounded. Hence, by passing
to a subsequence, we may assume gnwn converges to some vector w.
From (4.4.8), we know that ∥π⊥n (gnwn)∥ ̸→ 0, so w ∉ Rv.

Since v ≠ 0 and w ∉ Rv, there is some g ∈ GL(ℓ,R) with g
[

1
0

] = v
and g

[
0
1

] = w. We have

gn
[

1
0

] = gnvn → v = g[ 1
0

]
and, similarly, gn

[
0
1

] → g
[

0
1

]
, so gnx → gx for all x ∈ R2. Therefore,

gn → g, as desired. □

Exercises for §4.4.

#1. Suppose a Lie group H acts continuously on a compact topological
space M, and V is an open cover of M. Show that there is a neigh-
borhood U of e in H, such that, for each m ∈ M, there is some
V ∈ V with Um ⊆ V.
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[Hint: This is analogous to the fact that every open cover of a compact metric space
has a “Lebesgue number.” Each m ∈ M is contained in some Vm ∈ V . Choose V ′m
containing m, and a neighborhood U ′m of e, such that U ′mV ′m ⊆ Vm. Cover M with
finitely many V ′m.]

#2. Prove Proposition 4.4.6.
[Hint: See the proofs of Proposition 4.4.1 and Corollary 4.4.3.]

#3. Use Proposition 4.4.6 to show that if H is a closed subgroup of G,
such that H/Γ is a lattice in H, then the natural inclusion map
H/(Γ ∩H)↩ G/Γ is proper.
[Hint: It suffices to show that if C is a subset of H, such that the image of C in G/Γ
is precompact, then the image of C in H/(Γ ∩H) is also precompact.]

#4. Let G = SL(2,R), Γ = SL(2,Z), and A be the subgroup consisting of
all the diagonal matrices in G. Show that the natural inclusion map
A/(Γ∩A)↩ G/Γ is proper, but Γ∩A is not a lattice inA. (Therefore,
the converse of Exercise 3 does not hold.)

#5. Let G = SL(3,R), Λ = SL(3,Z), and a = diag(1/2, 1, 2) ∈ H. Show
that anΛ → ∞ in G/Λ as n → ∞. That is, show, for each compact
subset C of G/Λ, that, for all sufficiently large n, we have anΛ ∉ C.
(For the purposes of this exercise, do not assume that Λ is a lattice
in G.)

#6. Prove Proposition 4.4.7(⇐) without assuming ℓ = 2.
[Hint: Extend the definition of vn and wn to an inductive construction of vectors
u1,n, . . . , uℓ,n ∈ Zℓ.]

#7. Suppose that v and w are linearly independent vectors in Rℓ, and
x = av + bw, with a,b ≥ 0 and a+ b ≤ 1. Show that either
• x ∈ {v,w}, or
• ∥x∥ < ∥v∥, or
• x ∉ Rv and d(x,Rv) < d(w,Rv).

[Hint: Either b = 1, or b = 0, or 0 < b < 1.]

#8. Let C be the convex hull of {0, v,w}, where v and w are linearly
independent vectors in Z2. Show that if C ∩ Z2 = {0, v,w}, then
det

[
v w

] = ±1.
[Hint: Let P be the the convex hull of {0, v,w,v +w}, so

∣∣det
[
v w

]∣∣ is the area
of P. If this area is > 1, then the translates of P by elements of Z2 cannot be a tiling
of R2.]

#9. Let H be a closed subgroup of G.
a) Show that if Γ ∩H is a lattice in H, then HΓ is closed in G.
b) Show that the converse holds if H is normal in G.

[Hint: (a) Exercise 3. (b) Since G/Γ is a bundle over G/(HΓ)with fiberHΓ/Γ, Fubini’s
Theorem implies that HΓ/Γ has finite volume. So the H-equivariantly homeomor-
phic space H/(Γ ∩H) also has finite volume.]

#10. Suppose
• Λ is a non-cocompact lattice in a topological group H, and
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• H has a compact, open subgroup K.
Show that Λ has a nontrivial element of finite order.
[Hint: Since K is compact and Λ is discrete, it suffices to show that some conjugate
of Λ intersects K nontrivially.]

§4.5. Borel Density Theorem and some consequences

The results in this section require the minor assumption that Γ projects
densely into the maximal compact factor of G. This hypothesis is auto-
matically satisfied (vacuously) if G has no compact factors. Recall that
G◦ denotes the identity component of G (see Notation 1.1.2).

(4.5.1) Theorem (Borel). Assume

• Γ projects densely into the maximal compact factor of G,

• V is a finite-dimensional vector space over R or C, and

• ρ : G → GL(V) is a continuous homomorphism.

Then:

1) Every ρ(Γ)-invariant vector in V is ρ(G◦)-invariant.

2) Every ρ(Γ)-invariant subspace of V is ρ(G◦)-invariant.

Proof. The proof is not difficult, but, in order to get to the applications
more quickly, we will postpone it until Section 4.6. For now, to illus-
trate the main idea, let us just prove (1), in the special case where G/Γ
is compact (and G is connected). Assume also that G has no compact
factors (see Exercise 1); then G is generated by its unipotent elements
(see Exercise 2), so it suffices to show that v is invariant under ρ(u),
for every nontrivial unipotent element u of G. Because ρ(u) is unipo-
tent (see Exercise 3), we know that ρ(un)v is a polynomial function of n
(see Exercise 4). However, because G/Γ is compact and ρ(Γ)v = v, we
also know that ρ(G)v is compact, so {ρ(un)v | n ∈ N } is bounded.
Every bounded polynomial is constant, so we conclude that ρ(un)v = v
for all n; in particular, ρ(u)v = ρ(u1)v = v, as desired. □

(4.5.2) Corollary. Assume Γ projects densely into the maximal compact
factor of G. If H is a connected, closed subgroup of G that is normalized
by Γ , then H is normal in G◦.

Proof. The Lie algebra h of H is a vector subspace of the Lie algebra g
of G. Also, because Γ normalizes H, we know that h is invariant under
AdG Γ . From Theorem 4.5.1(2), we conclude that h is invariant under
AdG◦. Since H is connected, this implies that H is a normal subgroup
of G◦. □



4.5. BOREL DENSITY THEOREM AND SOME CONSEQUENCES 55

(4.5.3) Corollary. If Γ projects densely into the maximal compact factor
of G (and G is connected), then CG(Γ) = Z(G).
Proof. Recall that G ⊆ SL(ℓ,R), for some ℓ (see the Standing Assump-
tions (4.0.0)). Let V = Matℓ×ℓ(R) be the vector space of all real ℓ × ℓ
matrices, so G ⊆ V. For g ∈ G and v ∈ V, define ρ(g)v = gvg−1,
so ρ : G → GL(V) is a continuous homomorphism. If c ∈ CG(Γ), then
ρ(γ)c = γcγ−1 = c for every γ ∈ Γ , so Theorem 4.5.1(1) implies that
ρ(G)c = c. Therefore c ∈ Z(G). □

(4.5.4) Corollary. Assume Γ projects densely into the maximal compact
factor of G (and G is connected). If N is a finite, normal subgroup of Γ ,
then N ⊆ Z(G).
Proof. The quotient Γ/CΓ (N) is finite, because it embeds in the finite
group Aut(N), so CΓ (N) is a lattice in G (see Corollary 4.1.14(2)). Then,
because N ⊆ CG

(
CΓ (N)

)
, Corollary 4.5.3 implies N ⊆ Z(G). □

(4.5.5) Corollary. If Γ projects densely into the maximal compact factor
of G, then Γ has finite index in its normalizer NG(Γ).

Proof. By passing to a subgroup of finite index, we may assume G is con-
nected. Because Γ is discrete, the identity component NG(Γ)◦ of NG(Γ)
must centralize Γ . So NG(Γ)◦ ⊆ CG(Γ) = Z(G) is finite. On the other
hand, NG(Γ)◦ is connected. Therefore, NG(Γ)◦ is trivial, so NG(Γ) is
discrete. Hence Γ has finite index in NG(Γ) (see Exercise 4.1#10). □

(4.5.6) Corollary (Borel Density Theorem). If Γ projects densely into the
maximal compact factor of G (and G is connected), then Γ is Zariski dense
inG. That is, ifQ ∈ R[x1,1, . . . , xℓ,ℓ] is a polynomial function on Matℓ×ℓ(R),
such that Q(Γ) = 0, then Q(G) = 0.

Proof. Let

Q = {Q ∈ R[x1,1, . . . , xℓ,ℓ] | Q(Γ) = 0 }.
From the definition of Q, it is obvious that Γ is contained in the cor-
responding variety Var(Q) (see Definition A4.1). Since Var(Q) has only
finitely many connected components (see Theorem A4.6), this implies
that Var(Q)◦ is a connected subgroup of G that contains a finite-index
subgroup of Γ . Hence Corollary 4.5.2 implies that Var(Q)◦ = G (see Ex-
ercise 11), so G ⊆ Var(Q), as desired. □

With the above results, we can now provide the proof that was post-
poned from page 48:
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Proof of Proposition 4.3.3. We may assume Γ is reducible (otherwise,
let r = 1). Hence, there is some noncompact, connected, closed, normal
subgroup N of G, such that NΓ is not dense in G; let H be the closure of
NΓ , and let H1 = H◦. Because Γ ⊂ H, we know that Γ normalizes H1, so
H1 is a normal subgroup of G (see Corollary 4.5.2 and Exercise 4.3#1)).

Let Λ1 = H1 ∩ Γ . By definition, H1 is open in H, so the subgroup
H1Γ is also open in H. It is therefore closed, so Λ1 is a lattice in H1

(see Exercise 4.4#9).
Because H1 is normal in G and G is semisimple (with trivial center),

there is a normal subgroup H2 of G, such that G = H1 × H2 (see Exer-
cise A1#6). Let Λ = H1 ∩ (H2Γ) be the projection of Γ to H1. Now Γ nor-
malizes Λ1, and H2 centralizes Λ1, so Λ must normalize Λ1. Therefore
Corollary 4.5.5 implies that Λ is discrete (hence closed), so H2Γ = Λ×H2

is closed, so Λ2 = H2 ∩ Γ is a lattice in H2 (see Exercise 4.4#9).
Because Λ1 is a lattice in H1 and Λ2 is a lattice in H2, we know that

Λ1 × Λ2 is a lattice in H1 ×H2 = G. Hence, Λ1 × Λ2 has finite index in Γ
(see Exercise 4.1#10).

By induction on dimG, we may write

H1 = G1 × · · · ×Gs and H2 = Gs+1 × · · · ×Gr ,
so that Γ ∩Gi is an irreducible lattice in Gi, for each i. □

(4.5.7) Remark. For simplicity, the statement of Theorem 4.5.1 assumes
that Γ projects densely into the maximal compact factor of G. Without
this assumption, the proof of Theorem 4.5.1(1) establishes the weaker
conclusion that v is ρ(S)-invariant, for every noncompact, simple fac-
tor S of G. This leads to alternate versions of the corollaries that make
no assumption about the compact factor of G. For example, the ana-
logue of Corollary 4.5.2 states that if H is a connected, closed subgroup
of G that is normalized by Γ , then H is normalized by every noncompact,
simple factor of G.

Exercises for §4.5.

#1. Prove 4.5.1(1), under the assumption that G/Γ is compact (but al-
lowing G to have compact factors).
[Hint: The above proof shows that v is invariant under the the product N of all the
noncompact factors of G. So it is invariant under the closure of NΓ, which is G.]

#2. Show that if G is connected, and has no compact factors, then it is
generated by its unipotent elements.
[Hint: Consider each simple factor of G individually. The conjugates of a unipotent
element are also unipotent.]

#3. Suppose ρ : G → SL(ℓ,R) is a continuous homomorphism. Show
that if u is unipotent, then ρ(u) is unipotent.
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[Hint: The Jacobson-Morosov Lemma (A5.8) allows you to assume G = SL(2,R) and
u =

[
1 1
0 1

]
. Then a sequence of conjugates ofuconverges to Id, so the characteristic

polynomial of ρ(u) is the same as the characteristic polynomial of Id.]

#4. Show that if u is a unipotent element of SL(ℓ,R) and v ∈ Rℓ, then
each coordinate of the vector un v is a polynomial function of n.

[Hint: Let u = Id+T, where T ℓ+1 = 0. Then un v = (Id+T)nv =∑ℓ
k=0

(
n
k

)
Tkv.]

#5. Show that if G is not compact, then Γ is not abelian.

#6. Generalizing Exercise 5, show that if G is not compact, then Γ is not
solvable.

#7. Strengthening Exercise 5, show that if G is not compact, then the
commutator subgroup [Γ , Γ] is infinite.

#8. Assume the hypotheses of Theorem 4.5.1, and that G is connected.
For definiteness, assume that V is a real vector space. For any
subgroup H of G, let V[H] be the R-span of {ρ(h) | h ∈ H } in
End(V). Show that V[Γ] = V[G].

#9. Show the identity component ofNG(Γ) is contained in the maximal
compact factor of G.
[Hint: Apply Corollary 4.5.5 to G/K, where K is the maximal compact factor.]

#10. Show that if G is not compact, then Γ has an element that is not
unipotent.
[Hint: Any unipotent element γ of SL(ℓ,R) satisfies the polynomial (x − 1)ℓ = 0.]

#11. Assume G has no compact factors. Show that if H is a connected,
closed subgroup of G that contains a finite-index subgroup of Γ ,
then H = G◦.
[Hint: H is normalized by Γ ∩H, so H ◁ G◦.]

#12. Assume G has trivial center and no compact factors. Show that Γ is
reducible if and only if there is a finite-index subgroup Γ ′ of Γ such
that Γ ′ is isomorphic to A× B, for some infinite groups A and B.
(Actually, although you do not need to prove it, there is no need to assume the
center of G is trivial. This is because Γ has a subgroup of finite index that is torsion
free (see Theorem 4.8.2), and therefore does not intersect the center of G.)

#13. Show that if Γ is irreducible, thenN∩Γ is finite, for every connected,
closed, normal subgroup N of G, such that G/N is not compact.
[Hint: See the proof of Proposition 4.3.3.]

#14. Let ρ1 and ρ2 be finite-dimensional, real representations of G. As-
sume G is connected, and has no compact factors. Show that if
the restrictions ρ1|Γ and ρ2|Γ are isomorphic, then ρ1 and ρ2 are
isomorphic.
[Hint: We are assuming ρi : G → GL(n,R), for some n, and that there is some
A ∈ GL(n,R), such that ρ1(g) = Aρ2(g)A−1, for all γ ∈ Γ. You wish to show there
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is some A′ ∈ GL(n,R), such that the same condition holds for all g ∈ G, with A′
in the place of A. The Borel Density Theorem implies that you may take A′ = A.]

§4.6. Proof of the Borel Density Theorem

The proof of the Borel Density Theorem (4.5.1) is based on the contrast
between two behaviors. On the one hand, if u is a unipotent matrix, and
v is a vector that is not fixed by u, then some component of un v is a
nonconstant polynomial, and therefore tends to±∞with n. On the other
hand, the following observation implies that if v is fixed by Γ , then some
subsequence converges to a finite limit.

(4.6.1) Lemma (Poincaré Recurrence Theorem). Let

• (X,d) be a metric space,

• T : X → X be a homeomorphism, and

• µ be a T-invariant measure on X, such that µ(X) <∞.

Then, for almost every x ∈ X, there is a sequence nk → ∞, such that
Tnkx → x.

Proof. Let
Aϵ = {a ∈ X | ∀m > 0, d(Tmx,x) > ϵ }.

It suffices to show µ(Aϵ) = 0 for every ϵ.
Suppose µ(Aϵ) > 0. Then we may choose a subset B of Aϵ, such that

µ(B) > 0 and diam(B) < ϵ. Because the sets B, T−1B, T−2B, . . . all have the
same measure, and µ(X) < ∞, they cannot all be disjoint: there exists
m < n, such that T−mB ∩ T−nB ≠ ∅. By applying Tn, we may assume
n = 0. For x ∈ T−mB ∩ B, we have Tmx ∈ B and x ∈ B, so

d(Tmx,x) ≤ diam(B) < ϵ.
This contradicts the definition of Aϵ. □

(4.6.2) Remark. Part (1) of Theorem 4.5.1 is a corollary of Part (2). Namely,
if v is ρ(Γ)-invariant, then the 1-dimensional subspace Rv (or Cv) is also
invariant, so (2) implies that the subspace is ρ(G)-invariant. Since G has
no nontrivial homomorphism to the abelian groupR× (orC×), this implies
that the vector v is ρ(G)-invariant.

However, we will provide a direct proof of (1), since it is quite short
(and a little more elementary than the proof of (2)).

Proof of Theorem 4.5.1(1). Suppose v is a vector in V that is fixed by
ρ(Γ). It suffices to show, for every unipotent u ∈ G, that v is fixed by
ρ(u).

Since u is ρ(Γ)-invariant, the map ρ induces a well-defined map
ρ : G/Γ → V, defined by ρ(gΓ) = ρ(g)v. Since ρ is G-equivariant, it
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pushes the G-invariant, finite measure ν on G/Γ to a ρ(G)-invariant, fi-
nite measure ν on V. Therefore, Lemma 4.6.1 implies, for a.e. g ∈ G, that{
ρ(ung)v

}
has a convergent subsequence.

However, each component of the vector ρ(ung)v is a polynomial
function of n (see Exercise 4.5#4). Therefore, the preceding paragraph
implies, for a.e. g ∈ G, that ρ(ung)v is constant (independent of n).
This means that ρ(g)v is fixed by ρ(u). Since this is true for a.e. g, we
conclude, by continuity, that it is true for all g, including g = e. Hence,
v is fixed by u. □

To prepare for the proof of Theorem 4.5.1(2), we make a few obser-
vations about the action of G on the projectivization of V.

(4.6.3) Proposition. Assume

• G has no compact factors,

• V is a finite-dimensional vector space over R or C,

• ρ : G → GL(V) is a continuous homomorphism, and

• µ is a ρ(G)-invariant measure on the projective space P(V).
If µ

(
P(V)

)
<∞, then µ is supported on the set of fixed points of ρ(G◦).

Proof. We know that G◦ is generated by its unipotent elements (see Exer-
cise 4.5#2), so it suffices to show that µ is supported on the set of fixed
points of ρ(u), for every unipotent element u of G.

Let

• u be a unipotent element of G,

• T = ρ(u)− Id, and

• v ∈ V ∖ {0}.
Then T is nilpotent (because ρ(u) is unipotent (see Exercise 4.5#3)), so
there is some integer r ≥ 0, such that T rv ≠ 0, but T r+1v = 0. We have

ρ(u)T rv = (Id+T)(T rv) = T rv + T r+1v = T rv + 0 = T rv,
so [T rv] ∈ P(V) is a fixed point for ρ(u). Also, for each n ∈ N, we have

ρ(un)[v] =
 r∑
k=0

(
n
k

)
T kv

 =
(n
r

)−1 r∑
k=0

(
n
k

)
T kv

→ [T rv]
(because, for k < r , we have

(
n
k

)
/
(
n
r

)
→ 0 asn→∞). Therefore, ρ(un)[v]

converges to a fixed point of ρ(u), as n→∞.
The Poincaré Recurrence Theorem (4.6.1) implies, for µ-almost every

[v] ∈ P(V), that there is a sequence nk →∞, such that ρ(unk)[v]→ [v].
On the other hand, the preceding paragraph tells us that ρ(unk)[v] con-
verges to a fixed point of ρ(u). Therefore, µ-almost every element of
P(V) is a fixed point of ρ(u). In other words, µ is supported on the set
of fixed points of ρ(u), as desired. □
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The assumption that G has no compact factors cannot be omitted
from Proposition 4.6.3. For example, the usual Lebesgue measure is an
SO(n)-invariant, finite measure on Sn−1, but SO(n) has no fixed points
on Sn−1. We can, however, make the following weaker statement.

(4.6.4) Corollary. Assume

• V is a finite-dimensional vector space over R or C,

• ρ : G → GL(V) is a continuous homomorphism, and

• µ is a ρ(G)-invariant measure on the projective space P(V).
If µ

(
P(V)

)
< ∞, then there is a cocompact, closed, normal subgroup G′

of G, such that µ is supported on the set of fixed points of ρ(G′).

Proof. Let K be the maximal connected, compact, normal subgroup of G,
and write G ≈ G′ × K, for some closed, normal subgroup G′ of G. Then
G′ has no compact factors, so we may apply Proposition 4.6.3 to the
restriction ρ|G′. □

It is now easy to prove the other part of Theorem 4.5.1:

Proof of Theorem 4.5.1(2). By passing to a subgroup of finite index, we
may assume G is connected. For simplicity, let us also assume that G has
no compact factors (see Exercise 1).

SupposeW is a subspace in V that is fixed by ρ(Γ), and let d = dimW .
Note that ρ induces a continuous homomorphism ρ̂ : G → GL(

∧d V),
and, since W is ρ(Γ)-invariant, the 1-dimensional subspace

∧dW is ρ̂(Γ)-
invariant. Hence, ρ̂ induces a well-defined map ρ : G/Γ → P

(∧d V), with
ρ(eΓ) = [∧dW]. Then, since ρ isG-equivariant, it pushes theG-invariant,
finite measure ν on G/Γ to a ρ̂(G)-invariant, finite measure ν on P(

∧d V).
Then Proposition 4.6.3 tells us that ρ(G/Γ) is contained in the set of
fixed points of ρ(G). In particular, [

∧dW] = ρ(eΓ) is fixed by ρ̂(G). This
means that W is ρ(G)-invariant. □

(4.6.5) Remark. The proofs of the two parts of Theorem 4.5.1 never use
the fact that the lattice Γ is discrete. Therefore, Γ can be replaced with any
closed subgroup H of G, such that there is a G-invariant, finite measure
on G/H, and H projects densely into the maximal compact factor of G.

Exercises for §4.6.

#1. Complete the proof of Theorem 4.5.1(2), by removing the assump-
tion that G has no compact factors.
[Hint: See the hint to Exercise 4.5#1.]

#2. Let H be a closed subgroup of G that projects densely into the
maximal compact factor of G. Show that if there is a G-invariant,
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finite measure on G/H, then the identity componentH◦ is a normal
subgroup of G◦.
[Hint: Remark 4.6.5 and the proof of Corollary 4.5.2.]

§4.7. Γ is finitely presented

(4.7.1) Definitions. Let Λ be a group.

1) Λ is finitely generated it has a finite generating set. That is, there
is a finite subset of Λ that is not contained in any proper subgroup
of Λ.

2) Λ is finitely presented it has a presentation with only finitely many
generators and finitely many relations. In other words, there exist:
• a finitely generated free group F,
• a surjective homomorphism ϕ : F → Λ, and
• a finite subset R of the kernel of ϕ,

such that kerϕ is the smallest normal subgroup of F that con-
tains R.

It is easy to see that every finitely presented group is finitely generated.
However, the converse is not true.

In this section, we describe the proof that Γ is finitely presented.
Much like the usual proof that the fundamental group of any compact
manifold is finitely presented, it is based on the existence of a nice set
that is close to being a fundamental domain for the action of Γ on G.

(4.7.2) Definition. Suppose Γ acts properly discontinuously on a topo-
logical space Y . A subset F of Y is a coarse fundamental domain for Γ
if

1) ΓF = Y , and

2) {γ ∈ Γ | γF ∩F ≠∅} is finite.

(4.7.3) Other terminology. Some authors call F a fundamental set ,
rather than a coarse fundamental domain.

The following general principle will be used to show that Γ is finitely
generated:

(4.7.4) Proposition. Suppose a discrete group Λ acts properly discontin-
uously on a topological space Y . If Y is connected, and Λ has a coarse
fundamental domain F that is an open subset of Y , then Λ is finitely gen-
erated.

Proof. Let S = { s ∈ Λ | sF ∩ F ≠ ∅}. We know that S is finite (see
Definition 4.7.2(2)), so it suffices to show that S generates Λ. Here is the
idea: think of {λF | λ ∈ Λ } as a tiling of Y . The elements of S can
move F to any adjacent tile, and Y is connected, so a composition of
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elements of S can move F to any tile. Therefore ⟨S⟩ is transitive on the
set of tiles. Since S also contains the entire stabilizer of the tile F, we
conclude that ⟨S⟩ = F.

Now, here is the formal proof. Consider some λ ∈ Λ, such that
λF∩⟨S⟩F ≠∅. This means there exists s ∈ ⟨S⟩, such that λF∩sF ≠∅,
so s−1λF ∩F ≠ ∅. Therefore, by the definition of S, we have s−1λ ∈ S,
so λ ∈ sS ⊆ ⟨S⟩. Thus, we have shown that

(
Λ∖ ⟨S⟩)F is disjoint from

⟨S⟩F.
However, both of these sets are open (since F is open), and their

union is all of Y (since ΛF = Y). Therefore, since Y is connected, the
two sets cannot both be nonempty. Since ⟨S⟩ is obviously nonempty, we
conclude that Λ∖ ⟨S⟩ = ∅, so ⟨S⟩ = Λ. □

(4.7.5) Corollary. If Γ\G is compact, then Γ is finitely generated.

Proof. Since Γ\G is compact, there is a compact subset C of G, such that
ΓC = G (see Exercise 4.1#11). Let F be a precompact, open subset of G,
such that C ⊆ F. Because C ⊆ F, we have ΓF = G. Also, because F
is precompact, and Γ acts properly discontinuously on G, we know that
Condition 4.7.2(2) holds. Therefore, F is a coarse fundamental domain
for Γ . By passing to a subgroup of finite index, we may assume G is
connected (see Exercise 1), so Proposition 4.7.4 applies. □

(4.7.6) Example. Let F be the closed unit square in R2, so F is a coarse
fundamental domain for the usual action of Z2 on R2 by translations.
Define S as in the proof of Proposition 4.7.4, so

S = { (m,n) ∈ Z2 |m,n ∈ {−1,0,1} } = {0,±a1,±a2,±a3},
where a1 = (1,0), a2 = (0,1), and a3 = (1,1). Then S generates Z2; in
fact, the subset {a1, a2} is already a generating set.

Proposition 4.7.4 does not apply to this situation, because F is not
open. We could enlargeF slightly, without changing S. Alternatively, the
proposition can be proved under the weaker hypothesis that F is in the
interior of

∪
s∈S F (see Exercise 5).

Note that Z2 has the presentation

Z2 = ⟨x1, x2, x3 | x1x2 = x3, x2x1 = x3 ⟩.
(More precisely, if F3 is the free group on 3 generators x1, x2, x3, then
there is a surjective homomorphism ϕ : F3 → Z2, defined by

ϕ(x1) = a1, ϕ(x2) = a2, ϕ(x3) = a3,

and the kernel of ϕ is the smallest normal subgroup of F3 that contains
both x1x2x−1

3 and x2x1x−1
3 .) Each of the relations in this presentation is

of a very simple form, merely stating that the product of two elements
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of S is equal to another element of S. The proof of the following proposi-
tion shows that relations of this type suffice to define Λ in a very general
situation.

(4.7.7) Proposition. Suppose Λ acts properly discontinuously on a topo-
logical space Y . If

• Y is both connected and simply connected, and

• there is a coarse fundamental domain F for Λ that is a connected,
open subset of Y ,

then Λ is finitely presented.

Proof. This is somewhat similar to the proof of Proposition 4.7.4, but is
more elaborate. As before, let S = {λ ∈ Λ | λF ∩ F ≠ ∅}. For each
s ∈ S, define a formal symbol xs, and let F be the free group on {xs}.
Finally, let

R = {xsxtx−1
st | s, t, st ∈ S },

so R is a finite subset of F.
We have a homomorphismϕ : F → Λ determined byϕ(xs) = s. From

the proof of Proposition 4.7.4, we know thatϕ is surjective, and it is clear
that R ⊆ kerϕ. The main part of the proof is to show that kerϕ is the
smallest normal subgroup of F that contains R. (Since R is finite, and
F/kerϕ ≊ Λ, this implies that Λ is finitely presented, as desired.)

Let N be the smallest normal subgroup of F that contains R. (It is
clear that N ⊆ ker(ϕ); we wish to show ker(ϕ) ⊆ N.)

• Define an equivalence relation ∼ on (F/N)×F, by stipulating that
(fN,y) ∼ (f ′N,y ′) if and only if there exists s ∈ S, such that
xsfN = f ′N and sy = y ′ (see Exercise 6).

• Let Ỹ be the quotient space
(
(F/N)×F)/∼.

• Define a map ψ : (F/N) × F → Y by ψ(fN,y) = ϕ(f−1)y. (Note
that, because N ⊆ ker(ϕ), the map ψ is well defined.)

Because

ψ(xsfN, sy) =
(
ϕ(f−1)s−1)(sy) = ψ(fN,y),

we see that ψ factors through to a well-defined map ψ̃ : Ỹ → Y .
Let F̃ be the image of

(
ker(ϕ)/N

)×F in Ỹ . Then it is obvious, from
the definition of ψ, that ψ̃(F̃) = F. In fact, it is not difficult to see that
ψ̃−1(F) = F̃ (see Exercise 7).

For each f ∈ F, the image Ff of (fN) × F in Ỹ is open (see Exer-
cise 8), and, for f1, f2 ∈ ker(ϕ), one can show that Ff1 ∩ Ff2 = ∅ if
f1 ̸≡ f2 (mod N) (cf. Exercise 9). Therefore, from the preceding para-
graph, we see that ψ̃ is a covering map over F. Since Y is covered by
translates of F (and F is open) it follows that ψ̃ is a covering map.



64 4. BASIC PROPERTIES OF LATTICES

Because F is connected, it is not difficult to see that Ỹ is connected
(see Exercise 10). Since Y is simply connected, and ψ̃ is a covering map,
this implies that ψ̃ is a homeomorphism. Hence, ψ̃ is injective, and it is
easy to see that this implies ker(ϕ) = N, as desired. □

(4.7.8) Remark. The assumption that F is connected can be replaced
with the assumption that Y is locally connected. However, the proof is
somewhat more complicated in this setting.

(4.7.9) Corollary. If Γ\G is compact, then Γ is finitely presented.

Proof. Let K be a maximal compact subgroup of G, so Γ acts properly dis-
continuously on G/K. Arguing as in the proof of Corollary 4.7.5, we see
that Γ has a coarse fundamental domainF that is an open subset of G/K.
From the “Iwasawa decomposition”G = KAN (see Theorem 8.4.9), we see
that G/K is connected and simply connected (see Exercise 8.4#11(b)). So
Proposition 4.7.7 implies that Γ is finitely presented. □

If Γ\G is not compact, then it is more difficult to prove that Γ is finitely
presented (or even finitely generated).

(4.7.10) Theorem. Γ is finitely presented.

Idea of proof. It suffices to find a coarse fundamental domain for Γ that
is a connected, open subset of G/K. Assume, without loss of generality,
that Γ is irreducible.

In each of the following two cases, a coarse fundamental domain F
can be constructed as the union of finitely many translates of “Siegel
sets.” (This will be discussed in Chapters 7 and 19.)

1) Γ is “arithmetic,” as defined in (5.1.19), or

2) G has a simple factor of real rank one, or, more generally, we have
rankQ Γ ≤ 1 (see Definitions 8.1.6 and 9.1.4).

The (amazing!) Margulis Arithmeticity Theorem (5.2.1) implies that these
two cases are exhaustive, which completes the proof. □

(4.7.11) Remark. It is not necessary to appeal to the Margulis Arithmetic-
ity Theorem in order to prove only that Γ is finitely generated (and not
that it is finitely presented). Namely, if (2) does not apply, then the real
rank of every simple factor ofG is at least two, so Kazhdan’s Property (T)
implies that Γ is finitely generated (see Proposition 13.1.7(3)).

(4.7.12) Remark. For n ≥ 2, Γ is said to be of type Fn if there is a compact
CW complex X, such that:

• the fundamental group π1(X) is isomorphic to Γ , and

• the homotopy group πk(X) is trivial for 2 ≤ k < n.
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Since Γ is finitely presented (see Theorem 4.7.10), it is easy to see that
Γ is of type F2. (In fact, a group is of type F2 if and only if it is finitely
presented.) Borel and Serre proved the much stronger result that Γ is of
type Fn for every n. (If G/Γ is compact, and Γ is torsion free, then one
may let X = Γ\G/K, where K is a maximal compact subgroup of G. (In
other words, X is the locally symmetric space associated to Γ .) When G/Γ
is not compact, but Γ is torsion free, then X is a certain space called the
“Borel-Serre compactification” of Γ\G/K.)

Exercises for §4.7.

#1. Show that if some finite-index subgroup of Λ is finitely generated,
then Λ is finitely generated.
[Hint: If F is a finite set of coset representatives for ⟨S⟩ inΛ, then S∪F generatesΛ.]

#2. Assume Λ is abstractly commensurable to Λ′. Show Λ is finitely
generated if and only if Λ′ is finitely generated.
[Hint: Exercise 1 is half of the proof. For the other half, suppose F is a finite set
of coset representatives for the subgroup Λ′ of Λ , and S is a finite generating set
for Λ . For each f ∈ F and s ∈ S, we have fs ∈ Λ′f ′, for some f ′f ,s ∈ F. Then

{fs(f ′f ,s)−1 | f ∈ F, s ∈ S } generates Λ′. Alternatively, it is easy to prove this
topologically: If Λ is the fundamental group of a CW-complex Σ with only finitely
many 1-cells, then Λ′ is the fundamental group of a finite cover of Σ , which must
also have only finitely many 1-cells.]

#3. Assume Λ is abstractly commensurable to Λ′. Show Λ is finitely
presented if and only if Λ′ is finitely presented.
[Hint: Suppose Λ′ has finite index in Λ, and F is a set of coset representatives. Let
S and S′ be finite generating sets of Λ and Λ′, respectively (see Exercise 2).

(⇐) For each s ∈ S ∪ F and f ∈ F, there exist g ∈ Λ′ and f ′ ∈ F, such that
fs = gf ′. Adding these relations to a presentation of Λ′ yields a presentation of Λ.

(⇒) Proving this direction algebraically is somewhat more complicated, but
there is an easy topological proof: IfΛ is the fundamental group of a CW-complex Σ
whose 2-skeleton is finite, then Λ′ is the fundamental group of a finite cover of Σ ,
which must also have only finitely many 1-cells and 2-cells.]

#4. Suppose Λ is a discrete subgroup of a locally compact group H.
Show that if H/Λ is compact, and H is compactly generated (that
is, there is a compact subset C of H, such that ⟨C⟩ = H), then Λ
is finitely generated. (This provides an alternate proof of Proposi-
tion 4.7.4 that does not require G to be connected.)
[Hint: Assume e ∈ C. Choose a compact subset F of H, such that FΛ = H (and
e ∈ F), and let S = Λ ∩ (F−1C±1F). If λ = c1c2 · · · cn with ci ∈ C±1, then
λ = λ1 · · ·λn, with λi ∈ S.]

#5. Prove Proposition 4.7.4, replacing the assumption that F is open
with the weaker assumption that F is in the interior of

∪
s∈S sF

(where S is as defined in the proof of Proposition 4.7.4).

#6. Show that the relation ∼ defined in the proof of Proposition 4.7.7
is an equivalence relation.
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#7. In the notation of the proof of Proposition 4.7.7, show that if
ψ(fN,y) ∈ F, then (fN,y) ∼ (f ′N,y ′), for some f ′ ∈ ker(ϕ)
and some y ′ ∈ F.
[Hint: We have ϕ(f) ∈ S, because ϕ(f−1)y ∈ F.]

#8. In the notation of the proof of Proposition 4.7.7, show that the
inverse image of Ff in (F/N)×F is∪

s∈S

(
(xsfN/N)× (F ∩ sF)

)
,

which is open.

#9. In the notation of the proof of Proposition 4.7.7, show that if we
have Ff ∩Fe ≠∅ and f ∈ ker(ϕ), then f ∈ N.
[Hint: If (fN,y1) ∼ (N,y2), then there is some s ∈ S with xsN = fN. Since
f ∈ ker(ϕ), we have s = ϕ(xs) = ϕ(f) = e.]

#10. Show that the set Ỹ defined in the proof of Proposition 4.7.7 is
connected.
[Hint: For s1, . . . , sr ∈ S, define Fj = {xsj · · ·xs1N} × F. Show there exist a ∈ Fj
and b ∈ Fj+1, such that a ∼ b.]

#11. Assume Λ acts properly discontinuously on a topological space Y .
Show that a Borel subset F of Y is a coarse fundamental domain
for Λ if and only if

a) F contains a strict fundamental domain F0 for Λ, and
b) there is a finite subset F of Λ, such that F ⊆ FF0.

§4.8. Γ has a torsion-free subgroup of finite index

(4.8.1) Definition. A group is torsion free if it has no nontrivial finite
subgroups. Equivalently, the identity element e is the only element of
finite order.

(4.8.2) Theorem (Selberg’s Lemma). Γ has a torsion-free subgroup of finite
index.

Proof. From the Standing Assumptions (4.0.0), we know Γ ⊆ SL(ℓ,R), for
some ℓ. Let us start with an illustrative special case.

Case 1. Assume Γ = SL(ℓ,Z). For any positive integer n, the natu-
ral ring homomorphism Z → Z/nZ induces a group homomorphism
Γ → SL(ℓ,Z/nZ) (see Exercise 2); let Γn be the kernel of this homomor-
phism. (This is called the principal congruence subgroup of SL(ℓ,Z)
of level n.) Since it is the kernel of a group homomorphism, we know
that Γn is a normal subgroup of Γ . It is also not difficult to see that Γn
has finite index in Γ (see Exercise 3). It therefore suffices to show that
Γn is torsion free, for some n. In fact, Γn is torsion free whenever n ≥ 3
(see Exercise 5), but, for simplicity, we will assumen = p is an odd prime.
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Given γ ∈ Γp ∖ {Id} and k ∈ N ∖ {0}, we wish to show that γk ≠ Id.
We may write

γ = Id+pdT ,
where

• d ≥ 1,

• T ∈ Matℓ×ℓ(Z), and

• p ∤ T (that is, not every matrix entry of T is divisible by p).

Also, we may assume k is prime (see Exercise 4). Therefore, either p ∤ k
or p = k.
Subcase 1.1. Assume p ∤ k. Noting that

(pdT)2 = p2dT 2 ≡ 0 (mod pd+1),
and using the Binomial Theorem, we see that

γk = (Id+pdT)k ≡ Id+k(pdT) ̸≡ Id (mod pd+1),
as desired.

Subcase 1.2. Assume p = k. Using the Binomial Theorem (and noting that(
p
i

)
pdi is divisible by pd+2 for i > 1 (see Exercise 1)), we have

γk = γp = (Id+pdT)p ≡ Id+p(pdT) = Id+pd+1T ̸≡ Id (mod pd+2).

Case 2. Assume Γ ⊆ SL(ℓ,Z). From Case 1, we know there is a torsion-
free, finite-index subgroup Γn of SL(ℓ,Z). Then Γ ∩ Γn is a torsion-free
subgroup of finite index in Γ .

Case 3. The general case. The proof is very similar to Case 1, with the
addition of some commutative algebra (or algebraic number theory) to
account for the more general setting.

We know that Γ is finitely generated (see Theorem 4.7.10), so there
exist a1, . . . , ar ∈ C, such that every matrix entry of every element of Γ is
contained in the ring Z = Z[a1, . . . , ar ] generated by {a1, . . . , ar} (see Ex-
ercise 7). Therefore, letting Λ = SL(ℓ, Z), we have Γ ⊆ Λ.

Now let p be a maximal ideal in Z. Then Z/p is a field, so, because
Z/p is also known to be a finitely generated ring, it must be a finite field.
Therefore, the kernel of the natural homomorphism Λ → SL(ℓ, Z/p) has
finite index in Λ. Basic facts of Algebraic Number Theory allow us to
work with the prime ideal p in very much the same way as we used the
prime number p in Case 1. □

(4.8.3) Warning. Our standing assumption that G ⊆ SL(ℓ,R) is needed
for Theorem 4.8.2. For example, the group Sp(4,R) has an 8-fold cover,
which we call H. The inverse image of Sp(4,Z) in H is a lattice Λ in H. It
can be shown that every finite-index subgroup of Λ contains an element
of order 2, so no subgroup of finite index is torsion free. This does



68 4. BASIC PROPERTIES OF LATTICES

not contradict Theorem 4.8.2, because H is not linear: it has no faithful
embedding in any SL(ℓ,R).

If γk = Id, then every eigenvalue of γ must be a kth root of unity.
If, in addition, γ ≠ Id, then at least one of these roots of unity must be
nontrivial. Therefore, the following is a strengthening of Theorem 4.8.2.

(4.8.4) Theorem. There is a finite-index subgroup Γ ′ of Γ , such that no
eigenvalue of any element of Γ ′ is a nontrivial root of unity.

Proof. Assume Γ = SL(ℓ,Z). Let

• n be some (large) natural number,

• Γn be the principal congruence subgroup of Γ of level n,

• ω be a nontrivial kth root of unity, for some k,
• γ be an element of Γn, such that ω is an eigenvalue of γ,

• T = γ − Id,

• Q(x) be the characteristic polynomial of T , and

• λ =ω− 1, so λ is a nonzero eigenvalue of T .

Since γ ∈ Γn, we know that n|T , so Q(x) = xℓ + nR(x), for some
integral polynomial R(x). Since Q(λ) = 0, we conclude that λℓ = nζ, for
some ζ ∈ Z[λ]. Therefore, λℓ is divisible by n, in the ring of algebraic
integers.

The proof can be completed by noting that any particular nonzero
algebraic integer is divisible by only finitely many natural numbers, and
there are only finitely many roots of unity that satisfy a monic integral
polynomial of degree ℓ. See Exercise 8 for a slightly different argument.

□

(4.8.5) Remarks.

1) The proof of Theorem 4.8.2 shows that Γ has nontrivial, proper,
normal subgroups, so Γ is not simple. However, the normal sub-
groups constructed there all have finite index. In fact, it is often
the case that every nontrivial, normal subgroup of Γ has finite index
(see Theorem 17.1.1).

Moreover, although it will not be proved in this book, it is often
the case that all of the normal subgroups of finite index are close
to being of the type constructed in the course of the proof. More
precisely, the “Congruence Subgroup Property” asserts there is a
constant C, such that if N is any finite-index, normal subgroup
of Γ , then there is a principal congruence subgroup Γ ′ of Γ , such
that |Γ ′ : N′| < C. This is not always true, but it has been proved
for the lattices in many groups.
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2) Arguing more carefully, one can obtain a finite-index subgroup Γ ′
with the stronger property that, for every γ ∈ Γ ′, the multiplicative
group generated by the (complex) eigenvalues of γ does not contain
any nontrivial roots of unity. Such a subgroup is sometimes called
net .

3) If F is any field of characteristic zero, then Theorem 4.8.2 remains
valid (with the same proof) when Γ is replaced with any finitely
generated subgroup Λ of SL(ℓ, F).

Let us now present an alternate approach to the general case of The-
orem 4.8.2. It requires only the Nullstellensatz, not Algebraic Number
Theory.

Another proof of Theorem 4.8.2 (optional). Let

• Z be the subring of C generated by the matrix entries of the ele-
ments of Γ , and

• F be the quotient field of Z.

Because Γ is a finitely generated group (see Theorem 4.7.10), we know that
Z is a finitely generated ring (see Exercise 7), so F is a finitely generated
extension of Q.

Step 1. We may assume that F = Q(x1, . . . , xr ) is a purely transcendental
extension of Q. Choose a subfield L = Q(x1, . . . , xr ) of F, such that

• L is a purely transcendental extension of Q, and

• F is an algebraic extension of L.
Let d be the degree of F over L. Because F is finitely generated (and
algebraic over L), we know that d < ∞. Therefore, we may identify Fℓ
with Ldℓ, so there is an embedding

Γ ⊆ SL(ℓ, F)↩ SL(dℓ, L).
Hence, by replacing F with L (and replacing ℓ with dℓ), we may assume
that F is purely transcendental. (Identifying Fℓ with Ldℓ is the founda-
tion of an important technique called “Restriction of Scalars” that will be
introduced in Section 5.5.)

Step 2. If γ is any element of finite order in SL(ℓ, F), then trace(γ) ∈ Z,
and | trace(γ)| ≤ ℓ. There is a positive integer k with γk = Id, so every
eigenvalue of γ is a kth root of unity. The trace of γ is the sum of these
eigenvalues, and any root of unity is an algebraic integer, so we conclude
that the trace of γ is an algebraic integer.

Since trace(γ) is the sum of the diagonal entries of γ, we know
trace(γ) ∈ F. Since trace(γ) is algebraic, but F is a purely transcendental
extension of Q, this implies trace(γ) ∈ Q. Since trace(γ) is an algebraic
integer, this implies trace(γ) ∈ Z.
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Since trace(γ) is the sum of ℓ roots of unity, and every root of unity is
on the unit circle, we see, from the triangle inequality, that | trace(γ)| ≤ ℓ.
Step 3. There is a prime number p > 2ℓ, such that 1/p ∉ Z. From the
Nullstellensatz (B4.5), we know that there is a nontrivial homomorphism
ϕ : Z → Q, where Q is the algebraic closure of Q in C. Replacing Z with
ϕ(Z), let us assume that Z ⊂ Q. Thus, for each z ∈ Z, there is some
nonzero integer n, such that nz is an algebraic integer. More precisely,
because Z is finitely generated, there is an integer n, such that, for each
z ∈ Z, there is some positive integer k, such that nkz is an algebraic
integer. It suffices to choose p so that it is not a divisor of n.

Step 4. There is a finite field E of characteristic p, and a nontrivial homo-
morphism ϕp : Z → E. Because 1/p ∉ Z, there is a maximal ideal p of Z,
such that p ∈ p. Then E = Z/p is a field of characteristic p. Because
it is a finitely generated ring, E must be a finite extension of the prime
field Z/pZ (see Theorem B4.3), so E is finite.

Step 5. Let Λ be the kernel of the homomorphism ϕ̂p : SL(ℓ, Z)→ SL(ℓ, E)
that is induced byϕp. Then Λ is torsion free. Let γ be an element of finite
order in Λ. Then

trace
(
ϕ̂p(γ)

) = trace(Id) = ℓ (mod p),
so p | (ℓ − trace(γ)

)
(since Step 2 tells us that trace(γ) ∈ Z). Since we

also know that | trace(γ)| ≤ ℓ and p > 2ℓ, we conclude that trace(γ) = ℓ.
Since the ℓ eigenvalues of γ are roots of unity, and trace(γ) is the sum of
these eigenvalues, we conclude that 1 is the only eigenvalue of γ. Since
γk = Id, we know that γ is elliptic (hence, diagonalizable over C), so this
implies γ = Id, as desired. □

Exercises for §4.8.

#1. Show that if p is an odd prime, d ≥ 1, and 2 ≤ i ≤ p, then
(
p
i

)
pdi

is divisible by pd+2.
[Hint: If either d > 1 or i > 2, then di ≥ d+ 2.]

#2. Show that SL(ℓ, ·) is a (covariant) functor from the category of rings
with identity to the category of groups. That is, show:

a) if A is any ring with identity, then SL(ℓ, A) is a group,
b) for every ring homomorphism ϕ : A→ B (with ϕ(1) = 1), there

is a group homomorphism ϕ∗ : SL(ℓ, A)→ SL(ℓ, B), and
c) if ϕ : A → B and ψ : B → C are ring homomorphisms (with
ϕ(1) = 1 and ψ(1) = 1), then (ψ ◦ϕ)∗ = ψ∗ ◦ϕ∗.

#3. Show that if B is a finite ring with identity, then SL(ℓ, B) is finite.
Use this fact to show, for every positive integer n, that if Γn denotes
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the principal congruence subgroup of SL(ℓ,Z) of level n (cf. Case 1
of the proof of Theorem 4.8.2), then Γn has finite index in SL(ℓ,Z).

#4. Show that if Γ has a nontrivial element of finite order, then Γ has
an element of prime order.

#5. Show the principal congruence subgroup Γn is torsion free if n ≥ 3.
[Hint: Since Γm ⊆ Γn whenever n |m, you may assume, without loss of generality,
that n is either 4 or an odd prime.]

#6. In the notation of Case 1 of the proof of Theorem 4.8.2, show that
Γ2 is not torsion free. Where does your solution of Exercise 5 fail?

#7. Show that if Λ is a finitely generated subgroup of SL(ℓ,C), then
there is a finitely generated subring B of C, such that Λ ⊂ SL(ℓ, B).
[Hint: Let B be the subring of C generated by the matrix entries of the generators
of Λ.]

#8. Suppose ω is a nontrivial root of unity, and (ω − 1)ℓ = nζ, for
some n, ℓ ∈ Z+ and ζ ∈ Z+ Zω+ · · · + Zωℓ−1. Show n < 2(ℓ+1)!.
[Hint: Let F be the Galois closure of the field extension Q(ω) of Q generated byω,
and define N : F → Q by N(x) = ∏

σ∈Gal(F/Q) σ(x). Then N(ω − 1)ℓ = ndN(ζ),
and |N(ω− 1)| ≤ 2d ≤ 2ℓ!, where d is the degree of F over Q.]

#9. Show that Γ is residually finite. That is, for every γ ∈ Γ ∖ {e}, show
that there is a finite-index, normal subgroup Γ ′ of Γ , such that γ ∉ Γ ′.
(In particular, if Γ is infinite, then Γ is not a simple group.)

#10. Show there is a sequence N1,N2, . . . of subgroups of Γ , such that
a) N1 ⊃ N2 ⊃ · · · ,
b) each Nk is a finite-index, normal subgroup of Γ , and
c) N1 ∩N2 ∩ · · · = {e}.

[Hint: Use Exercise 9.]

#11. Show that SL(n,Q) commensurates SL(n,Z).
[Hint: For each g ∈ SL(n,Q), there is a principal congruence subgroup Γm of
SL(n,Z), such that g−1Γmg ⊆ SL(n,Z).]

#12. Show that if φ : Γ → GL(n,R) is a homomorphism, such that every
element of φ(Γ) has finite order, then φ(Γ) is finite.
[Hint: Remark 4.8.5(3).]

§4.9. Γ has a nonabelian free subgroup

In this section, we describe the main ideas in the proof of the following
important result.

(4.9.1) Theorem (Tits Alternative). If Λ is a subgroup of SL(ℓ,R), then
either

1) Λ contains a nonabelian free group, or

2) Λ has a solvable subgroup of finite index.
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Since Γ is not solvable when G is not compact (see Exercise 4.5#6),
the following is an immediate corollary.

(4.9.2) Corollary. If G is not compact, then Γ contains a nonabelian free
group.

(4.9.3) Definition. Let us say that a homeomorphism ϕ of a topological
space M is (A−, B, A+)-contracting if A−, B and A+ are nonempty, dis-
joint, open subsets ofM, such thatϕ(B∪A+) ⊆ A+ andϕ−1(B∪A−) ⊆ A−.

In a typical example,A− andA+ are small neighborhoods of pointsp−
and p+, such that ϕ collapses a large open subset of M into A+, and ϕ−1

collapses a large open subset of M into A− (see Figure 4.9A).

p−

A−

p+

A+

B

B

p−

A−

p+

A+

B

B

ϕ

ϕ

ϕ−1

ϕ−1

Figure 4.9A. A typical (A−, B,A+)-contracting homeo-
morphism of the circle.

(4.9.4) Example. Let

• M be the real projective line P(R2),

• γ =
[

2 0
0 1/2

]
∈ SL(2,R),

• A− be any (small) neighborhood of p− = [0 : 1] in P(R2),
• A+ be any (small) neighborhood of p+ = [1 : 0] in P(R2), and

• B be any precompact, open subset of P(R2)∖ {p−, p+}.
For any (x,y) ∈ R2 with x ≠ 0, we have

γn[x : y] = [2nx : 2−ny] = [1 : 2−2ny/x]→ [1 : 0] = p+ as n→∞,
and the convergence is uniform on compact subsets. Similarly, we have
γ−n[x : y] → p− as n → ∞. Hence, for sufficiently large n, the homeo-
morphism γn is (A−, B,A+)-contracting on P(R2).
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More generally, if γ is any nontrivial, hyperbolic element of SL(2,R),
then γn is (A−, B,A+)-contracting on P(R2), for some appropriate choice
of A−, B, and A+ (see Exercise 1).

The following is easy to prove by induction on n.

(4.9.5) Lemma. If ϕ is (A−, B,A+)-contracting, then

1) ϕn(B) ⊆ A+ for all n > 0,

2) ϕn(B) ⊆ A− for all n < 0,

3) ϕn(B) ⊆ A− ∪A+ for all n ≠ 0.

The following lemma is the key to the proof of Theorem 4.9.1.

(4.9.6) Lemma (Ping-Pong Lemma). Suppose

• ϕ and ψ are homeomorphisms of a topological space M,

• A−, A+, B−, and B+ are nonempty, pairwise-disjoint, open subsets
of M,

• ϕ is (A−, B,A+)-contracting, where B = B− ∪ B+, and

• ψ is (B−, A, B+)-contracting, where A = A− ∪A+.

Then ϕ and ψ have no nontrivial relations; so ⟨ϕ,ψ⟩ is free.

Proof. Consider a word of the form w = ϕm1ψn1 . . .ϕmkψnk, with each
mj and nj nonzero. We wish to show w ≠ e.

From Lemma 4.9.5(3), we have

ϕmj(B) ⊆ A and ψnj(A) ⊆ B, for j = 1,2, . . . , k.
Therefore

ψnk(A) ⊆ B,
ϕmkψnk(A) ⊆ A,

ψnk−1ϕmkψnk(A) ⊆ B,
ϕmk−1ψnk−1ϕmkψnk(A) ⊆ A,

and so on: points bounce back and forth between A and B. (Hence, the
name of the lemma.) In the end, we see that w(A) ⊆ A.

Assume, for definiteness, that m1 > 0. Then, by applying 4.9.5(1) in
the last step, instead of 4.9.5(3), we obtain the more precise conclusion
that w(A) ⊆ A+. Since A ̸⊆ A+ (recall that A− is disjoint from A+), we
conclude that w ≠ e, as desired. □

(4.9.7) Corollary. If γ1 and γ2 are two nontrivial hyperbolic elements of
SL(2,R) that have no common eigenvector, then, for sufficiently large
n ∈ Z+, the group ⟨(γ1)n, (γ2)n⟩ is free.

Proof. Let

• vj and wj be linearly independent eigenvectors of γj, with eigen-
values λj and 1/λj, such that λj > 1,
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• A+ and A− be small neighborhoods of [v1] and [w1] in P(R2), and

• B+ and B− be small neighborhoods of [v2] and [w2] in P(R2).
By the same argument as in Example 4.9.4, we see that if n is sufficiently
large, then

• (γ1)n is (A−, B− ∪ B+, A+)-contracting, and

• (γ2)n is (B−, A− ∪A+, B+)-contracting

(see Exercise 1). Therefore, the Ping-Pong Lemma (4.9.6) implies that
⟨(γ1)n, (γ2)n⟩ is free. □

We can now give a direct proof of Corollary 4.9.2, in the special case
where G = SL(2,R).

(4.9.8) Corollary. If G = SL(2,R), then Γ contains a nonabelian, free
group.

Proof. By passing to a subgroup of finite index, we may assume that Γ is
torsion free (see Theorem 4.8.2). Hence, Γ has no elliptic elements. Not
every element of Γ is unipotent (see Exercise 4.5#10), so we conclude that
some nontrivial element γ1 of Γ is hyperbolic.

Let v and w be linearly independent eigenvectors of γ1. The Borel
Density Theorem (4.5.6) implies that there is some γ ∈ Γ , such that
{γv,γw} ∩ (Rv ∪Rw) = ∅ (see Exercise 2). Let γ2 = γγ1γ−1, so γ2 is a
hyperbolic element of Γ with eigenvectors γv and γw.

From Corollary 4.9.7, we conclude that ⟨(γ1)n, (γ2)n⟩ is a nonabelian,
free subgroup of Γ , for some n ∈ Z+. □

The same ideas work in general:

Idea of direct proof of Corollary 4.9.2. Assume G ⊆ SL(ℓ,R). Choose
some nontrivial, hyperbolic element γ1 of Γ , and let λ1 ≥ λ2 ≥ · · · ≥ λℓ be
its eigenvalues. We may assume, without loss of generality, that λ1 > λ2.
(If the eigenvalue λ1 has multiplicity d, then we may pass to the dth exte-
rior power ∧d(Rℓ), to obtain a representation in which the largest eigen-
value of γ1 is simple.)

Let us assume that the smallest eigenvalue λℓ is also simple; that is,
λℓ < λℓ−1. (One can show that this is a generic condition in G, so it can
be achieved by replacing γ1 with some other element of Γ .)

Let v be an eigenvector corresponding to the eigenvalue λ1 of γ1, and
let w be an eigenvector for the eigenvalue λℓ. Assume, to simplify the
notation, that all of the eigenspaces of γ1 are orthogonal to each other.
Then, for any x ∈ Rℓ ∖ v⊥, we have (γ1)n[x] → [v] in P(Rℓ), as n → ∞
(see Exercise 3). Similarly, if x ∉ w⊥, then (γ1)−n[x]→ [w].

We may assume, by replacing Rℓ with a minimal G-invariant sub-
space, that Rℓ has no nontrivial, proper, G-invariant subspaces. Then the
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Borel Density Theorem implies that there exists γ ∈ Γ , such that we have
{γv,γw} ∩ (Rv ∪Rw) = ∅.

Then, for any small neighborhoods A−, A+, B−, and B+ of [v], [w],
[γv], and [γw], and any sufficiently large n, the Ping-Pong Lemma im-
plies that the subgroup ⟨(γ1)n, (γγ1γ−1)n⟩ is free. □

(4.9.9) Remark. The proof of Theorem 4.9.1 is similar, but involves ad-
ditional complications.

1) In order to replace Rℓ with an irreducible subspace W , it is nec-
essary to have dimW > 1 (otherwise, there do not exist two lin-
early independent eigenvectors v and w). Unfortunately, the min-
imal Λ-invariant subspaces may be 1-dimensional. After modding
these out, the minimal subspaces in the quotient may also be 1-
dimensional, and so on. In this case, the group Λ consists entirely
of upper-triangular matrices (after a change of basis), so Λ is solv-
able.

2) The subgroup Λ may not have any hyperbolic elements. Even
worse, it may be the case that 1 is the absolute value of every eigen-
value of every element of Λ. (For example, Λ may be a subgroup
of the compact group SO(n), so that every element of Λ is elliptic.)
In this case, the proof replaces the usual absolute value with an
appropriate p-adic norm. Not all eigenvalues are roots of unity (cf.
Theorem 4.8.4), so Algebraic Number Theory tells us that some el-
ement of Λ has an eigenvalue whose p-adic norm is greater than 1.
The proof is completed by using this eigenvalue, and the corre-
sponding eigenvector, just as we used λ1 and the corresponding
eigenvector v.

Exercises for §4.9.

#1. In the notation of the proof of Corollary 4.9.7, show that if A−, A+,
B−, and B+ are disjoint, then, for all large n, the homeomorphism
(γ1)n is (A−, B− ∪ B+, A+)-contracting on P(R2).

#2. Assume that G is irreducible in SL(ℓ,R) (see Definition A7.3), and
that Γ projects densely into the maximal compact factor ofG. If F is
a finite subset of Rℓ∖{0}, andW is a finite set of proper subspaces
of Rℓ, show that there exists γ ∈ Γ , such that

γF ∩
∪
W∈W

W = ∅.

[Hint: For v ∈ F andW ∈W, the setAv,W = {g ∈ G | gv ∈ W } is Zariski closed, so∪
v,W Av,W is Zariski closed. Apply the Borel Density Theorem and Exercise A4#7.]
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#3. Let
• γ be a hyperbolic element of SL(ℓ,R),
• λ1 > λ2 ≥ · · · ≥ λℓ be the eigenvalues of γ,
• v be an eigenvector of γ corresponding to the eigenvalue λ1,

and
• W be the sum of the other eigenspaces.

Show that if x ∈ P(Rℓ)∖ [W], then γnx → [v] as n → ∞. Further-
more, the convergence is uniform on compact subsets.

#4. (another version of the Ping-Pong Lemma) Suppose A and B are dis-
joint, nonempty subsets ofM, such thatϕn(B) ⊆ A andψn(A) ⊆ B,
for every nonzero integer n. Show ⟨ϕ,ψ⟩ is free.
[Hint: If every mj and nj is nonzero, then ϕm1ψn1 · · ·ϕmkψnkϕmk+1(B) ⊆ A.]

#5. Let Γ ′ =
⟨[

1 2
0 1

]
,
[
1 0
2 1

]⟩
be the Sanov subgroup of SL(2,Z). Show

that Γ ′ is a free subgroup of finite index in SL(2,Z).
[Hint: Exercise 4 implies Γ ′ is free. Matrices of the form

[
4k+ 1 2ℓ

2m 4n+ 1

]
are in Γ ′.]

#6. Generalizing Exercise 5, show that every torsion-free subgroup of
SL(2,Z) is a free group.
[Hint: Let ∂F be the boundary of the usual fundamental domain for the action
of SL(2,Z) on the upper half plane H2 (see Figure 1.3A). Then

∪
γ∈Γ γ · ∂F is a

contractible 1-dimensional simplicial complex; in other words, it is a tree. Γ acts
properly on this tree, so any subgroup of Γ that acts freely must be a free group.]

#7. Show there is an irreducible lattice Γ in SL(2,R)× SO(3), such that
Γ ∩ SL(2,R) is infinite.
[Hint: There is a free group F and a homomorphism ϕ : F → SO(3), such that ϕ(F)
is dense in SO(3).]

§4.10. Moore Ergodicity Theorem

All mathematicians encounter situations in which they would like to
prove that some function φ on some space X is constant. If X = G/Γ ,
this means that they would like to prove φ is G-invariant.

(4.10.1) Definition. Suppose f is a function on G/Γ , and H is a subgroup
of G. We say that f is H-invariant if f(hx) = f(x) for all h ∈ H and
x ∈ G/Γ .

The following fundamental result shows that it suffices to proveφ is
invariant under a much smaller subgroup of G (if we make the very weak
assumption that φ is measurable). It does not suffice to prove that φ
is invariant under a compact subgroup, because it is easy to find a non-
constant, continuous function on G/Γ that is invariant under any given
compact subgroup of G (unless G itself is compact) (see Exercise 1), so
the following result is optimal.
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(4.10.2) Theorem (Moore Ergodicity Theorem). Suppose

• G is connected and simple,

• H is a closed, noncompact subgroup of G, and

• φ : G/Γ → C is H-invariant and measurable.

Then φ is constant (a.e.).

Exercise 3 shows how to derive this theorem from the following more
general result that replaces Γ with a discrete subgroup that need not be
a lattice. (This generalization will be a crucial ingredient in Section 7.4’s
proof of the important fact that SL(n,Z) is a lattice in SL(n,R).) In this
more general situation, we impose an +p-integrability hypothesis on φ,
in order to compensate for the fact thatG/Λ is not assumed to have finite
measure (cf. Exercise 2).

(4.10.3) Theorem. Suppose

• G is connected and simple,

• H is a closed, noncompact subgroup of G,

• Λ is a discrete subgroup of G, and

• φ is an H-invariant +p-function on G/Λ (with 1 ≤ p <∞).

Then φ is constant (a.e.).

Idea of proof. To illustrate the key ingredient in the proof, let us con-
sider only the special case where G = SL(2,R) andH is the group of diag-
onal matrices. (A proof of the general case will be given in Section 11.2.)
Let

at =
[
et 0
0 e−t

]
∈ H and u ∈

[
1 0
∗ 1

]
.

Note that straightforward matrix multiplication (see Exercise 4) shows

lim
t→∞

atua−t = e. (4.10.4)

For g ∈ G, define gφ : G/Λ → C by gφ(x) = φ(g−1x). We are
assuming that φ is at-invariant (which means atφ =φ), and the crux of
the proof is the observation that we can use (4.10.4) to show thatφmust
also be u-invariant: we have

∥uφ −φ∥p = ∥atuφ − atφ∥p (Exercise 10)

= ∥(atua−t)atφ − atφ∥p (inserting a−tat)

= ∥(atua−t)φ −φ∥p
(
atφ =φ because
φ is H-invariant

)

→ ∥eφ −φ∥p as t →∞
(

(4.10.4) and
Exercise 11

)
= 0,

so uφ = φ (a.e.).
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Thus, from the fact that φ is H-invariant, we have shown that

φmust also be
[

1 0
∗ 1

]
-invariant (a.e.).

The same calculation, but with t → −∞, shows that

φmust also be
[

1 ∗
0 1

]
-invariant (a.e.).

Since
[

1 0
∗ 1

]
and

[
1 ∗
0 1

]
generate SL(2,R) = G (see Exercise 6), we conclude

that φ is G-invariant (a.e.). Since G is transitive on G/Λ, this implies that
φ is constant (a.e.) (see Exercise 7). □

Exercises for §4.10.

#1. Show that if K is any compact subgroup of G, and G is not compact,
then there is a continuous, K-invariant function on G/Γ that is not
constant.

#2. Show there is a counterexample to Theorem 4.10.3 if we remove
the assumption that the measurable function φ is +p.
[Hint: It is easy to construct an counterexample by taking Λ to be trivial (or finite).]

#3. Derive Theorem 4.10.2 from Theorem 4.10.3.
[Hint: If there is a nonconstant H-invariant function on G/Γ, then there is one that
is bounded.]

#4. Verify Equation (4.10.4).

#5. Suppose
• G and H are as in the Moore Ergodicity Theorem (4.10.2), and
• X is an H-invariant, measurable subset of G/Γ .

Show that either X has measure 0, or the complement of X has
measure 0.

#6. Show SL(2,R) is generated by the subgroups
{[

1 0
∗ 1

]}
and

{[
1 ∗
0 1

]}
.

[Hint: If a matrix can be reduced to the identity matrix by a sequence of elementary
row operations, then it is a product of elementary matrices.]

#7. Suppose φ is a measurable function on G/Λ, and for each g ∈ G,
we haveφ(gx) =φ(x) for a.e. x ∈ G/Λ. Showφ is constant (a.e.).
[Hint: Use Fubini’s Theorem to reverse the quantifiers.]

#8. Suppose G and H are as in the Moore Ergodicity Theorem (4.10.2).
Show that Hx is dense in G/Γ , for a.e. x ∈ G/Γ .
[Hint: Use Exercise 5. For any open subset O of G/Γ, the set HO is measurable
(why?) and H-invariant.]

#9. Assume G is simple, and let H be a subgroup of G (not necessar-
ily closed). Show that every (real-valued) H-invariant measurable
function on G/Γ is constant (a.e.) if and only if the closure of H is
not compact.
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#10. Show that if Λ is a discrete subgroup of G, and µ is a G-invariant
measure on G/Λ, then

∫
X gφdµ =

∫
Xφdµ, for every g ∈ G and

measurable φ : G/Λ→ C.
[Hint: Apply a change of variables, and use the fact that g∗µ = µ (since µ is G-
invariant).]

#11. Show that G acts continuously on +p(G/Λ) if 1 ≤ p < ∞. More
precisely, show that if Λ is a discrete subgroup of G, and we define
α : G×+p(G/Λ)→ +p(G/Λ)byα(g,φ) = gφ, thenα is continuous.
[Hint: To show α is continuous in g, use Lusin’s Theorem (B6.6) to approximate φ
by a uniformly continuous function. Then use Exercise 10 (and the Triangle In-
equality) to complete the proof.]

Notes

Raghunathan’s book [16] is the standard reference for the basic prop-
erties of lattices. It contains almost all of the material in this chapter,
except the Tits Alternative (Section 4.9) and the Moore Ergodicity Theo-
rem (Section 4.10).

Remark 4.4.5 (the existence of unipotent elements in noncompact
lattices) was proved by Kazhdan and Margulis [13]. Expositions can be
found in [3] and [16, Cor. 11.13, p. 180].

The Borel Density Theorem (4.5.1) was proved by Borel [2]. It appears
in [14, Thm. 2.4.4, p. 93], [16, Thm. 5.5, p. 79], and [21, Thm. 3.2.5, pp. 41–
42]. Several authors have published generalizations or alternative proofs
(for example, [6, 9, 20]).

Our presentation of Propositions 4.7.4 and 4.7.7 is based on [15,
pp. 195–199]. A proof of Remark 4.7.8 can also be found there. A proof
of Theorem 4.7.10 for the case where Γ is arithmetic can be found in [4]
or [15, Thm. 4.2, p. 195]. For the case where rankQ Γ = 1, see [10] or [16,
Cor. 13.20, p. 210].

Borel and Serre [5, §11.1] proved Γ is of type Fn (see Remark 4.7.12).
(We remark that there is no harm in assuming Γ is torsion free, since
being of type Fn is invariant under passage to finite-index subgroups
[11, Cor. 7.2.4, p. 170].)

Theorem 4.8.2 is proved in [16, Thm. 6.11, p. 93] and [4, Cor. 17.7,
p. 119], in stronger forms that establish Remark 4.8.5(2,3). Our alternate
proof of Theorem 4.8.2 is excerpted from the elementary proof in [1].

Warning 4.8.3 is due to P. Deligne [8]. See also [17].
For an introduction to the Congruence Subgroup Property, see [12,

Chap. 6] or [18].
The Tits Alternative (4.9.1) was proved by Tits [19]. A nice introduc-

tion (and a proof of some special cases) can be found in [7].
See Section 14.2 for more on the Moore Ergodicity Theorem (4.10.2)

and related results.
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Chapter 5

What is an
Arithmetic Group?

SL(n,Z) is the most basic example of an “arithmetic group.” We will see
that, by definition, the other arithmetic groups are obtained by inter-
secting SL(n,Z) with some semisimple subgroup G of SL(n,R). More
precisely, if G is a subgroup of SL(n,R) that satisfies certain technical
conditions (to be explained in Section 5.1), then G ∩ SL(n,Z) (the group
of “integer points” of G) is said to be an arithmetic subgroup of G. How-
ever, the official definition (5.1.19) also allows certain modifications of
this subgroup to be called arithmetic .

Different embeddings of G into SL(n,R) can yield different intersec-
tions with SL(n,Z), so G has many different arithmetic subgroups. (Ex-
amples can be found in Chapter 6.) Theorem 5.1.11 tells us that all of
them are lattices in G. In particular, SL(n,Z) is a lattice in SL(n,R).

§5.1. Definition of arithmetic subgroups

We are assuming that G is a subgroup of SL(ℓ,R) (see the Standing As-
sumptions (4.0.0)), and we are interested in Γ = G ∩ SL(ℓ,Z), the set of

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Definitions 4.1.9 and 4.2.1 (lattice
subgroups and commensurability).
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“integer points” of G. However, in order for the integer points to form a
lattice, G needs to be well-placed with respect to SL(ℓ,Z). (If we replace G
by a conjugate under some terrible irrational matrix, perhapsG∩SL(ℓ,Z)
would become trivial (see Exercise 1).) The following proposition is an
elementary illustration of this idea.

(5.1.1) Proposition. The following are equivalent, for every subspace W
of Rℓ:

1) W ∩ Zℓ is a cocompact lattice in W .

2) W is spanned by W ∩ Zℓ.
3) W ∩Qℓ is dense in W .

4) W can be defined by a set of linear equations with coefficients in Q.

Proof. Let k = dimW .
(1 ⇒ 2) Let V be the R-span of W ∩ Zℓ. Then W/V, being a vector

space over R, is homeomorphic to Rd, for some d. On the other hand,
we know that W ∩ Zℓ ⊂ V, and that W/(W ∩ Zℓ) is compact, so W/V is
compact. Hence d = 0, so V = W .

(2 ⇒ 1) Let {ε1, . . . , εk} be the standard basis of Rk. Because W ∩ Zℓ
contains a basis of W , there is a linear isomorphism T : Rk → W , such
that T

({ε1, . . . , εk}
) ⊆ W ∩ Zℓ. This implies that T(Zk) ⊆ W ∩ Zℓ. Since

Rk/Zk is compact, and T is continuous, we conclude that W/(W ∩ Zℓ) is
compact.

(2 ⇒ 3) As in the proof of (2 ⇒ 1), there is a linear isomorphism
T : Rk → W , such that T(Zk) ⊆ W ∩Zℓ. Then T(Qk) ⊆ W ∩Qℓ. SinceQk is
dense in Rk, and T is continuous, we conclude that T(Qk) is dense in W .

(4 ⇒ 2) By assumption, W is the solution space of a system of linear
equations whose coefficients belong toQ. (Since Rℓ is finite dimensional,
only finitely many of the equations are necessary.) Therefore, by ele-
mentary linear algebra (row reductions), we may find a basis for W that
consists entirely of vectors in Qℓ. Multiplying by a scalar to clear the
denominators, we may assume that the basis consists entirely of vectors
in Zℓ.

(3 ⇒ 4) Since W ∩ Qℓ is dense in W , we know that the orthogonal
complement W⊥ is defined by a set of linear equations with rational co-
efficients. (For each w ∈ W ∩Qℓ, we write the equation w ·x = 0.) Thus,
from (4 ⇒ 2), we conclude that there is a basis v1, . . . , vm ofW⊥, such that
each vj ∈ Qℓ. Then W = (W⊥)⊥ is defined by the system of equations
v1 · x = 0, …, vm · x = 0. □

With the above proposition in mind, we make the following definition.
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(5.1.2) Definition (cf. Definitions A4.1 and A4.7). Let H be a closed sub-
group of SL(ℓ,R). We sayH is defined over Q (or thatH is aQ-subgroup)
if there is a subset Q of Q[x1,1, . . . , xℓ,ℓ], such that

• Var(Q) = {g ∈ SL(ℓ,R) | Q(g) = 0, ∀Q ∈ Q} is a subgroup of
SL(ℓ,R),

• H◦ = Var(Q)◦, and

• H has only finitely many components.

In other words,H is commensurable to the variety Var(Q), for some setQ
of Q-polynomials.

(5.1.3) Examples.

1) SL(ℓ,R) is defined over Q: let Q = ∅.

2) If n < ℓ, we may embed SL(n,R) in the top left corner of SL(ℓ,R).
This copy of SL(n,R) is defined over Q: let

Q = {xi,j − δji | max{i, j} > n }.
3) For A ∈ SL(ℓ,Q), the group SOℓ(A;R) = {g ∈ SL(ℓ,R) | gAgT = A}

is defined over Q: let

Q =
 ∑

1≤p,q≤m+n
xi,pAp,qxj,q −Ai,j

∣∣∣∣∣∣ 1 ≤ i, j ≤m+n
 .

In particular, SO(m,n), under its usual embedding in SL(m+n,R),
is defined over Q.

4) SL(n,C), under its usual embedding in SL(2n,R), is defined overQ
(cf. Example A4.2(4)).

(5.1.4) Remarks.

1) There is always a subset Q of R[x1,1, . . . , xℓ,ℓ], such that G is com-
mensurable to Var(Q) (see Theorem A4.9); that is, G is defined
over R. However, it may not be possible to find a set Q that con-
sists entirely of polynomials whose coefficients are rational, so G
may not be defined over Q.

2) If G is defined over Q, then the set Q of Definition 5.1.2 can be
chosen to be finite (because the ringQ[x1,1, . . . , xℓ,ℓ] is Noetherian).

(5.1.5) Proposition. G is isogenous to a group that is defined over Q.

Proof. It is easy to handle direct products, so the crucial case is when G is
simple. This is easy if G is classical. Indeed, the groups in Examples A2.3
and A2.4 are defined over Q (after identifying SL(ℓ,C) and SL(ℓ,H) with
appropriate subgroups of SL(2ℓ,R) and SL(4ℓ,R), in a natural way).

The general case is not difficult for someone familiar with exceptional
groups. Namely, since AdG is a finite-index subgroup of Aut(g), it suf-
fices to find a basis of g, for which the structure constants of the Lie
algebra are rational. We omit the details. □
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(5.1.6) Notation. For each subring O of R (containing 1), we construct
GO = G∩SL(n,O). That is, GO is the subgroup consisting of the elements
of G whose matrix entries all belong to O.

(5.1.7) Example. Let ϕ : SL(n,C)→ SL(2n,R) be the natural embedding.
Then

ϕ
(
SL(n,C)

)
Q = ϕ

(
SL(n,Q[i])

)
.

Therefore, if we think of SL(n,C) as a Lie group over R, then SL(n,Q[i])
represents the “Q-points” of SL(n,C).

The following result provides an alternate point of view on being de-
fined over Q. It is the nonabelian version of (3 a 4) of Proposition 5.1.1.

(5.1.8) Proposition. Let H be a connected subgroup of SL(ℓ,R) that is
almost Zariski closed. The group H is defined over Q if and only if HQ is
dense in H.

Proof. (⇐) Let QC = {Q ∈ C[x1,1, . . . , xℓ,ℓ] | Q(h) = 0, ∀h ∈ H }. Also,
for d ∈ N, let QdC = {Q ∈ QC | degQ ≤ d }. Since HQ is dense in H
(and polynomials are continuous), it is clear that QdC is invariant under
the Galois group Gal(C/Q), so it is not difficult to see thatQdC is spanned
(as a vector space over C) by a collection Qd of polynomials with rational
coefficients (see Exercise 2). SinceH is almost Zariski closed, and polyno-
mial rings are Noetherian, we haveH◦ = Var(Qd)◦ for d sufficiently large.
The polynomials in Qd all have rational coefficients, so this implies that
H is defined over Q.

(⇒) See Exercise 5.3#8 for a proof when G is simple and G/GZ is not
compact. The general case utilizes a fact from the theory of algebraic
groups that will not be proved in this book (see Exercise 3). □

(5.1.9) Warning. Proposition 5.1.8 requires the assumption thatH is con-
nected; there are subgroups H of SL(ℓ,R), such that H is defined over Q,
but HQ is not dense in H. For example, let

H = {h ∈ SO(2) | h8 = Id }.
(5.1.10) Remark. The Jacobson-Morosov Lemma (A5.8) has a relative ver-
sion: if G is defined over Q, and u is a nontrivial, unipotent element of
GQ, then there is a (polynomial) homomorphism ϕ : SL(2,R) → G, such
that ϕ

([
1 1
0 1

]) = u and ϕ
(
SL(2,Q)

) ⊆ GQ.

We now state a theorem of fundamental importance in the theory of
lattices and arithmetic groups. It is a nonabelian analogue of the obvious
fact that Zℓ is a lattice in Rℓ, and of (4 ⇒ 1) of Proposition 5.1.1.

(5.1.11) Major Theorem. If G is defined over Q, then GZ is a lattice in G.
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Proof. The statement of this theorem is more important than its proof,
so, for most purposes, the reader could accept this fact as an axiom,
without learning the proof. For those who do not want to take this on
faith, a discussion of two different proofs can be found in Chapter 7 (with
some additional details in Chapter 19). □

(5.1.12) Example. Here are some standard cases of Theorem 5.1.11.

1) SL(2,Z) is a lattice in SL(2,R). (We proved this in Example 1.3.7.)

2) SL(n,Z) is a lattice in SL(n,R). (We will prove this in Chapter 7.)

3) SO(m,n)Z is a lattice in SO(m,n).

4) SL(n,Z[i]) is a lattice in SL(n,C) (cf. Example 5.1.7).

(5.1.13) Example. As an additional example, let

G = SO(7x2
1 − x2

2 − x2
3 ;R) ≊ SO(1,2).

Then Theorem 5.1.11 implies that GZ is a lattice in G. This illustrates
that the theorem is a highly nontrivial result. For example, in this case,
it may not even be obvious to the reader that GZ is infinite.

(5.1.14) Warning. Theorem 5.1.11 requires our standing assumption that
G is semisimple; there are subgroupsH of SL(ℓ,R), such thatH is defined
over Q, but HZ is not a lattice in H. For example, if H is the group of
diagonal matrices in SL(2,R), then HZ is finite, not a lattice in H.

(5.1.15) Remark. The converse of Theorem 5.1.11 holds when G has no
compact factors (see Exercise 5).

Combining Proposition 5.1.5 with Theorem 5.1.11 yields the follow-
ing important conclusion:

(5.1.16) Corollary. G has a lattice.

In fact, a more careful look at the proof shows that ifG is not compact,
then the lattice we constructed is not cocompact:

(5.1.17) Corollary. If G is not compact, then G has a noncocompact lattice.

Proof. Assume that G is classical, which means it is one of the groups
listed in Examples A2.3 and A2.4. As was mentioned in the proof of
Proposition 5.1.5, each of these groups has an obvious Q-form GQ, ob-
tained by replacing Rwith Q (or replacing Cwith Q[i]), in a natural way.
Whenever G is noncompact, it is not difficult to see that GQ has a non-
trivial unipotent element (see Exercise 8), so Corollary 4.4.4 tells us that
G/GZ is not compact. □
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(5.1.18) Remark. We will show in Theorem 18.7.1 that G also has a co-
compact lattice, and a special case that illustrates the main idea of the
proof will be seen much earlier, in Example 5.5.4.

A lattice of the form GZ is said to be arithmetic. However, for the
following reasons, a somewhat more general class of lattices is also said
to be arithmetic. The idea is that there are some obvious modifications
of GZ that are also lattices, and any subgroup that is obviously a lattice
should be called arithmetic.

• If ϕ : G1 → G2 is an isomorphism, and Γ1 is an arithmetic subgroup
of G1, then we wish to be able to say that ϕ(Γ1) is an arithmetic
subgroup in G2.

• We wish to ignore compact groups; that is, modding out a compact
subgroup should not affect arithmeticity. So we wish to be able
to say that if K is a compact normal subgroup of G, and Γ is a
lattice in G, then Γ is arithmetic if and only if ΓK/K is an arithmetic
subgroup of G/K

• Arithmeticity should be independent of commensurability.

The following formal definition implements these considerations.

(5.1.19) Definition. Γ is an arithmetic subgroup of G if and only if there
exist

• a closed, connected, semisimple subgroup G′ of some SL(n,R),
such that G′ is defined over Q,

• compact normal subgroups K and K′ of G◦ and G′, respectively,
and

• an isomorphism ϕ : G◦/K → G′/K′,
such that ϕ(Γ) is commensurable to G′Z, where Γ and G′Z are the images
of Γ ∩G◦ and G′Z in G◦/K and G′/K′, respectively.

(5.1.20) Remarks.

1) If G has no compact factors, then it is obvious that the subgroup K
in Definition 5.1.19 must be finite.

2) Corollary 5.3.2 will show that if G/Γ is not compact (and Γ is irre-
ducible), then the annoying compact subgroups are not needed in
Definition 5.1.19.

3) On the other hand, if Γ is cocompact, then a nontrivial (connected)
compact group K′ may be required (even if G has no compact fac-
tors). We will see many examples of this phenomenon, starting
with Example 5.5.4.

4) Up to conjugacy, there are only countably many arithmetic lattices
in G, because there are only countably many finite subsets of the
polynomial ring Q[x1,1, . . . , xℓ,ℓ].
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(5.1.21) Other terminology. Our definition of arithmetic subgroup as-
sumes the perspective of Lie theory, where Γ is assumed to be embedded
in some Lie group G. The theory of algebraic groups has a more strict
definition, which requires Γ to be commensurable to GZ: arbitrary iso-
morphisms are not allowed, and compact subgroups cannot be ignored.
At the other extreme, abstract group theory has a much looser definition,
which completely ignoresG: if an abstract groupΛ is abstractly commen-
surable to a group that is arithmetic in our sense, then Λ is considered
to be arithmetic.

Exercises for §5.1.

#1. Show that if G is connected, G ⊆ SL(ℓ,R), and − Id ∉ G, then there
exists h ∈ SL(ℓ,R), such that (h−1Gh)∩ SL(ℓ,Z) is trivial.
[Hint: For each nontrivial γ ∈ SL(ℓ,Z), let Xγ = {h ∈ SL(ℓ,R) | hγh−1 ∈ G }.
Then each Xγ is nowhere dense in SL(ℓ,R) (see Exercise A4#4(b)).]

#2. Let W be a vector subspace of Cn, for some n. Show that W is
invariant under Gal(C/Q) if and only if W is spanned by a set of
vectors with rational coordinates.
[Hint: (⇒) Choose w ∈ W ∖ {0} with a minimal number of nonzero coordinates,
and multiply by a scalar to assume at least one coordinate is a nonzero rational.
Since σ(w) −w ∈ W for all σ ∈ Gal(C/Q), the minimality implies w ∈ Qn. Mod
out w and induct on the dimension.]

#3. It can be shown that G◦ is unirational . This means there exists an
open subset U of some Rn, and a function f : U → G◦, such that
• f(U) contains an open subset of G, and
• each matrix entry of f(x) is a rational function of x (that is, a

quotient of two polynomials).
Furthermore, if G is defined over Q, then f can be chosen to be
defined over Q (that is, all of the coefficients of f are in Q).

Assuming the above, show that GQ is dense in G if G is con-
nected and G is defined over Q.
[Hint: Unirationality implies that GQ contains an open subset of G.]

#4. For H as in Warning 5.1.9, show that HQ is not dense in H.
[Hint: H is finite, and HQ ≠ H.]

#5. Show that if G ⊆ SL(ℓ,R), G has no compact factors, and GZ is a
lattice in G, then G is defined over Q.
[Hint: See the proof of Proposition 5.1.8(⇐). Since GZ is a lattice in G, the Borel
Density Theorem (4.5.6) implies that QdC is invariant under the Galois group.]

#6. Show that if
• G ⊆ SL(ℓ,R), and
• GZ is Zariski dense in G,

then GZ is a lattice in G.
[Hint: It suffices to show that G is defined over Q.]
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#7. Show that if
• G has no compact factors,
• Γ1 and Γ2 are arithmetic subgroups of G, and
• Γ1 ∩ Γ2 is Zariski dense in G,

then Γ1 is commensurable to Γ2.
[Hint: Suppose ϕj : G → Hj is an isomorphism, such that ϕj(Γj) = (Hj)Z. Define
ϕ : G → H1 × H2 by ϕ(g) = (

ϕ1(g),ϕ2(g)
)
. Then ϕ(G)Z = ϕ(Γ1 ∩ Γ2) is Zariski

dense in ϕ(G), so Γ1 ∩ Γ2 is a lattice in G (see Exercise 6). A similar (but slightly
more complicated) argument applies if ϕj : G → Hj/Kj, where Kj is compact.]

#8. For each classical simple group G in Examples A2.3 and A2.4, let
GQ be the subgroup obtained by replacing R with Q, C with Q[i],
or H with HQ = Q+Qi+Qj +Qk, as appropriate. Show that if G
is not compact, then GQ contains a nontrivial unipotent element.
[Hint: Show that GQ contains a copy of either SL(2,Q), SO(1,2)Q, or SU(1,1)Q (cf.
Remark A2.6).]

§5.2. Margulis Arithmeticity Theorem

The following astonishing theorem shows that taking integer points is
usually the only way to make a lattice. (See Section 16.3 for a sketch of
the proof.)

(5.2.1) Theorem (Margulis Arithmeticity Theorem). If

• G is not isogenous to SO(1, n)×K or SU(1, n)×K, for any compact
group K, and

• Γ is irreducible,

then Γ is arithmetic.

(5.2.2) Warning. Unfortunately,

• SL(2,R) is isogenous to SO(1,2), and

• SL(2,C) is isogenous to SO(1,3),
so the arithmeticity theorem says nothing about the lattices in these two
important groups.

(5.2.3) Remark. The conclusion of Theorem 5.2.1 can be strengthened:
the subgroup K of Definition 5.1.19 can be taken to be finite. More pre-
cisely, if G and Γ are as in Theorem 5.2.1, and G is noncompact and has
trivial center, then there exist

• a closed, connected, semisimple subgroupG′ of some SL(ℓ,R), such
that G′ is defined over Q, and

• a surjective (continuous) homomorphism ϕ : G′ → G,

such that

1) ϕ(G′Z) is commensurable to Γ ; and

2) the kernel of ϕ is compact.
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(5.2.4) Remarks.

1) For any G, it is possible to give a reasonably complete description
of the arithmetic subgroups of G (up to conjugacy and commensu-
rability). Some examples are worked out in fair detail in Chapter 6.
More generally, Theorem 18.5.3 (or the table on page 380) essen-
tially provides a list of all the irreducible arithmetic subgroups of
almost all of the classical groups. Thus, for most groups, the Mar-
gulis Arithmeticity Theorem provides a list of all the lattices in G.

2) Furthermore, knowing that Γ is arithmetic provides a foothold to
use algebraic and number-theoretic techniques to explore the de-
tailed structure of Γ . For example, we saw that it is easy to show Γ
is torsion free if Γ is arithmetic (see Theorem 4.8.2). A more impor-
tant example is that (apparently) the only known proof that every
lattice is finitely presented (see Theorem 4.7.10) relies on the Mar-
gulis Arithmeticity Theorem.

3) It is known that there are nonarithmetic lattices in SO(1, n) for
every n (see Corollary 6.5.16), but we do not yet have a theory that
describes them all when n ≥ 3. Also, nonarithmetic lattices have
been constructed in SU(1, n) for n ∈ {1,2,3}, but (apparently) it is
still not known whether they exist when n ≥ 4.

(5.2.5) Remark. The subgroup

CommG(Γ) = {g ∈ G | gΓg−1 is commensurable to Γ }
is called the commensurator of Γ inG. It is easy to see that ifG is defined
over Q, then GQ ⊆ CommG(GZ) (cf. Exercise 4.8#11).

1) This implies that if Γ is arithmetic (andG is connected, with no com-
pact factors), then CommG(GZ) is dense inG (see Proposition 5.1.8).
Margulis proved a converse. Namely, if G is connected and has no
compact factors, then Γ is arithmetic iff CommG(Γ) is dense in G
(see Theorem 16.3.3). This is known as the Commensurability Cri-
terion for Arithmeticity.

2) In some cases, the commensurator of GZ is much larger than GQ
(see Exercise 1). However, it was observed by Borel that this never
happens when the “complexification” of G◦ has trivial center (and
other minor conditions are satisfied) (see Exercise 4). (See Sec-
tion 18.1 for an explanation of the complexification.)

Exercises for §5.2.

#1. Let G = SL(2,R) and GZ = SL(2,Z). Show CommG(GZ) is not com-
mensurable to GQ.
[Hint: The diagonal matrix diag

(√p, 1/√p) commensurates GZ, for all p ∈ Z+.]

#2. Show CommSL(3,R)
(
SL(3,Z)

)
is not commensurable to SL(3,Q).
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#3. Show that if G is simple and Γ is not arithmetic, then Γ , NG(Γ), and
CommG(Γ) are commensurable to each other.

#4. (requires some knowledge of algebraic groups) Assume G is con-
nected and GZ is Zariski dense in G (cf. Corollary 4.5.6). The com-
plexification G ⊗ C is defined in Notation 18.1.3.

Show that if Z(G ⊗ C) = {e}, then CommG(GZ) = GQ.
[Hint: For g ∈ CommG(GZ), we know that Adg is an automorphism of the Lie
algebra g that is defined over Q, so Adg ∈ (AdG)Q. However, the assumptions
imply that the adjoint representation is an isomorphism (and it is defined overQ).]

#5. Show that the assumption Z(G⊗C) = {e} cannot be replaced with
the weaker assumption Z(G) = {e} in Exercise 4.
[Hint: Any matrix in GL(3,Q) has a scalar multiple that is in SL(3,R), but SL(3,Q)
has infinite index in GL(3,Q).]

§5.3. Unipotent elements of noncocompact lattices

The following result answers one of the most basic topological questions
about the manifold G/GZ: is it compact?

(5.3.1) Proposition (Godement Compactness Criterion). Assume that G is
defined over Q. The homogeneous space G/GZ is compact if and only if
GZ has no nontrivial unipotent elements.

Proof. (⇒) This is the easy direction (see Corollary 4.4.4).
(⇐) We prove the contrapositive: suppose G/GZ is not compact. (We

wish to show that GZ has a nontrivial unipotent element.) From Proposi-
tion 4.4.6 (and the fact that GZ is a lattice in G (see Theorem 5.1.11)), we
know that there exist nontrivial γ ∈ GZ and g ∈ G, such that gγ ≈ Id. Be-
cause the characteristic polynomial of a matrix is a continuous function
of the matrix entries of the matrix, we conclude that the characteristic
polynomial of gγ is approximately (x − 1)ℓ (the characteristic polyno-
mial of Id). On the other hand, similar matrices have the same character-
istic polynomial, so this means that the characteristic polynomial of γ
is approximately (x − 1)ℓ. Now all the coefficients of the characteristic
polynomial of γ are integers (because γ is an integer matrix), so the only
way this polynomial can be close to (x − 1)ℓ is by being exactly equal to
(x−1)ℓ. Therefore, the characteristic polynomial of γ is (x−1)ℓ, so γ is
unipotent. □

The following important consequence of the Godement Criterion tells
us that there is often no need for compact subgroups in Definition 5.1.19,
the definition of an arithmetic group:

(5.3.2) Corollary. Assume

• Γ is an irreducible, arithmetic subgroup of G,
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• G/Γ is not compact, and

• G is connected and has no compact factors.

Then, perhaps after replacing G by an isogenous group, there is an em-
bedding of G in some SL(ℓ,R), such that

1) G is defined over Q, and

2) Γ is commensurable to GZ.

Proof. From Definition 5.1.19 (and Remark 5.1.20(1)) we know that (up to
isogeny and commensurability) there is a compact group K′, such that we
may embed G′ = G×K′ in some SL(ℓ,R), such that G′ is defined over Q,
and ΓK′ = G′ZK′.

Let N be the almost-Zariski closure of the subgroup of G′ generated
by all of the unipotent elements of G′Z. Since G/Γ is not compact, the
proposition implies N is infinite. However, K′ has no unipotent elements
(see Remark A5.2(2)), so N ⊆ G. Also, the definition of N implies that it
is normalized by the Zariski closure of G′Z. Therefore, the Borel Density
Theorem (4.5.7) implies that N is a normal subgroup of G.

Assume, for simplicity, that G is simple (see Exercise 1). Then the
conclusion of the preceding paragraph tells us that N = G. Therefore, G
is the almost-Zariski closure of a subset of G′Z, which implies that G is
defined over Q (cf. Exercise 5.1#5). Hence, GZ is a lattice in G, and it is
easy to see that it is commensurable to Γ (see Exercise 2). □

In the special case where Γ is arithmetic, the following result is an
easy consequence of Proposition 5.3.1, but we will not prove the general
case (which is more difficult). The assumption that G has no compact
factors cannot be eliminated (see Exercise 3).

(5.3.3) Theorem. Assume G has no compact factors. The homogeneous
space G/Γ is compact if and only if Γ has no nontrivial unipotent elements.

The above proof of Proposition 5.3.1 relies on the fact that GZ is a
lattice inG, which will not be proved until Chapter 7. The following result
illustrates that the cocompactness of GZ can sometimes be proved quite
easily from the Mahler Compactness Criterion (4.4.7), without assuming
that it is a lattice.

(5.3.4) Proposition. If

• B(x,y) is a symmetric, bilinear form on Qℓ, such that

• B(x,x) ≠ 0 for all nonzero x ∈ Qℓ,

then SO(B)Z is cocompact in SO(B)R.

Proof. Let G = SO(B) and Γ = SO(B)Z = GZ. (Our proof will not use the
fact that Γ is a lattice in G.) Replacing B by an integer multiple to clear
the denominators, we may assume B(Zℓ,Zℓ) ⊆ Z.



94 5. WHAT IS AN ARITHMETIC GROUP?

Step 1. The image of G in SL(ℓ,R)/ SL(ℓ,Z) is precompact. Let

• {gn} be a sequence of elements of G and

• {vn} be a sequence of elements of Zℓ ∖ {0}.
Suppose that gnvn → 0. (This will lead to a contradiction, so the desired
conclusion follows from the Mahler Compactness Criterion (4.4.7).)

Since B(v,v) ≠ 0 for all nonzero v ∈ Zℓ, and B(Zℓ,Zℓ) ⊆ Z, we have
|B(vn, vn)| ≥ 1 for all n. Therefore

1 ≤ |B(vn, vn)| = |B(gnvn, gnvn)| → |B(0,0)| = 0.
This is a contradiction.

Step 2. The image of G in SL(ℓ,R)/ SL(ℓ,Z) is closed. Suppose

gnγn → h ∈ SL(ℓ,R), with gn ∈ G and γn ∈ SL(ℓ,Z).
We wish to show h ∈ G SL(ℓ,Z).

Let {ε1, · · · , εℓ} be the standard basis of Rℓ (so each εj ∈ Zℓ). Then

B(γnεj , γnεk) ∈ B(Zℓ,Zℓ) ⊆ Z.
We also have

B(γnεj , γnεk) = B(gnγnεj , gnγnεk)→ B(hεj , hεk).
Since Z is discrete, we conclude that B(γnεj , γnεk) = B(hεj , hεk) for any
sufficiently large n. Therefore hγ−1

n ∈ SO(B) (see Exercise 9), so we have
h ∈ Gγn ⊆ G SL(ℓ,Z).

Step 3. Completion of the proof. Define ϕ : G/Γ → SL(ℓ,R)/ SL(ℓ,Z) by
ϕ(gΓ) = g SL(ℓ,Z). By combining Steps 1 and 2, we see that the image
of ϕ is compact. Therefore, it suffices to show that ϕ is a homeomor-
phism onto its image.

Given a sequence {gn} in G, such that {ϕ(gnΓ)} converges, we wish
to show that {gnΓ} converges. There is a sequence {γn} in SL(ℓ,Z), and
some h ∈ G, such that gnγn → h. The proof of Step 2 shows, for all
large n, that h ∈ Gγn. Then γn ∈ Gh = G (and we know γn ∈ SL(ℓ,Z)),
so γn ∈ GZ = Γ . Therefore, {gnΓ} converges (to hΓ), as desired. □

Exercises for §5.3.

#1. The proof of Corollary 5.3.2 assumes that G is simple. Eliminate
this hypothesis.
[Hint: The proof shows thatN∩Γ is a lattice inN. Since Γ is irreducible, this implies
N = G.]

#2. At the end of the proof of Corollary 5.3.2, show that GZ is commen-
surable to Γ .
[Hint: We know G′ZK

′ = ΓK′, and GZ has finite index in G′Z (see Exercise 4.1#10).
Mod out K′.]
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#3. Show there is a noncocompact lattice Γ in SL(2,R) × SO(3), such
that no nontrivial element of Γ is unipotent.
[Hint: SL(2,R) has a lattice Γ ′ that is free. Let Γ be the graph of a homomorphism
from Γ ′ to SO(3).]

#4. Suppose G ⊆ SL(ℓ,R) is defined over Q.
a) Show that if N is a closed, normal subgroup of G, and N is

defined over Q, then GZN is closed in G.
b) Show that GZ is irreducible if and only if no proper, closed,

connected, normal subgroup of G is defined over Q. (That is,
if and only if G is Q-simple.)

c) Let H be the Zariski closure of the subgroup generated by the
unipotent elements of GZ. Show that H is defined over Q.

#5. Show that if every element of Γ is semisimple, then G/Γ is compact.
[Hint: There is no harm in assuming that G has no compact factors (why?), so
Theorem 5.3.3 applies.]

#6. (assumes some familiarity with reductive groups) Prove the con-
verse of Exercise 5.
[Hint: Let kaube the real Jordan decomposition of an element g of Γ. Since CG(ka)
is reductive (see Exercise 8.2#2), the Jacobson-Morosov Lemma provides a sub-
group L of CG(ka) that contains u and is isogenous to SL(2,R). So ka is in the
closure of Gg. However, Gg is closed, since Γ is discrete and cocompact. Therefore
g = ka is semisimple.]

#7. Assuming Γ = GZ is arithmetic (and G is defined over Q), prove the
following are equivalent:

a) G/GZ is compact.
b) GQ has no nontrivial unipotent elements.
c) Every element of GQ is semisimple.
d) Every element of Γ is semisimple.
e) GQ does not contain a subgroup isogenous to SL(2,Q). (More

precisely, there does not exist a continuous homomorphism
ρ : SL(2,R)→ G, such that ρ

(
SL(2,Q)

) ⊆ GQ.)
[Hint: (b ⇒ c) Jordan decomposition. (e ⇒ b) Jacobson-Morosov Lemma (5.1.10).]

#8. Show that GQ is dense in G if G is defined over Q, G is simple, and
G/GZ is not compact.
[Hint: The Godement Criterion implies that GQ has a nontrivial unipotent ele-

ment u. Write u = expT = ∑ℓ
k=0 Tk/k! (where T ∈ Matℓ×ℓ(Q) and T ℓ+1 = 0).

Then exp(rT) ∈ GQ for all r ∈ Q, so the identity component of GQ is nontriv-
ial. Combining Theorem 5.1.11 with the Borel Density Theorem (4.5.2) implies that
GQ = G.]

#9. Let B(x,y) be a symmetric, bilinear form on Rℓ, let {v1, · · · , vℓ} be
a basis of Rℓ, and let γ,h ∈ SL(ℓ,R). If B(γvj , γvk) = B(hvj , hvk)
for all j and k, show that hγ−1 ∈ SO(B).
[Hint: {γv1, . . . , γvℓ} is a basis of Rℓ.]
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§5.4. How to make an arithmetic subgroup

The definition that (modulo commensurability, isogenies, and compact
factors) an arithmetic subgroup must be the Z-points of G has the virtue
of being concrete. However, this concreteness imposes a certain lack of
flexibility. (Essentially, we have limited ourselves to the standard basis of
the vector space Rn, ignoring the possibility that some other basis might
be more convenient in some situations.) We now describe a more abstract
viewpoint that makes the construction of general arithmetic lattices more
transparent. (In particular, this approach will be used in §5.5.) The key
point is that there are analogues of Zℓ and Qℓ in any real vector space,
not just Rℓ (see Lemma 5.4.3(1)).

(5.4.1) Definitions. Let V be a real vector space.

1) A Q-subspace VQ of V is a Q-form of V if the natural R-linear map
VQ ⊗Q R → V is an isomorphism (see Exercise 1). (The map is
defined by v ⊗ t , tv.)

2) A polynomial f on V is defined over Q (with respect to the Q-form
VQ) if f(VQ) ⊆ Q (see Exercise 2).

3) A subgroup L of the additive group of VQ is a Z-lattice in VQ if it is
finitely generated and the natural Q-linear map L⊗Z Q → VQ is an
isomorphism (see Exercise 3). (The map is defined by v ⊗ t , tv.)

4) Each Q-form VQ of V yields a corresponding Q-form of the real
vector space End(V) by End(V)Q = {A ∈ End(V) | A(VQ) ⊆ VQ }
(see Exercise 5).

5) A function Q on a real vector space W is a polynomial if for some
(hence, every) R-linear isomorphism ϕ : Rℓ ≊ W , the composition
f ◦ϕ is a polynomial function on Rℓ.

6) A subgroup H of SL(V) is defined over Q (with respect to the Q-
form VQ) if there exists a set Q of polynomials on End(V), such
that
• everyQ ∈ Q is defined overQ (with respect to theQ-form VQ),
• Var(Q) = {g ∈ SL(V) | Q(g) = 0 for all Q ∈ Q} is a subgroup

of SL(V), and
• Var(Q)◦ is a finite-index subgroup of H.

(5.4.2) Remarks.

1) Suppose G ⊆ SL(ℓ,R), as usual. For the standard Q-form Qℓ of Rℓ,
it is easy to see that G is defined overQ in terms of Definition 5.4.1
if and only if it is defined over Q in terms of Definition 5.1.2.

2) Some authors simply call L a lattice in VQ, but this could cause
confusion, because L is not a lattice in VQ, in the sense of Defini-
tion 4.1.9 (although it is a lattice in V).
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AQ-form VQ and Z-lattice L simply representQℓ and Zℓ, under some
identification of V with Rℓ:

(5.4.3) Lemma. Let V be an ℓ-dimensional real vector space.

1) If VQ is a Q-form of V, then there exists an R-linear isomorphism
ϕ : V → Rℓ, such that ϕ(VQ) = Qℓ. Furthermore, if L is any Z-lattice
in VQ, then ϕmay be chosen so that ϕ(L) = Zℓ.

2) A polynomial f on Rℓ is defined over Q (with respect to the standard
Q-formQℓ) if and only if every coefficient of f is inQ (see Exercise 2).

Also note that any two Z-lattices in VQ are commensurable:

(5.4.4) Lemma (see Exercise 6). If L1 and L2 are two Z-lattices in VQ, then
there is some nonzero p ∈ Z, such that pL1 ⊆ L2 and pL2 ⊆ L1.

It is now easy to prove the following more abstract characterization
of arithmetic subgroups (see Exercises 7 and 8).

(5.4.5) Proposition. Suppose G ⊆ GL(V), and G is defined over Q, with
respect to the Q-form VQ.

1) If L is any Z-lattice in VQ, then

GL = {g ∈ G | gL = L}
is an arithmetic subgroup of G.

2) If L1 and L2 are Z-lattices in VQ, then GL1 is commensurable to GL1.

From Proposition 5.4.5(2), we see that the arithmetic subgroup GL
is almost entirely determined by the Q-form VQ; choosing a different
Z-lattice in VQ will yield a commensurable arithmetic subgroup.

Exercises for §5.4.

#1. Show that a Q-subspace VQ of V is a Q-form if an only if there is a
subset B of VQ, such that B is both a Q-basis of VQ and an R-basis
of V.

#2. For the standardQ-formQℓ ofRℓ, show that a polynomial is defined
over Q if and only if all of its coefficients are rational.

#3. Show that a subgroup L of VQ is a Z-lattice in VQ if and only if there
is a Q-basis B of VQ, such that L is the additive abelian subgroup
of VQ generated by B.

#4. Let V be a real vector space of dimension ℓ, and let L be a discrete
subgroup of the additive group of V. Recall that the rank of an
abelian group is the largest r , such that the group contains a copy
of Zr .

a) Show that L is a finitely generated, abelian group of rank ≤ ℓ,
with equality if and only if the R-span of L is V.
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b) Show that if the rank of L is ℓ, then theQ-span of L is aQ-form
of V, and L is a Z-lattice in VQ.

[Hint: Induction on ℓ. For λ ∈ L, show that the image of L in V/Rλ is discrete.]

#5. Verify: if VQ is aQ-form of V, then End(V)Q is aQ-form of End(V).

#6. Prove Lemma 5.4.4. Conclude that Λ1 and Λ2 are commensurable.

#7. Prove Proposition 5.4.5(1). [Hint: Use Lemma 5.4.3.]

#8. Prove Proposition 5.4.5(2). [Hint: Use Lemma 5.4.4.]

§5.5. Restriction of scalars

We know that SL(2,Z) is an arithmetic subgroup of SL(2,R). In this sec-
tion, we explain that SL

(
2,Z[

√
2]
)

is an arithmetic subgroup of the group
SL(2,R) × SL(2,R) (see Example 5.5.3). More generally, recall that any
finite extension of Q is called an algebraic number field . We will see
that if O is the ring of algebraic integers in any algebraic number field F,
and G is defined over F, then GO is an arithmetic subgroup of a certain
group G′ that is related to G.

(5.5.1) Remark. In practice, we do not require O to be the entire ring of
algebraic integers in F: it suffices for the ring O to have finite index in
the ring of integers (as an additive group); equivalently, the Q-span of O
should be all of F, or, in other words, the ring O should be a Z-lattice in F.
(A Z-lattice in F that is also a subring is called an order in F.)

Any complex vector space can be thought of as a real vector space (of
twice the dimension). Similarly, any complex Lie group can be thought
of as a real group (of twice the dimension). Restriction of scalars is the
generalization of this idea to any field extension F/L, not just C/R. This
yields a general method to construct arithmetic subgroups.

(5.5.2) Example. Let

• F = Q[√2],
• O = Z[√2], and

• σ be the nontrivial Galois automorphism of F,

and define a ring homomorphism ∆ : F → R2 by ∆(x) = (x,σ(x)).
It is easy to show that ∆(O) is discrete in R2. Namely, for x ∈ O, the

product of the coordinates of∆(x) is the productx·σ(x)of all the Galois
conjugates of x. This is the norm of the algebraic number x. Because x
is an algebraic integer, its norm is an ordinary integer; hence, its norm is
bounded away from 0. So it is impossible for both coordinates of ∆(x)
to be small simultaneously.
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More generally, if O is the ring of integers of any algebraic number
field F, this same argument shows that if we let {σ1, . . . , σr} be the set of
all embeddings of O in C, and define ∆ : O → Cr by

∆(x) = (σ1(x), . . . , σr (x)
)
,

then ∆(O) is a discrete subring of Cr .
Now ∆ induces a homomorphism ∆∗ : SL(ℓ,O) → SL(ℓ,Cr ) (because

SL(ℓ, · ) is a functor from the category of commutative rings to the cate-
gory of groups). Furthermore, the group SL(ℓ,Cr ) is naturally isomorphic
to SL(ℓ,C)r . Therefore, we have a homomorphism (again called ∆) from
SL(ℓ,O) to SL(ℓ,C)r . Namely, for γ ∈ SL(ℓ,O), we let σi(γ) ∈ SL(ℓ,C) be
obtained by applying σi to each entry of γ, and then

∆(γ) = (σ1(γ), . . . , σr (γ)
)
.

Since∆(O) is discrete inCr , it is obvious that the image of∆∗ is discrete in
SL(ℓ,Cr ), so ∆(Γ) is a discrete subgroup of SL(ℓ,C)r , for any subgroup Γ
of SL(ℓ,O).

The main goal of this section is to show that if Γ = GO, and G is
defined over F, then the discrete group ∆(Γ) is an arithmetic subgroup
of a certain subgroup of SL(ℓ,C)r .

To illustrate, let us show that SL
(
2,Z[

√
2]
)

is isomorphic to an arith-
metic subgroup of SL(2,R)× SL(2,R).

(5.5.3) Example. Let

• Γ = SL
(
2,Z[

√
2]
)
,

• G = SL(2,R)× SL(2,R), and

• σ be the conjugation on Q[
√

2] (so σ
(
a + b√2

) = a − b√2, for
a,b ∈ Q),

and define ∆ : Γ → G by ∆(γ) = (γ,σ(γ)).
Then ∆(Γ) is an irreducible, arithmetic subgroup of G.

Proof. Let F = Q[√2] and O = Z[√2]. Then F is a 2-dimensional vector
space over Q, and O is a Z-lattice in F.

Since
{
(1,1), (

√
2,−√2)

}
is both a Q-basis of ∆(F) and an R-basis

of R2, we see that ∆(F) is a Q-form of R2. Therefore,

∆(F2) = { (u,σ(u)) ∈ F4 | u ∈ F2 }
is a Q-form of R4, and ∆(O2) is a Z-lattice in ∆(F2).

Now G is defined over Q (see Exercise 2), so G∆(O2) is an arithmetic
subgroup ofG. It is not difficult to see thatG∆(O2) = ∆(Γ) (see Exercise 3).
Furthermore, because∆(Γ)∩(SL(2,R)×e) is trivial, we see that the lattice
∆(Γ)must be irreducible in G (see Proposition 4.3.3). □
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More generally, the proof of Example 5.5.3 shows that if G is defined
overQ, then GZ[√2] is isomorphic to an (irreducible) arithmetic subgroup
of G ×G.

Here is another sample application of the method.

(5.5.4) Example. Let G = SO(x2 +y2 −√2z2;R) ≊ SO(1,2). Then GZ[√2]
is a cocompact, arithmetic subgroup of G.

Proof. As above, let σ be the conjugation on Q[
√

2]. Let Γ = GZ[√2].
Let K′ = SO(x2 + y2 + √2z2) ≊ SO(3), so σ(Γ) ⊆ K′. (However,

σ(Γ) ̸⊆ G.) Then, we may

define ∆ : Γ → G ×K′ by ∆(γ) = (γ,σ(γ)).
Arguing as in the proof of Example 5.5.3 establishes that ∆(Γ) is an arith-
metic subgroup of G × K′. (See Exercise 4 for the technical point of ver-
ifying that G × K′ is defined over Q.) Since K′ is compact, we see, by
modding out K′, that Γ is an arithmetic subgroup of G. (This type of
example is the reason for including the compact normal subgroup K′ in
Definition 5.1.19.)

Let γ be any nontrivial element of Γ . Since σ(γ) ∈ K′, and com-
pact groups have no nontrivial unipotent elements (see Remark A5.2(2)),
we know that σ(γ) is not unipotent. Therefore, σ(γ) has some eigen-
value λ ≠ 1. Hence, γ has the eigenvalue σ−1(λ) ≠ 1, so γ is not unipo-
tent. Therefore, Godement’s Criterion (5.3.1) implies that Γ is cocompact.
Alternatively, this conclusion can easily be obtained directly from the
Mahler Compactness Criterion (4.4.7) (see Exercise 6). □

Let us consider one more example before stating the general result.

(5.5.5) Example. Let

• F = Q[4
√

2],

• O = Z[4
√

2],

• Γ = SL(2,O), and

• G = SL(2,R)× SL(2,R)× SL(2,C).

Then Γ is isomorphic to an irreducible, arithmetic subgroup of G.

Proof. For convenience, let α = 4
√

2. There are exactly 4 distinct embed-
dings σ0, σ1, σ2, σ3 of F in C (corresponding to the 4 roots of x4−2 = 0);
they are determined by:

σ0(α) = α (so σ0 = Id), σ1(α) = −α, σ2(α) = iα, and σ3(α) = −iα.
Define ∆ : F → R ⊕ R ⊕ C by ∆(x) = (

x,σ1(x),σ2(x)
)
. Then, arguing

much as before, we see that ∆(F2) is a Q-form of R2 ⊕ R2 ⊕ C2, G is
defined over Q, and G∆(O2) = ∆(Γ). □
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These examples illustrate all the ingredients of the general result that
will be stated in Proposition 5.5.8 after the necessary definitions.

(5.5.6) Definition. Let F be an algebraic number field (or, in other words,
let F be a finite extension of Q).

1) Two distinct embeddings σ1, σ2 : F → C are said to be equivalent
if σ1(x) = σ2(x), for all x ∈ F (where z denotes the usual complex
conjugate of the complex number z).

2) A place of F is an equivalence class of embeddings in C. Therefore,
each place consists of either one or two embeddings of F:
• a real place consists of only one embedding (with σ(F) ⊂ R),

but
• a complex place consists of two embeddings (with σ(F) ̸⊂ R).

3) We let S∞ = {places of F }, or, abusing notation, we assume that
S∞ is a set of embeddings, consisting of exactly one embedding
from each place.

4) For σ ∈ S∞, we let

Fσ =
R if σ is real,
C if σ is complex.

Note that σ(F) is dense in Fσ , so Fσ is often called the completion
of F at the place σ .

5) For Q ⊂ Fσ [x1,1, . . . , xℓ,ℓ], let

VarFσ (Q) = {g ∈ SL(ℓ, Fσ ) | Q(g) = 0, ∀Q ∈ Q}.
Thus, for Fσ = R, we have VarR(Q) = Var(Q), and VarC(Q) is anal-
ogous, using the field C in place of R.

6) Suppose G ⊆ SL(ℓ,R), and G is defined over F, so there is some
subset Q of F[x1,1, . . . , xℓ,ℓ], such that G◦ = Var(Q)◦. For each
place σ of F, let

Gσ = VarFσ
(
σ(Q))◦.

Then Gσ , the Galois conjugate of G by σ , is defined over σ(F).

(5.5.7) Other terminology. Our definition requires places to be infinite
(or archimedean); that is the reason for the superscript ∞ on S∞. Other
authors also allow places that are finite (or nonarchimedean, or p-adic).
These additional places are of fundamental importance in number the-
ory, and, therefore, in deeper aspects of the theory of arithmetic groups.
For example, superrigidity at the finite places will play a crucial role in
the proof of the Margulis Arithmeticity Theorem in Section 16.3. Finite
places are also essential for the definition of the “S-arithmetic” groups
discussed in Appendix C.
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(5.5.8) Proposition. If G is defined over an algebraic number field F ⊂ R,
and O is the ring of integers of F, then there is a finite-index subgroup ĠO
of GO, such that

ĠO embeds as an arithmetic subgroup of
∏
σ∈S∞

Gσ ,

via the natural embedding ∆ : γ ,
(
σ(γ)

)
σ∈S∞

Furthermore, if G is simple, then the lattice ∆(GO) is irreducible.

(5.5.9) Warning. By our definition, Gσ is always connected, since it is the
identity component of VarFσ

(
σ(Q)). If G is assumed to be Zariski closed

(so it is equal to Var(Q), rather than merely being isogenous to it), then
it is sometimes more convenient to define Gσ to be the entire variety
VarFσ

(
σ(Q)), rather than merely the identity component. In particular,

that would eliminate the need to pass to a finite-index subgroup ĠO in
the statement of Proposition 5.5.8. Taking the best of both worlds, we
will usually ignore the difference between GO and ĠO, and pretend that
the map ∆ of Proposition 5.5.8 is defined on all of GO. For example,
the statements of Corollary 5.5.10 and Proposition 5.5.12 below omit the
dots that should be in ∆(ĠO) and ϕ

(
∆(ḢO)

)
.

The argument in the last paragraph of the proof of Example 5.5.4
shows the following:

(5.5.10) Corollary. If Gσ is compact, for some σ ∈ S∞, then ∆(GO) is
cocompact.

(5.5.11) Remark. Proposition 5.5.8 is stated only for real groups, but the
same conclusions hold if

• G ⊆ SL(ℓ,C),
• F is an algebraic number field, such that F ̸⊂ R, and

• G is defined over F, as an algebraic group over C; that is, there is
a subset Q of F[x1,1, . . . , xℓ,ℓ], such that G◦ = VarC(Q)◦ (see Nota-
tion 18.1.3).

For example, we have the following irreducible arithmetic lattices:

1) SO
(
n,Z[i,

√
2]
)

in SO(n,C)× SO(n,C), and

2) SO
(
n,Z

[√
1−√2

])
in SO(n,C)× SO(n,R)× SO(n,R).

The following converse shows that restriction of scalars is the only
way to make a group of Z-points that is irreducible.

(5.5.12) Proposition. If Γ = GZ is an irreducible lattice in G (and G is
connected), then there exist

1) an algebraic number field F, with completion F∞ (= R or C),

2) a connected, simple subgroup H of SL(ℓ, F∞), for some ℓ, such that
H is defined over F (as an algebraic group over F∞), and
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3) an isogeny

ϕ :
∏
σ∈S∞

Hσ → G,

such that ϕ
(
∆(HO)

)
is commensurable to Γ .

Proof. It is easier to work with the algebraically closed field C, instead
of R, so, to avoid minor complications, let us assume that G ⊆ SL(ℓ,C)
is defined over Q[i] (as an algebraic group over C), and that Γ = GZ[i].
This assumption results in a loss of generality, but similar ideas apply in
general.

Write G = G1 × · · · × Gr , where each Gi is simple. Let H = G1. We
remark that if r = 1, then the desired conclusion is obvious: let F = Q[i],
and let ϕ be the identity map.

Let Σ be the Galois group of C over Q[i]. Because G is defined
over Q[i], we have σ(G) = G for every σ ∈ Σ. Hence, σ must permute
the simple factors {G1, . . . , Gr}.

We claim thatΣacts transitively on {G1, . . . , Gr}. To see this, suppose,
for example, that r = 5, and that {G1, G2} is invariant under Σ. Then
A = G1 × G2 is invariant under Σ, so A is defined over Q[i]. Similarly,
A′ = G3 × G4 × G5 is also defined over Q[i]. Then AZ[i] and A′Z[i] are
lattices in A and A′, respectively, so Γ = GZ[i] ≈ AZ[i] ×A′Z[i] is reducible.
This is a contradiction.

Let

Σ1 = {σ ∈ Σ | σ(G1) = G1 }
be the stabilizer of G1, and let

F = {z ∈ C | σ(z) = z, ∀σ ∈ Σ1 }
be the fixed field of Σ1. Because Σ is transitive on a set of r elements, we
know that Σ1 is a subgroup of index r in Σ, so Galois Theory tells us that
F is an extension of Q[i] of degree r .

Since Σ1 is the Galois group of C over F, and σ(G1) = G1 for all
σ ∈ Σ1, we see that G1 is defined over F.

Let σ1, . . . , σr be coset representatives of Σ1 in Σ. Then σ1|F , . . . , σr |F
are the r places of F and, after renumbering, we have Gj = σj(G1). So
(with H = G1), we have∏
σ∈S∞

Hσ = Hσ1|F×· · ·×Hσr |F = σ1(G1)×· · ·×σr (G1) = G1×· · ·×Gr = G.

Let ϕ be the identity map.
For h ∈ HF, let ∆′(h) = ∏r

j=1σj(h). Then σ
(
∆′(h)

) = ∆′(h) for
all σ ∈ Σ, so ∆′(h) ∈ GQ[i]. In fact, it is not difficult to see that
∆′(HF) = GQ[i], and then one can verify that ∆′(HO) ≈ GZ[i] = Γ , so
ϕ
(
∆(HO) is commensurable to Γ . □
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(5.5.13) Remark. Although it may not be clear from our proof, the group
G′ in Corollary 5.5.15 can be chosen to be “absolutely simple.” This means
that if F ⊂ R, then the following three equivalent conditions must be true:
G′ remains simple over C, g′ ⊗R C is simple, and G′ is not isogenous to
any “complexification” (G′′)C.

Combining Proposition 5.5.12 with Corollary 5.5.10 yields the follow-
ing result.

(5.5.14) Corollary. If GZ is an irreducible lattice in G, and G/GZ is not
cocompact, then G has no compact factors.

By combining Proposition 5.5.12 with Definition 5.1.19, we see that
every irreducible arithmetic subgroup can be constructed by using re-
striction of scalars, and then modding out a compact subgroup:

(5.5.15) Corollary. If Γ is an irreducible, arithmetic lattice in G (and G is
connected), then there exist

1) an algebraic number field F, with completion F∞ (= R or C),

2) a connected, simple subgroup G′ of SL(ℓ, F∞), for some ℓ, such that
G′ is defined over F (as an algebraic group over F∞), and

3) a continuous surjection

ϕ :
∏
σ∈S∞

(G′)σ → G,

with compact kernel,

such that ϕ
(
∆(G′O)

)
is commensurable to Γ .

When G is simple, the restriction of ϕ to some simple factor of∏
σ∈S∞(G′)σ must be an isogeny, so the conclusion can be stated in the

following much simpler form:

(5.5.16) Corollary. If Γ is an arithmetic subgroup of G, and G is simple,
then there exist

1) an algebraic number field F, with completion F∞ (= R or C),

2) a connected, simple subgroup G′ of SL(ℓ, F∞), for some ℓ, such that
G′ is defined over F (as an algebraic group over F∞), and

3) an isogeny ϕ : G′ → G,

such that ϕ(G′O) is commensurable to Γ .

However, we should point out that this result is of interest only when
Γ is cocompact (or is reducible with at least one cocompact factor). This
is because there is no need for restriction of scalars when the irreducible
lattice Γ is not cocompact (see Corollary 5.3.2).
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Exercises for §5.5.

#1. In the notation of the proof of Example 5.5.3, show, for theQ-form
∆(F2) of R4, that

End(R4)Q =
{[

A B
σ(B) σ(A)

] ∣∣∣∣∣ A,B ∈ Mat2×2(F)
}
.

[Hint: Since the F-span of ∆(F2) is F4, we have End(R4)Q ⊆ Mat4×4(F). Thus, for

any T ∈ End(R4)Q, we may write T =
[
A B
C D

]
, with A,B,C,D ∈ Mat2×2(F). Now use

the fact that, for all u ∈ F2, we have T(u) = (v,σ(v)), for some v ∈ F2.]

#2. In the notation of the proof of Example 5.5.3, let

Q =
{
xi,j+2 + xi+2,j , xi,j+2xi+2,j

∣∣∣ 1 ≤ i, j ≤ 2
}

∪
{

1√
2

(
(x1,1x2,2 − x1,2x2,1)− (x3,3x4,4 − x3,4x4,3)

)}
.

a) Use the conclusion of Exercise 1 to show that each Q ∈ Q is
defined over Q.

b) Show that Var(Q)◦ = SL(2,R)× SL(2,R).

#3. In the notation of the proof of Example 5.5.3, use Exercise 1 to show
that G∆(O2) = ∆(Γ).

#4. Let F, O, σ , ∆ be as in the proof of Example 5.5.3. If G ⊆ SL(ℓ,R),
and G is defined over F, show G×G is defined overQ (with respect
to the Q-form on End(R2ℓ) induced by the Q-form ∆(Fℓ) on R2ℓ).
[Hint: For each Q ∈ Q[x1,1, . . . , xℓ,ℓ], let us define a corresponding polynomial
Q+ ∈ Q[xℓ+1,ℓ+1, . . . , x2ℓ,2ℓ] by replacing every occurrence of each variable xi,j
with xℓ+i,ℓ+j. For example, if ℓ = 2, then

(x2
1,1 + x1,2x2,1 − 3x1,1x2,2)+ = x2

3,3 + x3,4x4,3 − 3x3,3x4,4.

Choose Q0 ⊂ Q[x1,1, . . . , xℓ,ℓ] that defines G as a subgroup of SL(ℓ,R), and let

Q1 = {Q+ σ(Q+), Qσ(Q+) | Q ∈ Q0 }.
A natural generalization of Exercise 2 shows that SL(ℓ,R) × SL(ℓ,R) is defined
overQ: letQ2 be the corresponding set ofQ-polynomials. Now defineQ = Q1∪Q2.]

#5. Suppose O is the ring of integers of an algebraic number field F.
a) Show ∆(O) is discrete in

⊕
σ∈S∞ Fσ .

b) Show ∆(F) is a Q-form of
⊕
σ∈S∞ Fσ .

c) Show ∆(O) is a Z-lattice in ∆(F).

#6. Let
• B(v,w) = v1w1 + v2w2 −

√
2v3w3, for v,w ∈ R3,

• G = SO(B)◦,
• G∗ = G ×Gσ ,
• Γ = GZ[√2], and
• Γ∗ = ∆(Γ).

Show:
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a) The image of G∗ in SL(6,R)/ SL(6,R)∆(O3) is precompact (by
using the Mahler Compactness Criterion).

b) The image of G∗ in SL(6,R)/ SL(6,R)∆(O3) is closed.
c) G∗/Γ∗ is compact.
d) G/Γ is compact (without using the fact that Γ is a lattice in G).

[Hint: This is similar to Proposition 5.3.4.]

#7. For any algebraic number field F, theQ-form ∆(Fℓ) on
⊕
σ∈S∞(Fσ )ℓ

induces a natural Q-form on EndR
(⊕

σ∈S∞(Fσ )ℓ
)
. Show the group∏

σ∈S∞ SL(ℓ, Fσ ) is defined over Q, with respect to this Q-form.
[Hint: This is a generalization of Exercise 2. That proof is based on the elementary
symmetric functions of two variables: P1(a1, a2) = a1+a2 and P2(a1, a2) = a1a2.
For the general case, use symmetric functions of d variables, where d is the degree
of F over Q.]

#8. Suppose G ⊆ SL(ℓ,R), and G is defined over an algebraic number
field F ⊂ R. Show

∏
σ∈S∞ Gσ is defined over Q, with respect to

the Q-form on EndR
(⊕

σ∈S∞(Fσ )ℓ
)

induced by the Q-form ∆(Fℓ)
on

⊕
σ∈S∞(Fσ )ℓ.

[Hint: This is a generalization of Exercise 4. See the hint to Exercise 7.]

#9. Show, for all m,n ≥ 1, with m + n ≥ 3, that there exist a lattice Γ
in SO(m,n), and a homomorphism ρ : Γ → SO(m + n), such that
ρ(Γ) is dense in SO(m+n).

§5.6. Only isotypic groups have irreducible lattices

Intuitively, the complexification GC of G is the complex Lie group that is
obtained from G by replacing real numbers with complex numbers. For
example, SL(n,R)C = SL(n,C), and SO(n)C = SO(n,C). (See Section 18.1
for more discussion of this.)

(5.6.1) Definition. G is isotypic if all of the simple factors ofGC are isoge-
nous to each other.

For example, SL(2,R) × SL(3,R) is not isotypic, because SL(2,C)
is not isogenous to SL(3,C). Similarly, SL(5,R) × SO(2,3) is not iso-
typic, because the complexification of SL(5,R) is SL(5,C), but the com-
plexification of SO(2,3) is (isomorphic to) SO(5,C). Therefore, the fol-
lowing consequence of the arithmeticity theorem implies that neither
SL(2,R)× SL(3,R) nor SL(5,R)× SO(2,3) has an irreducible lattice.

(5.6.2) Theorem (Margulis). Assume that G has no compact factors. If G
has an irreducible lattice, then G is isotypic.

Proof. Suppose Γ is an irreducible lattice in G. We may assume that G
is not simple (otherwise, the desired conclusion is trivially true), so G is
neither SO(1, n)nor SU(1, n). Therefore, from the Margulis Arithmeticity
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Theorem (5.2.1), we know that Γ is arithmetic. Then, since Γ is irreducible,
Corollary 5.5.15 implies there is a simple subgroup G′ of some SL(ℓ,R),
and a compact group K, such that

• G′ is defined over a number field F, and

• G ×K is isogenous to
∏
σ∈S∞(G′)σ .

So the simple factors of G×K are all in { (G′)σ | σ ∈ S∞ } (up to isogeny).
It then follows from Lemma 5.6.5 below that G is isotypic. □

(5.6.3) Remarks.

1) We will prove the converse of Theorem 5.6.2 in Proposition 18.7.5
(without the assumption that G has no compact factors).

2) By arguing just a bit more carefully, it can be shown that Theo-
rem 5.6.2 remains valid when the assumption that G has no com-
pact factors is replaced with the weaker hypothesis that G is not
isogenous to SO(1, n)× K or SU(1, n)× K, for any nontrivial, con-
nected compact group K (see Exercise 2).

The following example shows that a nonisotypic group can have irre-
ducible lattices, so some restriction on G is necessary in Theorem 5.6.2.

(5.6.4) Example. SL(2,R)×K has an irreducible lattice, for any connected,
compact Lie group K (cf. Exercise 4.9#7).

We now complete the proof of Theorem 5.6.2:

(5.6.5) Lemma. AssumeG is defined over an algebraic number field F. If σ
is a place of F, and G is simple, then the complexification of G is isogenous
to the complexification of Gσ .

Proof. Extend σ to an automorphism σ̂ of C. Then σ̂ (GC) = (Gσ )C, so it
is clear that GC is isomorphic to (Gσ )C. Unfortunately, however, the au-
tomorphism σ̂ is not continuous (not even measurable) unless it happens
to be the usual complex conjugation, so we have only an isomorphism of
abstract groups, not an isomorphism of Lie groups. Hence, this observa-
tion is not a proof, although it is suggestive. To give a rigorous proof, it
is easier to work at the Lie algebra level.

First, let us make an observation that will also be pointed out in Re-
mark 18.2.2. If G = SL(n,C), or, more generally, if G is isogenous to a
complex group G′C, then GC = G × G (because C ⊗R C ≊ C ⊕ C). So GC
is not simple. However, it can be shown that this is the only situation
in which the complexification of a simple group fails to be simple: if G
is simple, but GC is not simple, then G is isogenous to a complex simple
group G′C. Therefore, although the complexification of a simple group is
not always simple, it is always isotypic.



108 5. WHAT IS AN ARITHMETIC GROUP?

Now assume, for definiteness, that F ⊂ R (see Exercise 6). Since G
is defined over F, its Lie algebra g is also defined over F. This means
there is a basis {v1, . . . , vn} of g, such that the corresponding structure
constants {cℓj,k}nj,k,ℓ=1 all belong to F; recall that the structure constants
are defined by the formula

[vj , vk] =
∑n
ℓ=1 c

ℓ
j,kvℓ.

Because G is isogenous to a group that is defined over Q (see Propo-
sition 5.1.5), there is also a basis {u1, . . . , un} of g whose structure con-
stants are in Q. Write vk =

∑n
ℓ=1α

ℓ
kuℓ with each αℓk ∈ R, and define

vσk =
∑n
ℓ=1 σ̂ (α

ℓ
k)uℓ.

Then vσ1 , . . . , vσn is a basis of g ⊗R C whose structure constants are{
σ(cℓj,k)

}n
j,k,ℓ=1. These are obviously the structure constants of the Lie

algebra gσ of Gσ .
If σ(F) ⊂ R, then the R-span of {vσ1 , . . . , vσn } is (isomorphic to) gσ ,

so its C-span is gσ ⊗R C. Since vσ1 , . . . , vσn is also a basis of g ⊗R C, we
conclude that (Gσ )C is isogenous to GC.

Finally, if σ(F) ̸⊂ R, then the C-span of {vσ1 , . . . , vσn } is (isomorphic
to) gσ , so g⊗R C = gσ . This implies that (Gσ )C is isogenous to GC. □

(5.6.6) Remark. The proof of Lemma 5.6.5 used our standing assumption
that G is semisimple only to show that G is isogenous to a group that is
defined over Q. See Exercise 3 for an example of a Lie group H, defined
over an algebraic number field F ⊂ R, and an embedding σ of F in R,
such that H ×Hσ is not isotypic.

Exercises for §5.6.

#1. Show, for m,n ≥ 2, that SL(m,R) × SL(n,R) has an irreducible
lattice if and only if m = n.

#2. Suppose G is not isogenous to SO(1, n) × K or SU(1, n) × K, for
any nontrivial, connected compact group K. Show that if G has an
irreducible lattice, then G is isotypic.
[Hint: Use Remark 5.2.3 to modify the proof of Theorem 5.6.2.]

#3. (optional) For α ∈ C∖ {0,−1}, let hα be the 7-dimensional, nilpotent
Lie algebra over C, generated by {x1, x2, x3}, such that
• [hα, x1, x1] = [hα, x2, x2] = [hα, x3, x3] = 0, and
• [x2, x3, x1] = α[x1, x2, x3].
a) Show that [x3, x1, x2] = −(1+α)[x1, x2, x3].
b) For h ∈ hα, show that [hα, h,h] = 0 if and only if there exists
x ∈ {x1, x2, x3} and t ∈ C, such that h ∈ tx + [hα,hα].

c) Show hα ≊ hβ iff β ∈
{
α, 1

α ,−(1+α),−
1

1+α ,−
α

1+α ,−
1+α
α

}
.
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d) Show that if the degree of Q(α) over Q is at least 7, then there
is a place σ of Q(α), such that hα is not isomorphic to (hα)σ .

#4. (optional) In the notation of Exercise 3, show that if the degree of
Q(α) over Q is at least 7, then hα is not isomorphic to any Lie
algebra that is defined over Q.

#5. (optional) In the notation of Exercise 3, show, for α = √
2 − (1/2),

that hα is isomorphic to a Lie algebra that is defined over Q.
[Hint: Let y1 = x1 +x2 and y2 = (x1 −x2)/

√
2. Show that the Q-subalgebra of hα

generated by {y1, y2, x3} is a Q-form of hα.]

#6. Carry out the proof of Lemma 5.6.5 for the case where F ̸⊂ R.
[Hint: Write g = g′⊗RC and let {u1, . . . , un}be a basis of g′ with rational structure
constants. Show that G is isogenous to either Gσ or (Gσ )C.]

Notes

The fact that G is unirational (used in Exercise 5.1#3) is proved in [4,
Thm. 18.2, p. 218].

The Margulis Arithmeticity Theorem (5.2.1) was proved by Margulis
[9, 11] under the assumption that rankRG ≥ 2. (Proofs also appear in
[12, Thm. A, p. 298] and [16].) Much later, the superrigidity theorems
of Corlette [6] and Gromov-Schoen [7] extended this to all groups except
SO(1, n) and SU(1, n).

Proposition 5.1.5 is a weak version of a theorem of Borel [2]. (A proof
also appears in [14, Chap. 14].)

The Commensurability Criterion (5.2.5(1)) is due to Margulis [10]. We
will see it again in Theorem 16.3.3, and it is proved in [1], [12], and [16].

The fact that all noncocompact lattices have unipotent elements (that
is, the generalization of Theorem 5.3.3 to the nonarithmetic case) is due
to D. Kazhdan and G. A. Margulis [8] (or see [3] or [14, Cor. 11.13, p. 180]).

The standard reference on restriction of scalars is [15, §1.3, pp. 4–9].
(A discussion can also be found in [13, §2.1.2, pp. 49–50].)

Proposition 5.5.12 (and Remark 5.5.13) is due to A. Borel and J. Tits
[5, 6.21(ii), p. 113].

See [12, Cor. IX.4.5, p. 315] for a proof of Theorem 5.6.2.
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Chapter 6

Examples of
Arithmetic Groups

§6.1. Arithmetic subgroups of SL(2,R) via orthogonal groups

SL(2,Z) is the obvious example of an arithmetic subgroup of SL(2,R).
Later in this section, we will show that (up to commensurability and con-
jugates) it is the only one that is not cocompact (see Proposition 6.1.5).
In contrast, there are infinitely many cocompact, arithmetic subgroups.
They can be constructed by several different methods. Perhaps the eas-
iest way is to note that SL(2,R) is isogenous to the special orthogonal
group SO(2,1).
(6.1.1) Notation. In this chapter (and others), we will see many different
special orthogonal groups over a field F. They can be specified in (at
least) three different, but equivalent ways:

1) (Gram matrix) For a symmetric, invertible matrixA ∈ Matℓ×ℓ(F), we
define

SO(A;F) = {g ∈ SL(n, F) | gTAg = A }.
Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: definition of arithmetic subgroup
(Section 5.1), Godement Criterion (Proposition 5.3.1), and restriction of
scalars (Section 5.5).
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This is the approach taken to the definition of SO(m,n) in Exam-
ple A2.3.

2) (Bilinear form) A symmetric, bilinear form B on Fℓ is nondegen-
erate if, for all nonzero v ∈ Fℓ, there exists w ∈ Fℓ, such that
B(v,w) ≠ 0. We define

SO(B;F) = {g ∈ SL(ℓ, F) | B(gv,gw) = B(v,w), ∀v,w ∈ Fℓ }.
3) (Quadratic form) A quadratic form on Fℓ is a homogeneous poly-

nomial Q(x1, . . . , xℓ) of degree 2. It is nondegenerate if the corre-
sponding bilinear form BQ is nondegenerate, where

BQ(v,w) = 1
4

(
Q(v +w)−Q(v −w)).

We define

SO(Q;F) = {g ∈ SL(ℓ, F) | Q(gv) = Q(v), ∀v ∈ Fℓ }.
The three approaches give rise to exactly the same groups (see Exer-
cise 1), and it is straightforward to translate between them, so we will
use whichever notation is most convenient in a particular context.

(6.1.2) Examples.

1) Fix positive integers a and b, and let

G = SO(ax2 + by2 − z2;R) ≊ SO(2,1).
If (0,0,0) is the only integer solution of the Diophantine equation
ax2+by2 = z2, then GZ is a cocompact, arithmetic subgroup of G
(see Proposition 5.3.4). See Exercise 2 for some examples of a and b
satisfying the hypotheses.

2) Restriction of scalars (see Section 5.5) allows us to use algebraic
number fields other than Q. Let
• F ≠ Q be a totally real algebraic number field (that is, an alge-

braic number field with no complex places),
• a,b ∈ F+, such that σ(a) and σ(b) are negative, for every

place σ ≠ Id,
• O be the ring of integers of F, and
• G = SO(ax2 + by2 − z2;R) ≊ SO(2,1).

Then the groupGO is a cocompact, arithmetic subgroup ofG (cf. Ex-
ample 5.5.4, or see Proposition 5.5.8 and Corollary 5.5.10). See
Exercise 3 for an example of F, a, and b satisfying the hypotheses.

3) In both (1) and (2), the group G is conjugate to SO(2,1), via the
diagonal matrix

g = diag
(√
a,
√
b,1

)
.

Therefore, g−1(GZ)g or g−1(GO)g is a cocompact, arithmetic sub-
group of SO(2,1).

(6.1.3) Remark. For a and b as in Example 6.1.2(2), (0,0,0) is the only
solution inO3 of the equation ax2+by2 = z2 (see Exercise 4). Therefore,
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Example 6.1.2(1) and Example 6.1.2(2) could fairly easily be combined
into a single construction, but we separated them to keep them a bit less
complicated.

(6.1.4) Proposition. The only cocompact, arithmetic subgroups of SO(2,1)
are the arithmetic subgroups constructed in Example 6.1.2 (up to commen-
surability and conjugates).

More precisely, any cocompact, arithmetic subgroup of SO(2,1) has a
conjugate that is commensurable to an arithmetic subgroup constructed
in Example 6.1.2.

Proof. Let Γ be a cocompact, arithmetic subgroup of SO(2,1). Ignor-
ing the minor technical issue that not all automorphisms are inner (cf.
Remark A6.4), it suffices to show that there is an automorphism α of
SO(2,1), such that α(Γ) is commensurable to one of the arithmetic sub-
groups constructed in Example 6.1.2.

Step 1. There are

• an algebraic number field F ⊂ R, with ring of integers O,

• a symmetric, bilinear form B(x,y) on F3, and

• an isomorphism ϕ : SO(B;R)→ SO(2,1),
such that ϕ

(
SO(B;O)) is commensurable to Γ . We give two proofs.

First, we note that this follows from the classification results that will
be proved in Chapter 18. Namely, a group of the form SO(m,n) does not
appear in Proposition 18.5.6, and it arises as the right-hand side of two
different parts of Proposition 18.5.7. However, m + n = 1 + 2 = 3 is
odd in our situation, so only one of the listings is relevant: GF must be
SO(A;F), for some algebraic number field F ⊂ R. This means that Γ is
commensurable to SO(A;O), where O is the ring of integers of F.

Second, let us give a direct proof that does not rely on the results of
Chapter 18. Because all (irreducible) arithmetic subgroups are obtained
by restriction of scalars, and G is simple, Corollary 5.5.16 tells us there
are

• an algebraic number field F ⊂ R, with ring of integers O,

• a simple Lie group H ⊆ SL(ℓ,R) that is defined over F, and

• an isogeny ϕ : H → SO(2,1),
such that ϕ(HO) is commensurable to Γ . All that remains is to show that
we may identify HF with SO(B;F), for some symmetric bilinear form B
on F3.

The Killing form

κ(u,v) = trace
(
(adhu)(adh v)

)
is a symmetric, bilinear form on the Lie algebra h. It is invariant under
AdH, so AdH is an isogeny from H to SO(κ;R). Pretending that AdH is
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an isomorphism, not just an isogeny, we may identify H with SO(κ;R).
Note that κ(hF ,hF) ⊆ F, so, by identifying hF with F3, we may think of κ
as a bilinear form on F3.

Step 2. We may assume that B(x,x) = ax2
1+bx2

2−x2
3 for some a,b ∈ F+.

By choosing an orthogonal basis that diagonalizes the form, we may as-
sume B(x,x) = ax2

1+bx2
2+cx2

3. Since SO(B;R) ≈ SO(2,1), we know that
±B(x,x) has signature (2,1). So we may assume a,b,−c ∈ F+. Dividing
by c (which does not change the orthogonal group) yields the desired
form.

Step 3. F is totally real, and both σ(a)and σ(b)are negative, for all places
σ ≠ Id. Since ∆(GO) is an irreducible lattice in

∏
σ∈S∞ Gσ (see Proposi-

tion 5.5.8), but the projection to the first factor, namely G, is Γ , which
is discrete, we know that Gσ is compact, for all σ ≠ Id. This implies
Gσ ≊ SO(3), so Fσ = R, and the three real numbers σ(a), σ(b), and
σ(−1) all have the same sign.

Step 4. B is anisotropic over F. Since GO is cocompact, it has no nontrivial
unipotent elements (see Corollary 4.4.4). Therefore B(x,x) ≠ 0, for every
nonzero x ∈ F3 (see Exercise 5). □

(6.1.5) Proposition. SL(2,Z) is the only noncocompact, arithmetic sub-
group Γ of SL(2,R) (up to commensurability and conjugates).

Proof. Let us consider the isogenous group SO(2,1), instead of SL(2,R).

Step 1. There are

• a symmetric, bilinear form B(x,y) on Q3, and

• an isogeny ϕ : SO(B;R)→ SO(2,1),

such that ϕ
(
SO(B;Z)

)
is commensurable to Γ . Since Γ is not cocompact,

there is an isogeny ϕ : G → SO(2,1), such that G is defined over Q and
ϕ(GZ) is commensurable to Γ (see Corollary 5.3.2). The argument in
Steps 1 and 3 of the proof of Proposition 6.1.4 shows that we may assume
G = SO(B;R).

Step 2. We may assume B(x,x) = x2
1+x2

2−x2
3. Because Γ is not cocompact,

we know that B is isotropic over F (see Proposition 5.3.4). So there is
some nonzero u ∈ F3, such that B(u,u) = 0. Choose v ∈ F3, such
that B(u,v) ≠ 0. By adding a scalar multiple of u to v, we may assume
B(v,v) = 0. Now choose a nonzero w ∈ F3 that is orthogonal to both u
and v. After multiplying B and u by appropriate scalars, we may assume
B(w,w) = 2B(u,v) = 1. Then B has the desired form with respect to
the basis w,u+ v,u− v. □
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(6.1.6) Remark. As a source of counterexamples, it is useful to remember
that SL(2,Z) contains a free subgroup of finite index (see Exercise 4.9#5
or 4.9#6). This implies that (finitely generated) nonabelian free groups
are lattices in SL(2,R).

Exercises for §6.1.

#1. Show:
a) If Q is nondegenerate quadratic form on Fℓ, and BQ is defined

as in Notation 6.1.1, then BQ is a bilinear form, and we have
SO(BQ;F) = B(Q;F).

b) If B is a nondegenerate bilinear form on Fℓ, and we define
Q(x) = B(x,x), then Q(x) is a quadratic form, and B = BQ.

c) If A is a symmetric, invertible matrix in Matℓ×ℓ(F), and we de-
fine B(v,w) = vTAw, then B is a nondegenerate bilinear form,
and SO(B;F) = SO(A;F).

d) If B is a nondegenerate bilinear form on Fℓ, and {ε1, . . . , εℓ}
is the standard basis of Fℓ, then the matrix A = (

B(εi, εj)
)

is
invertible and symmetric, and we have SO(A;F) = SO(B;F).

#2. Suppose p is a prime, such that x2 +y2 ≡ 0 (mod p) has only the
trivial solution x ≡ y ≡ 0 (mod p). (For example, p could be 3.)
Show that (0,0,0) is the only integer solution of the Diophantine
equation px2 + py2 = z2.

#3. Let F = Q[√2,
√

3
]
, and a = b = √2+√3− 3. Show

a) F is a totally real extension of Q,
b) a is positive, and
c) σ(a) is negative, for every place σ ≠ Id.

#4. If a and b are elements of an algebraic number field F, and there
is a real place σ of F, such that σ(a) and σ(b) are negative, show
(0,0,0) is the only solution in F3 of the equation ax2 + by2 = z2.

#5. In Step 4 of the proof of Proposition 6.1.4, verify the assertion that
B(x,x) ≠ 0, for every nonzero x ∈ F3.
[Hint: If B(x,x) = 0 for some nonzero x, then, after a change of basis, B(x,x) is
a scalar multiple of the form x1x3 + x2

2, which is invariant under the unipotent
transformation x1 , x1 − 2x2 − x3, x2 , x2 + x3, x3 , x3.]

§6.2. Arithmetic subgroups of SL(2,R) via quaternion algebras

In the preceding section, we constructed the cocompact, arithmetic sub-
groups of SL(2,R) from orthogonal groups. As an alternative approach,
we will now explain what quaternion algebras are, and how they can be
used to construct those same arithmetic subgroups. In later sections
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(and later chapters), the use of quaternion algebras will sometimes be
necessary, not an alternative approach.

(6.2.1) Definitions.

1) For any field F, and any nonzero a,b ∈ F, the corresponding
quaternion algebra over F is the ring

Ha,bF = {p + qi+ rj + sk | p,q, r , s ∈ F },
where
• addition is defined in the obvious way, and
• multiplication is determined by the relations

i2 = a, j2 = b, ij = k = −ji,
together with the requirement that every element of F is in the
center of D. (Note that k2 = k · k = (−ji)(ij) = −aj2 = −ab.)

2) The reduced norm of x = p + qi+ rj + sk ∈ Ha,bF is

Nred(x) = xx = p2 − aq2 − br 2 + abs2 ∈ F,
where x = p − qi − rj − sk is the conjugate of x. (Note that
xy = y x.)

(6.2.2) Example.

1) We have H−1,−1
R = H.

2) We haveHt
2a,t2b
F ≊ Ha,bF for any nonzero a,b, t ∈ F (see Exercise 1).

3) We have Ha
2,b
F ≊ Mat2×2(F), for any nonzero a,b ∈ F (see Exer-

cise 2).

4) We have Nred(gh) = Nred(g) ·Nred(h) for g,h ∈ Ha,bF .

(6.2.3) Lemma. We have Ha,bC ≊ Mat2×2(C), for all a,b ∈ C, and

Ha,−1
R ≊

Mat2×2(R) if a > 0,
H if a < 0.

Proof. This follows from the observations in Example 6.2.2. □

(6.2.4) Proposition. Fix positive integers a and b, and let

G = SL
(
1,Ha,bR

) = {g ∈ Ha,bR | Nred(g) = 1 }.
Then:

1) G ≊ SL(2,R),
2) GZ = SL

(
1,Ha,bZ

)
is an arithmetic subgroup of G, and

3) the following are equivalent:
(a) GZ is cocompact in G.
(b) (0,0,0,0) is the only integer solution (p, q, r , s) of the Diophan-

tine equation

w2 − ax2 − by2 + abz2 = 0.
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(c) Every nonzero element of Ha,bQ has a multiplicative inverse (so

Ha,bQ is a “division algebra” ).

Proof. (1) Define an R-linear bijectionϕ : Ha,bR → Mat2×2(R) byϕ(1) = Id,

ϕ(i) =
[√
a 0

0 −√a

]
, ϕ(j) =

[
0 1
b 0

]
, ϕ(k) =

[
0

√
a

−b√a 0

]
.

It is straightforward to check that ϕ preserves multiplication, so ϕ is a
ring isomorphism.

For g = p + qi+ rj + sk ∈ Ha,bR , we have

det
(
ϕ(g)

) = (p + q√a)(p − q√a)− (r + s√a)(br − bs√a)
= p2 − aq2 − br 2 + abs2

= Nred(g).
Therefore, ϕ(G) = SL(2,R).

(2) For g ∈ G, define Tg : Ha,bR → Ha,bR by Tg(v) = gv. Then Tg is

R-linear. For γ ∈ Ha,bR , we have Tγ
(
Ha,bZ

) ⊂ Ha,bZ if and only if γ ∈ Ha,bZ .

So GZ = G ∩Ha,bZ is an arithmetic subgroup of G.
(3c ⇒ 3a) We prove the contrapositive. Suppose GZ is not cocom-

pact. Then the Godement Criterion (5.3.1) tells us that it has a nontrivial
unipotent element γ. So 1 is an eigenvalue of Tγ; that is, there is some

nonzero v ∈ Ha,bZ , such that Tγ(v) = v. By definition of Tγ, this means
γv = v. Hence (γ − 1)v = 0. Since γ ≠ 1 and v ≠ 0, this implies v is a
zero divisor, so it certainly does not have a multiplicative inverse.

(3a ⇒ 3c) We prove the contrapositive. Suppose Ha,bQ is not a di-

vision algebra. Then Ha,bQ ≊ Mat2×2(Q) (see Exercise 3). This implies

SL
(
1,Ha,bZ

) ≈ SL(2,Z) is not cocompact. (It has nontrivial unipotent ele-
ments.)

(3b a 3c) See Exercise 4. □

The following can be proved similarly (see Exercise 5).

(6.2.5) Proposition. Let

• F be a totally real algebraic number field (with F ≠ Q),

• O be the ring of integers of F,

• a,b ∈ O, such that a and b are positive, but σ(a) and σ(b) are
negative, for every place σ ≠ Id, and

• G = SL
(
1,Ha,bR

)
.

Then:

1) G ≊ SL(2,R), and

2) GO = SL
(
1,Ha,bO

)
is a cocompact, arithmetic subgroup of G.
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(6.2.6) Proposition. Every cocompact, arithmetic subgroup of SL(2,R)
appears in either Proposition 6.2.4 or 6.2.5 (up to commensurability and
conjugates).

Proof. This can be proved directly, but we will instead derive it as a corol-
lary of Proposition 6.1.4. For each arithmetic subgroup Γ of SO(2,1),
constructed in Example 6.1.2, we find an isogeny ϕ : SL(2,R)→ SO(2,1),
such thatϕ(Γ ′) is commensurable to an arithmetic subgroup constructed
in Proposition 6.2.4 or 6.2.5.

(1) First, let us show that every arithmetic subgroup of type 6.1.2(1)
appears in (6.2.4). Given positive integers a and b, such that (0,0,0) is
the only rational solution of the equation ax2 + by2 = z2, let

G = SL
(
1,Ha,bR

) ≊ SL(2,R).
One can show that (0,0,0,0) is the only rational solution of the equa-
tion w2 − ax2 − by2 + abz2 = 0 (see Exercise 6), so GZ is a cocompact,
arithmetic subgroup of G (see Proposition 6.2.4).

As a subspace of Ha,bR , the Lie algebra g of G is

g = {v ∈ Ha,bR | Rev = 0 }
(see Exercise 7). For g ∈ G and v ∈ g, we have (AdG g)(v) = gvg−1,
so Nred |g is a quadratic form on g that is invariant under AdGF. For
v = xi+yj + zk ∈ g, we have

Nred(v) = −ax2 − by2 + abz2.
After the change of variables x , by and y , ax, this becomes
−ab(ax2+by2−z2), which is a scalar multiple of the quadratic form in
6.1.2(1). Therefore, after identifying g with R3 by an appropriate choice
of basis, the arithmetic subgroup constructed in Example 6.1.2(1) (for the
given values of a and b) is commensurable to AdGGZ.

(2) Similarly, every arithmetic subgroup of type 6.1.2(2) appears in
(6.2.5) (see Exercise 8). □

Exercises for §6.2.

#1. Show Hu
2a,v2γ
F ≊ Ha,bF , for any nonzero u,v ∈ F.

[Hint: An isomorphism is given by 1 , 1, i, ui, j , vj, k, uvk.]

#2. Show Ha
2,b
F ≊ Mat2×2(F), for any field F, and any a,b ∈ F.

[Hint: See the proof of Proposition 6.2.4(1).]

#3. Show that if the ring Ha,bQ is not a division algebra, then it is iso-
morphic to Mat2×2(Q).
[Hint: This follows from Wedderburn’s Theorem (6.8.5), but can also be proved
directly: if x is not invertible, then xy = 0 for some y, so the left ideal generated

by x is a 2-dimensional subspace on which Ha,bQ acts faithfully.]
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#4. Show that every nonzero element of Ha,bF has a multiplicative in-
verse if and only if the reduced norm of every nonzero element is
nonzero.
[Hint: If Nred(x) ≠ 0, then multiply the conjugate of x by an element of F to obtain
a multiplicative inverse of x. If Nred(x) = 0, then x is a zero divisor.]

#5. For G, F, O, a, and b as in Proposition 6.2.5, show:
a) G ≊ SL(2,R),
b) GO is an arithmetic subgroup of G,
c) if g ∈ Ha,bF with Nred(g) = 0, then g = 0, and
d) GO is cocompact in G.

#6. Let a and b be nonzero elements of a field F. Show that if there is a
nonzero solution of the equationw2−ax2−by2+abz2 = 0, then
there is a nonzero solution of the equation w2 − ax2 − by2 = 0.

[Hint: By assumption, there is a nonzero element g of Ha,bF , such that Nred(g) = 0.
There is some nonzero α ∈ F + Fi, such that the k-component of αg is zero.]

#7. For a,b ∈ R, the set

G = {g ∈ Ha,bR | Nred(g) = 1 }
is a submanifold of Ha,bR . Show that the tangent space T1G is

{v ∈ Ha,bR | Rev = 0 }.
[Hint: T1G is the kernel of the derivative d(Nred)1.]

#8. Carry out Part (2) of the proof of Proposition 6.2.6.

§6.3. Arithmetic subgroups of SL(2,R) via unitary groups

Unitary groups provide yet another construction of the cocompact, arith-
metic subgroups of SL(2,R). In later sections (and later chapters), they
will join quaternion algebras as another essential tool, not an alternative
approach.

In fact, unitary groups can be applied in two different ways. The sim-
pler of the two approaches is based on the fact that SL(2,R) is isomorphic
to SU(1,1) (see Exercise 2). (This is very similar to the construction in
Section 6.1 that is based on the fact that SL(2,R) is isogenous to SO(2,1).)
However, the required isogeny has no higher-dimensional analogue, so
this method will not provide any lattices in SL(n,R) when n > 2.

The following method is much more important, because it will be
used in later sections to construct arithmetic subgroups of SL(n,R) for
all n, not just n = 2.

(6.3.1) Example. Let

• a,b ∈ Q+,

• L = Q[√a] ⊂ R,
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• O be the ring of integers of L (so O É Z[√a]),
• τ denote the nontrivial element of Gal(L/Q),

• A = diag(b,−1) =
[
b 0
0 −1

]
, and

• GO = SU(A, τ ;O) = {g ∈ SL(2,O) | τ(gT )Ag = A } ⊂ SL(2,R).
If x = (0,0) is the only solution in L2 of the equation τ(xT )Ax = 0, then
GO is a cocompact, arithmetic subgroup of SL(2,R).

Proof. It is not at all difficult to verify that GO is commensurable to
an arithmetic group constructed from a quaternion algebra in Proposi-
tion 6.2.4 (see Exercise 1), but a direct proof is more instructive.

To see that GO is an arithmetic subgroup, we apply restriction of
scalars. The Galois automorphism τ : L → L is Q-linear. Therefore, if we
think of L as a (2-dimensional) vector space overQ, then τ is a polynomial
with Q-coefficients (with respect to any basis of L over Q). Since matrix
multiplication and transpose are also defined by polynomial functions,
this implies that if we write g = X + √aY , where X,Y ∈ Mat2×2(Q),
then the equation τ(gT )Ag = A is a system of polynomial equations
withQ-coefficients, in terms of the matrix entries of X and Y . Therefore,
it determines a group that is defined over Q. More precisely, letting
G = SL(2,R), define:

• ∆ : L → L2 by ∆(s) = (
s,Aτ(s)

)
, so L = ∆(O) is a Z-lattice in R2,

and

• ϕ : G → G ×G by ϕ(g) = (g, (gT )−1
)
.

The import of the above argument is that ϕ(G) is defined over Q, with
respect to the Q-form ∆(L) of R2. Since it is not difficult to verify that
GO = ρ−1

(
ρ(G)∆(O)

)
, we see that GO is an arithmetic subgroup of G.

If GO is not cocompact, then it has a nontrivial unipotent element u,
so there exist nonzero x,y ∈ L2, such that ux = x and uy = x + y.
Define B : L2 × L2 → L by B(x1, x2) = τ(xT1 )Ax2. Since u ∈ GO, the
definition of GO implies

B(x,y) = B(ux,uy) = B(x,x +y) = B(x,x)+ B(x,y).
Therefore B(x,x) = 0. By assumption, this contradicts the fact that
x ≠ 0. □

(6.3.2) Example. The preceding example can be modified, much as in
Proposition 6.2.5, to obtain all of the other cocompact lattices in SL(2,R).
Namely, replace Q with a totally real number field F ≠ Q, and let:

• a,b ∈ F+, such that σ(a) < 0 and σ(b) < 0, for all nonidentity
places of F,

• L = F[√a] ⊂ R, and

• O, τ, A, and GO be defined as in Example 6.3.1.
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Then GO is a cocompact, arithmetic subgroup of SL(2,R).

Proof. Let OF be the ring of integers of F. From the second paragraph of
the proof of Example 6.3.1 (with F in the place ofQ) we see that GO is the
OF-points of a certain F-form GF of SL(2,R). Then restriction of scalars
(5.5.8) implies that ∆(GO) is an arithmetic subgroup of

∏
σ∈S∞ Gσ .

For any nonidentity place σ of F, we have σ(a) < 0, so

Lσ = Fσ
[√
σ(a)

]
= C.

Then, since σ(b) and −1 are both negative, we have

Gσ = SU
(
σ(A), τC;C

) = SU
(
diag(σ(b),−1), τC;C

) ≊ SU(2) is compact.
Therefore, all factors of

∏
σ∈S∞ Gσ other than G are compact, so we can

mod them out, to conclude that GO is an arithmetic subgroup of the
group G = SL(2,R) (cf. Definition 5.1.19). Furthermore, the existence
of compact factors implies that the arithmetic subgroup is cocompact
(see Corollary 5.5.10). □

Exercises for §6.3.

#1. Let a,b ∈ Z+, let ϕ : Ha,bR → Mat2×2(R) be as in the proof of Propo-
sition 6.2.4, let O = Z[√a], and let GO be as in Example 6.3.1. Show
ϕ
(
SL
(
1,Ha,bZ

)) = GO.

#2. Let
• a,b ∈ Q+,
• L = Q[√−a ],
• O be the ring of integers of L (so O É Z[√−a]),
• τ denote complex conjugation (the only nontrivial element of

Gal(C/R), and also of Gal(L/Q)),
• A = diag(b,−1) =

[
b 0
0 −1

]
, and

• G = SU(A, τ ;C) = {g ∈ SL(2,C) | τ(gT )Ag = A } ≊ SU(1,1).
Show that if x = (0,0) is the only solution in L2 of the equation
τ(xT )Ax = 0, then GO is a cocompact, arithmetic subgroup of G.

§6.4. Arithmetic subgroups of SO(1, n)

(6.4.1) Proposition. Let

• a1, . . . , an be positive integers, and

• G = SO(x2
0 − a1x2

1 − · · · − anx2
n;R) ≊ SO(1, n).

If n ≥ 4, then GZ is an arithmetic subgroup of G that is not cocompact.

Proof. Since a1, . . . , an > 0 it is obvious that G ≊ SO(1, n). Also, since
a1, . . . , an ∈ Q, it is clear that G is defined over Q, so GZ is an arithmetic
subgroup of G.
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Since we are assuming n ≥ 4, a theorem of Number Theory (called
Meyer’s Theorem) tells us that the equation a1x2

1 + · · · +anx2
n = x2

0 has
a nontrivial integral solution. (This is related to, but more difficult than,
the fact that every integer is a sum of four squares.) Therefore, GZ is
noncocompact. □

In most cases, the above construction is exhaustive:

(6.4.2) Proposition (see Corollary 18.6.3). If n ∉ {3,7}, then the arith-
metic subgroups constructed in Proposition 6.4.1 are the only noncocom-
pact, arithmetic subgroups of SO(1, n) (up to commensurability and con-
jugates).

(6.4.3) Remarks.

1) The case n = 7 is genuinely exceptional: there exist some exotic
arithmetic subgroups of SO(1,7) (see Remark 18.5.10).

2) The groups SO(1,2) and SO(1,3) are isogenous to SL(2,R) and
SL(2,C), respectively. Therefore, Propositions 6.1.5 and 6.2.6 de-
scribe all of the arithmetic subgroups of SO(1,2). Similar construc-
tions yield the arithmetic subgroups of SL(2,C) ≈ SO(1,3).

Cocompact arithmetic subgroups of SO(1, n) can be constructed by
using an algebraic extension of Q, much as in Example 6.1.2:

(6.4.4) Proposition. Let

• F be an algebraic number field that is totally real,

• O be the ring of integers of F,

• a1, . . . , an ∈ O, such that
◦ each aj is positive, and
◦ each σ(aj) is negative, for every place σ ≠ Id, and

• G = SO(x2
0 − a1x2

1 − · · · − anx2
n;R) ≊ SO(1, n).

Then GO is a cocompact, arithmetic subgroup of G.

This construction is exhaustive when n is even:

(6.4.5) Proposition (see Corollary 18.6.1). If n is even, then the arithmetic
subgroups constructed in Proposition 6.4.4 are the only cocompact, arith-
metic subgroups of SO(1, n) (up to commensurability and conjugates).

(6.4.6) Remark. Theoretically, it is easy to tell whether two choices of
a1, . . . , an give essentially the same arithmetic subgroup (see Exercise 3).

When n is odd, we can construct additional arithmetic subgroups of
SO(1, n) by using quaternion algebras. This requires a definition:
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(6.4.7) Definition. Suppose Ha,bF is a quaternion algebra over a field F.

1) Define τr : Ha,bF → Ha,bF by

τr (x0 + x1i+ x2j + x3k) = x0 + x1i− x2j + x3k.

This is the reversion anti-involution of Ha,bF (cf. Exercise A2#2).

2) For A ∈ GL
(
m,Ha,bF

)
, with τr (AT ) = A, let

SU
(
A,τr ;H

a,b
F
) = {g ∈ SL

(
m,Ha,bF

) | τr (gT )Ag = A }.
Now, here is the main idea of the construction:

(6.4.8) Proposition. Let

• a,b ∈ Q∖ {0}, with a > 0,

• a1, . . . , am be invertible elements of Ha,b, such that τr (aℓ) = aℓ, for
each ℓ,

• A = diag(a1, . . . , am) ∈ GL
(
m,Ha,bQ

)
,

• G = SU
(
A,τr ;H

a,b
R

)
, and

• O be a Z-lattice in Ha,bF , such that O is also a subring.

Then:

1) G ≊ SO(p, q), for some p and q with p + q = 2m, and

2) SU(A, τr ;O) is an arithmetic subgroup of G.

Proof. To make things a bit easier, let us assume b < 0 (see Exercise 8).
Exercise 5 provides an isomorphism ϕ : Ha,bR → Mat2×2(R), such that:

• ϕ(τr (x)) = ϕ(x)T , for all x ∈ Ha,bR , and

• ϕ(x) is symmetric, for all x ∈ Ha,bR , such that τr (x) = x.

Then ϕ(A) is symmetric, and G is isomorphic to SO2m
(
ϕ(A)

)
(see Exer-

cise 6). This establishes (1).
As a vector space over R,

(
Ha,bR

)m is isomorphic to R4m. With this
identification, and considering

(
Ha,bR

)m as a vector space over Ha,bR via
scalar multiplication on the right, we have

GL
(
m,Ha,bR

) = {g ∈ GL(4m,R)

∣∣∣∣∣ g(−⇀x t) = (g−⇀x )t for all
−⇀x ∈ (Ha,bR )m and t ∈ Ha,bR

}
.

Since Ha,bQ is dense in Ha,bR , we may restrict t to belong to Ha,bQ . This im-

plies G is defined overQ, with respect to theQ-form
(
Ha,bQ

)m of
(
Ha,bR

)m.
For this Q-form, we have GZ = SU(A, τr ;O). This establishes (2). □

(6.4.9) Remark. Sincep+q = 2mmust be even, the preceding proposition
cannot yield any arithmetic subgroups of SO(1, n) unless 1 + n is even,
which means that n is odd.
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Proposition 6.4.8 yields an arithmetic subgroup of some SO(p, q), but
not necessarily a subgroup of SO(1, n). Obtaining a particular value of p
requires us to prescribe the number of positive eigenvalues of the sym-
metric matrix ϕ(A) that appears in the proof. Since ϕ(A) is made from
ϕ(a1), . . . ,ϕ(am), this is achieved by calculating the number εa,b(aℓ)
of positive eigenvalues of each ϕ(aℓ); the formula is in Notation 6.4.10
below.

However, as in Proposition 6.4.1, Meyer’s Theorem implies that arith-
metic subgroups obtained in this way are never cocompact (unless G
is compact or m ≤ 2). To construct cocompact lattices, restriction of
scalars is applied, as usual: choose an extension field F of Q, and ar-
range for Gσ to be compact at all but one place. The outcome of these
considerations is stated in Proposition 6.4.11 below.

(6.4.10) Notation (cf. Exercises 9 and 10). Suppose

• a and b are nonzero elements of R, such that either a or b is posi-
tive, and

• x is an invertible element of Ha,bR , such that τr (x) = x.

Write x = p + qi+ sk, for some p,q, s ∈ R. For convenience, let

Na,b(x) = xx = p2 − aq2 + abs2,
and note that Na,b(x) ≠ 0 (since x is invertible). Define

εa,b(x) =



1 if bNa,b(x) > 0,
2 if bNa,b(x) < 0, and

either

b < 0 and p > 0, or

b > 0 and (a+ 1)q + (a− 1)s
√
b > 0,

0 otherwise.

(6.4.11) Proposition. Let

• F be a totally real algebraic number field (such that F ≠ Q),

• a and b be nonzero elements of F, such that, for each place σ of F,
either σ(a) or σ(b) is positive,

• a1, . . . , am ∈ Ha,bF , such that
◦ τr (aℓ) = aℓ for each ℓ,
◦ σ(aℓ) is invertible, for each ℓ, and each place σ ,
◦ ∑mℓ=1 εa,b(aℓ) = 1, and
◦ ∑mℓ=1 εσ(a),σ(b)

(
σ(aℓ)

) ∈ {0,2m} for each place σ ≠ Id,

• O be a Z-lattice in Ha,bF , such that O is also a subring, and

• G = SU
(
diag(a1, . . . , am), τr ;H

a,b
R

)◦.
Then:

1) G ≊ SO(1,2m− 1)◦, and

2) GO is a cocompact, arithmetic subgroup of G.
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(6.4.12) Proposition. If n ∉ {3,7}, then the arithmetic subgroups con-
structed in Propositions 6.4.4 and 6.4.11 are the only cocompact, arith-
metic subgroups of SO(n,1) (up to commensurability and conjugates).

Remark 18.5.10 briefly explains the need to assume n ≠ 7.

Exercises for §6.4.

#1. Use restriction of scalars (see Section 5.5) to construct cocompact
arithmetic subgroups SO(m,n) for all m and n.

#2. SupposeG is an irreducible subgroup of GL(ℓ,C). (This means there
is no nonzero, proper, G-invariant subspace of Cℓ.) Show that if B1

and B2 are (nonzero) G-invariant quadratic forms on Cℓ, then there
exists λ ∈ C, such that B1 = λB2.
[Hint: Let A1 and A2 be the symmetric matrices that represent B1 and B2, and write
A2 = A1L. For any g ∈ G, we have A1L = gTA1Lg = A1(g−1Lg).]

#3. Let
• F, O, a1, . . . , an, and G be as in Proposition 6.4.4,
• Γ = h−1GOh, where n = diag(1,

√
a1, . . . ,

√
an), and

• F ′, O′, a′1, . . . , a′n, G′, Γ ′, and h′ be defined similarly.
Show g−1Γg is commensurable to Γ ′, for some g ∈ O(1, n), if and
only if there exists λ ∈ F× and g′ ∈ GL(n+ 1, F), such that

(g′)T diag(−1, a1, . . . , an)g′ = λdiag(−1, a′1, . . . , a
′
n).

[Hint: (⇒) For g′ = h′gh−1, we have (g′)−1 SO(B;O)g′ ⊆ SO(B′;R), so the Borel
Density Theorem implies (g′)−1 SO(B;R)g′ ⊆ SO(B′;R). Apply Exercise 2 with
G = (g′)−1 SO(B;R)g′.]

#4. Let F, O, a1, . . . , an, a′1, . . . , a′n, Γ , and Γ ′ be as in Exercise 3.
Show that if n is odd, and there exists g ∈ O(1, n), such that

gΓg−1 is commensurable to Γ ′ then
a1 · · ·an
a′1 · · ·a′n

∈ (F×)2.

[Hint: The discriminant of a quadratic form B(x) on Fn+1 is defined to be the
determinant of the Gram matrix of B, with respect to any basis B of Fn+1. This is
not uniquely determined by B, but show that it is well-defined up to multiplication
by a nonzero square in F×.]

#5. Suppose a and b are real numbers, such that a > 0 and b < 0. Show
that there is an isomorphism ϕ : Ha,bR → Mat2×2(R), such that:

a) ϕ
(
τr (x)

) = ϕ(x)T , for all x ∈ Ha,bR , and
b) ϕ(x) is symmetric, for all x ∈ Ha,bR , such that τr (x) = x.

[Hint: Let ϕ(i) =
[√
a 0

0 −√a
]

and ϕ(j) =
[

0
√
|b|

−
√
|b| 0

]
.]
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#6. Assume the notation of the proof of Proposition 6.4.8. Show G is
isomorphic to SO2m

(
ϕ(A)

)
.

[Hint: Apply the isomorphism ϕ to both sides of the equation τr (gT )Ag = A.]

#7. Suppose a and b are nonzero real numbers, such that b > 0, and let
w =

[
0 1
1 0

]
. Show there is an isomorphism ϕ : Ha,bR → Mat2×2(R),

such that:
a) ϕ

(
τr (x)

) = wϕ(x)Tw, for all x ∈ Ha,bR , and
b) wϕ(x) is symmetric, for all x ∈ Ha,bR , such that τr (x) = x.

[Hint: Let ϕ(i) =
[

0 1
a 0

]
and ϕ(j) =

[√
b 0

0 −
√
b

]
.]

#8. Prove Proposition 6.4.8 under the additional assumption that b > 0.
[Hint: Use Exercise 7 and show G ≊ SO2m

(
diag(wϕ(a1), . . . ,wϕ(am)

)
.]

#9. In the situation of Exercise 5, show that ϕ can be chosen so that if
x = p+qi+rj+sk is an invertible element ofHa,bR , and τr (x) = x
(so r = 0), then the number of positive eigenvalues of ϕ(x) is

1 if Na,b(x) < 0,

2 if Na,b(x) > 0 and p > 0,

0 otherwise.

[Hint: Since both eigenvalues ofϕ(x)are real (and nonzero), the number of positive
eigenvalues is determined by the determinant and trace.]

#10. In the situation of Exercise 7, show that ϕ can be chosen so that if
x = p+qi+rj+sk is an invertible element ofHa,bR , and τr (x) = x
(so r = 0), then the number of positive eigenvalues of wϕ(x) is

1 if Na,b(x) > 0,
2 if Na,b(x) < 0 and (a+ 1)q + (a− 1)s

√
b > 0,

0 otherwise.

[Hint: See the hint to Exercise 9.]

§6.5. Some nonarithmetic lattices in SO(1, n)

Section 6.4 describes algebraic methods to construct all of the arithmetic
lattices in SO(1, n) (when n ≠ 7). We now present a geometric method
that is sometimes able to produce a new lattice by combining two known
lattices. The result is often nonarithmetic. We assume some familiarity
with hyperbolic geometry.
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§6.5(i). Hyperbolic manifolds. For geometric purposes, it is more
convenient to consider the locally symmetric space Γ\Hn, instead of the
lattice Γ .

(6.5.1) Definition. A connected, Riemannian n-manifoldM is hyperbolic
if

1) M is locally isometric to Hn (that is, each point of M has a neigh-
borhood that is isometric to an open set in Hn),

2) M is complete, and

3) M is orientable.

(6.5.2) Other terminology. Many authors do not requireM to be complete
or orientable. Our requirement (1) is equivalent to the assertion that
M has constant sectional curvature−1; some authors relax this to require
the sectional curvature to be a negative constant, but do not require it to
be normalized to −1.

(6.5.3) Notation. Let PO(1, n) = O(1, n)/{± Id}.
Note that:

• PO(1, n) is isogenous to SO(1, n),
• PO(1, n) ≊ Isom(Hn), and

• PO(1, n) has two connected components (one component consists
of orientation-preserving isometries of Hn, and the other consists
of orientation-reversing isometries).

The following observation is easy to prove (see Exercise 1).

(6.5.4) Proposition. A connected Riemannian manifoldM of finite volume
is hyperbolic if and only if there is a torsion-free lattice Γ in PO(1, n)◦, such
that M is isometric to Γ\Hn.

§6.5(ii). Hybrid manifolds and totally geodesic hypersurfaces. We
wish to combine two (arithmetic) hyperbolic manifolds M1 and M2 into a
single hyperbolic manifold. The idea is that we will choose closed hyper-
surfaces C1 and C2 of M1 and M2, respectively, such that C1 is isometric
to C2. Let M′

j be the manifold with boundary that results from cutting
Mj open, by slicing along Cj (see Figure 6.5A and Exercise 3).

The boundary of M′
1 (namely, two copies of C1) is isometric to the

boundary of M′
2 (namely, two copies of C2) (see Exercise 3). So we may

glue M′
1 and M′

2 together, by identifying ∂M′
1 with ∂M′

2 (see Figure 6.5B),
as described in the following well-known proposition.

(6.5.5) Proposition. Suppose

• M′
1 and M′

2 are connected n-manifolds with boundary, and

• f ′ : ∂M′
1 → ∂M′

2 is any homeomorphism.
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Figure 6.5A. Cutting open a manifold by slicing along a
closed hypersurface (dashed) results in a manifold with
boundary.

M′
1 M′

2 M′
1 ∪f ′ M′

2

Figure 6.5B. Gluing M′
1 to M′

2 along their boundaries re-
sults in a manifold without boundary.

Define a topological spaceM′
1∪f ′M′

2, by gluingM′
1 toM′

2 along their bound-
aries:

• let M′
1 ⊔M′

2 be the disjoint union of M′
1 and M′

2,

• define an equivalence relation onM′
1⊔M′

2 by specifying that we have
m ∼ f ′(m), for every m ∈ ∂M′

1, and

• let M′
1 ∪f ′ M′

2 = (M′
1 ⊔ M′

2)/∼ be the quotient of M′
1 ⊔ M′

2 by this
equivalence relation.

Then M′
1 ∪f ′ M′

2 is an n-manifold (without boundary).

(6.5.6) Corollary. Suppose

• M1 and M2 are connected, orientable n-manifolds,

• Cj is a closed (n− 1)-submanifold of Mj, and

• f : C1 → C2 is any homeomorphism.

Define M1#fM2 = M′
1 ∪f ′ M′

2, where

• M′
j is the manifold with boundary that is obtained by slicingMj open

along Cj, and

• f ′ : ∂M′
1 → ∂M′

2 is defined by f ′(c, k) = (
f(c), k

)
, under a natural

identification of ∂M′
j with Cj × {1,2}.

Then M1#fM2 is a (connected) n-manifold (without boundary).
Furthermore,

1) M1#fM2 is compact if and only if both M1 and M2 are compact, and

2) M1#fM2 is connected if and only if either M1 ∖ C1 or M2 ∖ C2 is
connected.
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(6.5.7) Other terminology. Gromov and Piatetski-Shapiro [5] call the
manifold M1#fM2 a hybrid of M1 and M2, and they call this construc-
tion interbreeding.

Unfortunately, gluing two Riemannian manifolds together does not
always result in a Riemannian manifold (in any natural way), even if the
gluing map f is an isometry from ∂M′

1 to ∂M′
2.

(6.5.8) Example. Let M′
1 = M′

2 be the closed unit disk in R2, and let
f : ∂M′

1 → ∂M′
2 be the identity map. Then M′

1 ∪f M′
2 is homeomorphic

to the 2-sphere S2. The Riemannian metrics onM′
1 andM′

2 are flat, so the
resulting Riemannian metric on S2 would also be flat. However, there is
no flat Riemannian metric on S2. (This follows, for example, from the
Gauss-Bonnet Theorem.)

We can eliminate this problem by putting a restriction on the hyper-
surface Cj.

(6.5.9) Definition. Let M be a hyperbolic n-manifold. A totally geodesic
hypersurface in M is a (closed, nonempty) connected submanifold C
of M, such that, for each point c of C, there are

• a neighborhood U of c in M,

• a point x in Hn−1 = {v ∈ Hn | v1 = 0 },
• a neighborhood V of x in Hn, and

• a Riemannian isometry g : U → V, such that g(U ∩ C) = V ∩Hn−1.

(6.5.10) Remark. If C is a totally geodesic hypersurface in a hyperbolic
n-manifold of finite volume, then there are

• a lattice Γ in PO(1, n), and

• an isometry f : M → Γ\Hn,

such that f(C) is the image of Hn−1 in Γ\Hn.

(6.5.11) Proposition. If

• M1 and M2 are hyperbolic n-manifolds,

• Cj is a totally geodesic hypersurface in Mj,
• f : C1 → C2 is a Riemannian isometry, and

• M1 and M2 have finite volume,

then M1#fM2 is a hyperbolic n-manifold of finite volume.

Proof. The main issue is to show that each point of ∂M′
1 has a neighbor-

hood U in M′
1 ∪f ′ M′

2, such that U is isometric to an open subset of Hn.
This is not difficult (see Exercise 4).

We have vol(M1#fM2) = vol(M1)+ vol(M2) <∞.
If M1#fM2 is compact, then it is obviously complete. More generally,

sinceM′
1 andM′

2 are complete, and their union is all ofM′
1∪fM′

2, it seems
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rather obvious that every Cauchy sequence inM′
1∪f M′

2 has a convergent
subsequence. Hence, it seems to be more-or-less obvious that M′

1 ∪f M′
2

is complete.
Unfortunately, if M1#fM2 is not compact, then there is a technical

difficulty arising from the possibility that, theoretically, the Riemannian
isometry f may not be an isometry with respect to the topological metrics
that C1 and C2 inherit as submanifolds of M1 and M2, respectively. We
will ignore this issue. □

The following lemma describes how we will construct the totally ge-
odesic hypersurface Cj.

(6.5.12) Lemma. Suppose

• Γ is a torsion-free lattice in PO(1, n)◦,
• C is the image of Hn−1 in Γ\Hn,

• τ : Hn → Hn is the reflection across Hn−1, so

τ(v0, v1, . . . , vn) = (v0, v1, . . . , vn−1,−vn),
• Γ ∩ PO(1, n− 1) is a lattice in PO(1, n− 1), and

• Γ is contained in a torsion-free lattice Γ ′ of PO(1, n)◦, such that Γ ′ is
normalized by τ.

Then C is a totally geodesic hypersurface in Γ\Hn, and C has finite volume
(as an (n− 1)-manifold).

Proof. It is clear, from the definition of C, that we need only show C is a
(closed, embedded) submanifold of Γ\Hn.

Let Γ0 = {γ ∈ Γ | γ(Hn−1) = Hn−1 }. (Then Γ ∩ PO(1, n − 1) is a
subgroup of index at most two in Γ0.) The natural map

ϕ : Γ0\Hn−1 → Γ\Hn
is proper (cf. Exercise 4.4#3), so C, being the image of ϕ, is closed.

Because ϕ is obviously an immersion (and is a proper map), all that
remains is to show that ϕ is injective. This follows from the assumption
on Γ ′ (see Exercise 5). □

§6.5(iii). Construction of nonarithmetic lattices. The following the-
orem is the key to the construction of nonarithmetic lattices. We post-
pone the proof until later in the section (see Subsection 6.5(iv) and Exer-
cise 11).

(6.5.13) Definition. A hyperbolic n-manifold of finite volume is arith-
metic if the corresponding lattice Γ in PO(1, n) (see Proposition 6.5.4) is
arithmetic. (Note that Γ is well-defined, up to conjugacy (see Exercise 2),
so this definition is independent of the choice of Γ .)
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(6.5.14) Theorem. Suppose

• M1 and M2 are hyperbolic n-manifolds,

• Cj is a totally geodesic hypersurface in Mj,
• f : C1 → C2 is a Riemannian isometry,

• M1 and M2 have finite volume (as n-manifolds),

• C1 and C2 have finite volume (as (n− 1)-manifolds), and

• each of M1 ∖ C1 and M2 ∖ C2 is connected.

If the hyperbolic manifoldM1#fM2 is arithmetic, thenM1#fM2 is commen-
surable to M1; that is, there are

1) a finite cover M̃ of M1 ∪f M2, and

2) a finite cover M̃1 of M1,

such that M̃ is isometric to M̃1.

(6.5.15) Corollary. In the situation of Theorem 6.5.14, if the hyperbolic
manifold M1#fM2 is arithmetic, then M1 is commensurable to M2.

Proof. From Theorem 6.5.14, we know that M1#fM2 is commensurable
toM1. By interchangingM1 andM2, we see thatM1#fM2 is also commen-
surable to M2. By transitivity, M1 is commensurable to M2. □

(6.5.16) Corollary. There exist nonarithmetic lattices Γcpct and Γnon in
SO(1, n), such that Γcpct is cocompact, and Γnon is not cocompact.

Proof. We construct only Γnon. (See Exercise 6 for the construction of Γcpct,
which is similar.)

Define quadratic forms B1(x) and B2(x) on Qn+1 by

B1(x) = x2
0 − x2

1 − x2
2 − · · · − x2

n−1 − x2
n

and

B2(x) = x2
0 − x2

1 − x2
2 − · · · − x2

n−1 − 2x2
n.

Let

• Γ1 ≈ SO(B1;Z),
• Γ2 ≈ h−1 SO(B2;Z)h, where

h = diag(1,1, . . . ,1,
√

2) ∈ GL(n+ 1,R),
• Mj = Γj\Hn,

• Cj be the image of Hn−1 in Mj, and

• Γ̂j = Γj ∩ SO(1, n− 1).
Then Proposition 6.4.4 tells us that Γ1 and Γ2 are noncocompact (arith-
metic) lattices in SO(1, n). By passing to finite-index subgroups, we
may assume Γ1 and Γ2 are torsion free (see Theorem 4.8.2). Therefore,
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M1 and M2 are hyperbolic n-manifolds of finite volume (see Proposi-
tion 6.5.4).

Because Γ̂j ≈ SO(1, n−1;Z) is a lattice in SO(1, n−1), and SO(Bj ;Z) is
normalized by the involution τ of Lemma 6.5.12, we know Cj is a totally
geodesic hypersurface in Mj that has finite volume (see Lemma 6.5.12).

Let us assume thatM1∖C1 andM2∖C2 are connected. (See Exercise 8
for a way around this issue, or note that this hypothesis can be achieved
by passing to finite covers of M1 and M2.)

We know that Γ̂1 ≈ Γ̂2 (since both groups are commensurable to
SO(1, n− 1;Z)). By taking a little bit of care in the choice of Γ1 and Γ2, we
may arrange that Γ̂1 = Γ̂2 (see Exercise 9). Then

C1 ≊ Γ̂1\Hn−1 = Γ̂2\Hn−1 ≊ C2,
so there is an isometry f : C1 → C2.

If n is odd, thenM1 is not commensurable toM2 (see Exercise 6.4#4),
so Corollary 6.5.15 implies that M1#fM2 is not arithmetic; therefore, the
corresponding lattice Γnon is not arithmetic (see Definition 6.5.13). When
n is even, an additional argument is needed; see Exercise 10. □

§6.5(iv). Proof of Theorem 6.5.14. Let us recall the following lemma,
which was proved in Exercise 5.1#7.

(6.5.17) Lemma. If

• G has no compact factors,

• Γ1 and Γ2 are arithmetic lattices in G, and

• Γ1 ∩ Γ2 is Zariski dense in G,

then Γ1 is commensurable to Γ2.

(6.5.18) Definition. Let M′ be a Riemmanian n-manifold with boundary.
We say thatM′ is a hyperbolic manifold with totally geodesic boundary
if

1) M′ is complete,

2) each point of M′ ∖ ∂M′ has a neighborhood that is isometric to an
open set in Hn, and

3) for each point p of ∂M′, there are
• a neighborhood U of p in M′,
• a point x in Hn−1 = {v ∈ Hn | v1 = 0 },
• a neighborhood V of x in Hn, and
• an isometry g : U → V+, where

V+ = {v ∈ V | v1 ≥ 0 }.
(Note that g(U ∩ ∂M′) = V ∩Hn−1.)

The following is a generalization of Theorem 6.5.14 (see Exercise 11).



6.5. SOME NONARITHMETIC LATTICES IN SO(1, n) 133

(6.5.19) Theorem. Suppose

• M1 and M2 are hyperbolic n-manifolds,

• M′
j is a connected, n-dimensional submanifold of Mj with totally ge-

odesic boundary,

• f ′ : ∂M′
1 → ∂M′

2 is an isometry,

• M1 and M2 have finite volume (as n-manifolds),

• ∂M′
j has only finitely many components, and

• ∂M′
1 and ∂M′

2 have finite volume (as (n− 1)-manifolds).

If the hyperbolic manifold M′
1∪f ′M′

2 is arithmetic, then M′
1∪f ′M′

2 is com-
mensurable to M1.

Proof.

• Let M = M′
1 ∪f ′ M′

2.

• Write M = Γ\Hn, for some torsion-free lattice Γ in PO(1, n).
• Let ϕ : Hn → M be the resulting covering map.

• Let B = ϕ−1(∂M′
1). Because M′

1 has totally geodesic boundary, we
know that B is a union of disjoint hyperplanes. (That is, each com-
ponent of B is of the form g(Hn−1), for some g ∈ O(1, n).)

• Let V be the closure of some connected component of Hn ∖ B that
contains a point of ϕ−1(M′

1).
• Let

Γ ′ = {γ ∈ Γ | γV = V } = {γ ∈ Γ | interior(γV ∩ V) ≠∅}
(see Exercise 12), so M′

1 = ϕ(V) ≊ Γ ′\V.

By definition, V is an intersection of half-spaces, so it is (hyperboli-
cally) convex; hence, it is simply connected. Therefore, V is the universal
cover of M′

1, and Γ ′ can be identified with the fundamental group of M′
1.

Since M′
1 ⊆ M1, we may define Γ1,ϕ1, B1, V1, Γ ′1 as above, but with M1

in the place of M. From the uniqueness of the universal cover of M′
1,

we know that there is an isometry ψ : V → V1, and an isomorphism
ψ∗ : Γ ′ → Γ ′1, such that ψ(γv) = ψ∗(γ)ψ(v), for all γ ∈ Γ ′ and v ∈ V.
Since ψ extends to an isometry of Hn, we may assume (after replacing
Γ1 with ψ−1Γ1ψ) that V = V1 and ψ∗ = Id. Hence Γ ′ = Γ ′1 ⊂ Γ ∩ Γ1.
It suffices to show (after replacing Γ by a conjugate subgroup) that the
Zariski closure of Γ ′ contains PO(1, n)◦, for then Lemma 6.5.17 implies Γ
is commensurable to Γ1.

Claim. We may assume that the Zariski closure of Γ ′ contains PO(1, n)◦.
We may assume Hn−1 is one of the connected components of ∂V. Since
∂M′

1 has finite volume, this means that

Γ ′ ∩ SO(1, n− 1) is a lattice in PO(1, n− 1). (6.5.20)
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Let Γ ′ be the Zariski closure of Γ ′. From (6.5.20) and the Borel Density
Theorem (4.5.6), we know that Γ ′ contains PO(1, n − 1)◦. Then, since
PO(1, n − 1)◦ is a maximal connected subgroup of PO(1, n) (see Exer-
cise 13), we may assume that Γ ′◦ = PO(1, n − 1)◦. (Otherwise, the claim
holds.) Because Γ ′◦ has finite index in Γ ′ (see A4.6), this implies that
PO(1, n− 1)◦ contains a finite-index subgroup of Γ ′. In fact,

{γ ∈ Γ ′ | γH = H } has finite index in Γ ′,
for every connected component H of ∂V. (6.5.21)

This will lead to a contradiction.

Case 1. Assume ∂V is connected. We may assume ∂V = Hn−1. Then, by
passing to a finite-index subgroup, we may assume that Γ ′ ⊂ PO(1, n−1)
(see 6.5.21). Define g ∈ Isom(Hn) by

g(v1, v2, . . . , vn) = (−v1, v2, . . . , vn).
Then

• g centralizes Γ ′, and

• Hn = V ∪ g(V).
Since Γ ′\V ≊ M′

1 has finite volume, we know that Γ ′\g(V) also has finite
volume. Therefore

Γ ′\Hn = (Γ ′\V)∪ (Γ ′\g(V))
has finite volume, so Γ ′ is a lattice in PO(1, n). But this contradicts the
Borel Density Theorem (4.5.6) (since Γ ′ ⊂ PO(1, n− 1)).

Case 2. Assume ∂V is not connected. Let H1 and H2 be two distinct con-
nected components of ∂V. Replacing Γ ′ by a finite-index subgroup, let us
assume that each of H1 and H2 is invariant under Γ ′ (see 6.5.21).

To simplify the argument, let us assume that ∂M′
1 is compact, rather

than merely that it has finite volume. (See Exercise 14 for the general
case.) Therefore, Γ ′\H1 is compact, so there is a compact subset C of H1,
such that Γ ′C = H1. Let

δ = min{dist(c,H2) | c ∈ C } > 0.
Because Γ ′ acts by isometries, we have δ = dist(H1,H2). Now, since
Hn is negatively curved, there is a unique point p in H1, such that
dist(p,H2) = δ. The uniqueness implies that p is fixed by every ele-
ment of Γ ′. Since Γ acts freely on Hn (recall that it is a group of deck
transformations), we conclude that Γ ′ is trivial. This contradicts the fact
that Γ ′\H1 is compact. (Note that H1 ≊ Hn−1 is not compact.) □

Exercises for §6.5.

#1. Prove Proposition 6.5.4.

#2. Show that if Γ1 and Γ2 are torsion-free lattices in PO(1, n), such that
Γ1\Hn is isometric to Γ2\Hn, then Γ1 is conjugate to Γ2.
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[Hint: Any isometry ϕ : Γ1\Hn → Γ2\Hn lifts to an isometry of Hn.]

#3. Let C be a closed, connected hypersurface in an orientable Rie-
mannian manifold M, and let M′ be the manifold with boundary
that results from cutting M open, by slicing along C. Show:

a) If C is orientable, then the boundary of M is two copies of C.
b) If C is not orientable, then the boundary is the orientable dou-

ble cover of C.
c) If C is isometric to a closed, connected hypersurface C0 in an

orientable Riemannian manifold M0, and M′
0 is the manifold

with boundary that results from cutting M0 open, by slicing
along C0, then the boundary ofM′ is isometric to the boundary
of M′

0.

#4. ForM1,M2, and f as in Exercise 4, show that if p ∈ ∂M′
1, then p has

a neighborhood U in M′
1∪f M′

2, such that U is isometric to an open
subset of Hn.
[Hint: Find a ball V around a point x in Hn−1, and isometries g1 : U1 → V+ and
g2 : U2 → V−, where Uj is a neighborhood of p in M′j, with g1|∂M′1 = (g2 ◦ f)|∂M′1.]

#5. For ϕ : Γ0\Hn−1 → Γ\Hn, as defined in the proof of Lemma 6.5.12,
show that ϕ is injective.
[Hint: Suppose γx = y, for some γ ∈ Γ and x,y ∈ Hn−1. Then γ−1τγτ is an
element of Γ ′ that fixes x, so it is trivial. Hence, the fixed-point set of τ is γ-
invariant.]

#6. Assume n is odd, and construct a cocompact, nonarithmetic lattice
Γ in SO(1, n).
[Hint: Let F = Q[

√
2], define B1(x) =

√
2x2

0 − x2
1 − x2

2 − · · · − x2
n−1 − x2

n and
B2(x) =

√
2x2

0−x2
1−x2

2−· · ·−x2
n−1−3x2

n+1, and use the proof of Corollary 6.5.16.]

#7. In the notation of the proof of Corollary 6.5.16, assume thatM1∖C1

andM2∖C2 are not connected; letM′
j be the closure of a component

of Mj ∖Cj. Show that if f ′ : C1 → Cj is any isometry (and n is odd),
then M′

1 ∪f ′ M′
2 is a nonarithmetic hyperbolic n-manifold of finite

volume.

#8. Eliminate the assumption that M1 ∖ C1 and M2 ∖ C2 are connected
from the proof of Corollary 6.5.16.
[Hint: Define B3(x) = x2

0 − x2
1 − x2

2 − · · · − x2
n−1 − 3x2

n. If Mj ∖ Cj has the same
number of components as Mk ∖ Ck (and j ≠ k), then either Exercise 7 or the proof
of Corollary 6.5.16 applies.]

#9. For B1(x) and B2(x) as in the proof of Corollary 6.5.16, show that
there are finite-index subgroups Γ1 and Γ2 of SO(B1;Z)and SO(B2;Z),
respectively, such that

a) Γ1 and Γ2 are torsion free, and
b) Γ1 ∩ SO(1, n− 1) = Γ2 ∩ SO(1, n− 1).
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[Hint: Let Γj = Λ∩ SO(Bj ;Z), where Λ is a torsion-free subgroup of finite index in
SL(n+ 1,Z).]

#10. In the notation of the proof of Corollary 6.5.16, show that if n is
even (and n ≥ 4), then Γnon is not arithmetic.
[Hint: If Γnon is arithmetic, then its intersection with SO(1, n − 1) is arithmetic in
SO(1, n− 1), and n− 1 is odd.]

#11. Derive Theorem 6.5.14 as a corollary of Theorem 6.5.19.

[Hint: Apply Theorem 6.5.19 to M̃j = Mj#fjMj, where fj : Cj → Cj is the identity

map. Note that M̃j is a double cover of Mj, so M̃j is commensurable to Mj.]

#12. For Γ and V as in the proof of Theorem 6.5.19, let V̊ be the interior
of V, and show, for each γ ∈ Γ , that if γV̊ ∩ V̊ ≠∅, then γV̊ = V̊.

#13. Show that if H is a connected subgroup of PO(1, n) that contains
PO(1, n− 1)◦, then H = PO(1, n− 1)◦.

#14. Eliminate the assumption that ∂M′
1 is compact from Case 2 of the

proof of Theorem 6.5.19.
[Hint: The original proof applies unless dist(H1,H2) = 0, which would mean that
H1 andH2 intersect at infinity. This intersection is a single point, and it is invariant
under Γ ′, which contradicts the Zariski density of Γ ′.]

§6.6. Noncocompact arithmetic subgroups of SL(3,R)

We saw in Proposition 6.1.5 that SL(2,Z) is essentially the only nonco-
compact, arithmetic subgroup of SL(2,R). So it may be surprising that
SL(3,Z) is not the only one in SL(3,R).

(6.6.1) Proposition. Let

• Lbe a real quadratic extension of Q, so L = Q[√r], for some square-
free positive integer r ≥ 2,

• σ be the nontrivial Galois automorphism of L,
• σ̃ be the automorphism of Mat3×3(L) induced by applying σ to each

entry of a matrix,

• J3 =
[

0 0 1
0 1 0
1 0 0

]
, and

• Γ = SU
(
J3, σ ;Z

[√
r
]) = {g ∈ SL

(
3,Z

[√
r
]) ∣∣ σ̃ (gT )J3 g = J3

}
.

Then:

1) Γ is an arithmetic subgroup of SL(3,R),
2) Γ is not cocompact, and

3) no conjugate of Γ is commensurable to SL(3,Z).
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Proof. (1) This is a special case of Proposition 18.5.7(6), but we provide
a concrete, explicit proof (using the methods of Sections 5.4 and 5.5).

Define

• ∆ : L3 → R6 by ∆(v) = (v, J3σ(v)
)
,

• VQ = ∆(L3),
• L = ∆(Z[√r]3), and

• ρ : SL(3,R)→ SL(6,R) by

ρ(A)(v,w) = (Av, (AT )−1w
)

for v,w ∈ R3.
Then

• VQ is a Q-form of R6 (cf. Exercise 5.5#5(b)),

• L is a Z-lattice in VQ (cf. Exercise 5.5#5(c)),

• ρ is a homomorphism,

• ρ(SL(3,R)
)

is defined over Q (with respect to the Q-form VQ) (see
(6.6.2) below), and

• Γ = {g ∈ SL(3,R) | ρ(g)L = L} (cf. Exercise 5.5#1).

Hence, Proposition 5.4.5(1) (together with Theorem 5.1.11) implies that
Γ is an arithmetic subgroup of SL(3,R).

Now let us show that

ρ
(
SL(3,R)

)
is defined over Q. (6.6.2)

This can be verified directly, by finding appropriate Q-polynomials, but
let us, instead, show that ρ

(
SL(3,R)

)
Q is dense in ρ

(
SL(3,R)

)
.

Define U1 as in (6.6.3) below, but allowing a,b, c to range over all
ofQ, instead of only 2Z. Then ρ(U1)VQ ⊂ VQ (see Exercise 1), so we have
ρ(U1) ⊆ ρ

(
SL(3,R)

)
Q. Furthermore, U1 is dense in

U =
[

1 ∗ ∗
0 1 ∗
0 0 1

]
.

Similarly, there is a dense subgroup U2 of UT , with ρ(U2) ⊆ ρ
(
SL(3,R)

)
Q

(see Exercise 2). Since ⟨U,UT ⟩ = SL(3,R), we know that ⟨U1, U2⟩ is dense
in SL(3,R), soρ

(
SL(3,R)

)
Q is dense inρ

(
SL(3,R)

)
. Thereforeρ

(
SL(3,R)

)
is defined over Q (see 5.1.8).

(2) By calculation, one may verify, directly from the definition of Γ ,
that the subgroup

UΓ =


1 a+ b√r −(a2 − rb2)/2+ c√r

0 1 −a+ b√r
0 0 1


∣∣∣∣∣∣∣ a,b, c ∈ 2Z

 (6.6.3)

is contained in Γ . Then, since every element of UΓ is unipotent, it is obvi-
ous that Γ has nontrivial unipotent elements. So the Godement Criterion
(5.3.1) implies that G/Γ is not compact.

(3) We sketch a proof. Choose an element ω ∈ Z
[√
r
]
, such that

σ(ω) = 1/ω. Then diag(ω,1,ω−1) is a hyperbolic element of Γ that
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normalizes the maximal unipotent subgroup UΓ . On the other hand, it
is easy to see that if U ′Z is any subgroup of SL(3,Z) that is commensu-
rable to the maximal unipotent subgroup UZ, then U ′Z has finite index in
NSL(3,Z)(U ′Z). Since all of the maximal unipotent subgroups of SL(3,Z)
are conjugate (up to commensurability) under SL(3,Q), this implies that
no conjugate of Γ is commensurable to SL(3,Z).

Here is a more complete argument that is based on the notion of
Q-rank, which will be explained in Chapter 9. Define a nondegenerate σ-
Hermitian form B(x,y)on L3 by B(x,y) = σ(xT ) J3y. Thenv = (1,0,0)
is an isotropic vector for B (i.e., B(v,v) = 0). On the other hand, be-
cause B is nondegenerate, the dimension of the orthogonal complement
of any subspace is equal to the codimension of the subspace. Since
L3 is 3-dimensional, this implies there is no 2-dimensional subspace that
consists entirely of isotropic vectors. Therefore, rankQ Γ = 1 (cf. Exam-
ple 9.1.5(2)). However, we have rankQ SL(3,Z) = 2 (cf. Example 9.1.5(1)).
Two lattices with different Q-ranks cannot be conjugate. (They cannot
even be abstractly commensurable.) □

(6.6.4) Remarks.

1) From Proposition 6.6.1(3), we know that none of the arithmetic
subgroups in Proposition 6.6.1 are conjugate to a subgroup that
is commensurable to SL(3,Z).

Indeed, let X = SL(3,R)/ SO(3) be the symmetric space associ-
ated to SL(3,R). Theorem 2.2.8 implies that if Γ is one of the arith-
metic subgroups constructed in Proposition 6.6.1, then the geome-
try of the locally symmetric space Γ\X is very different from that of
SL(3,Z)\X. Namely, Γ\X is only mildly noncompact: it merely has
cusps, which means that its asymptotic cone is a union of finitely
many rays. In contrast, the asymptotic cone of SL(3,Z)\X is a 2-
complex, not just a union of rays. Even from a distance, Γ\X and
SL(3,Z)\X look completely different.

2) Different values of r always give essentially different arithmetic
subgroups (see Exercise 4), but this is not so obvious.

The classification results in Chapter 18 imply that these are the only
arithmetic subgroups of SL(3,R) that are not cocompact:

(6.6.5) Proposition (see Proposition 18.6.4). SL(3,Z) and the arithmetic
subgroups constructed in Proposition 6.6.1 are the only noncocompact
arithmetic subgroups of SL(3,R) (up to commensurability and conju-
gates).
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Exercises for §6.6.

#1. For U1, ρ, and VQ as in the proof of Proposition 6.6.1(1), show that
ρ(U1)VQ ⊆ VQ.

#2. In the notation of the proof of Proposition 6.6.1, find a dense sub-
group U2 of [

1 0 0
∗ 1 0
∗ ∗ 1

]
,

such that ρ(U2) ⊆ ρ
(
SL(3,R)

)
Q.

#3. Assume the notation of the proof of Proposition 6.6.1, and let
G = ρ(SL(3,R)

)
.

a) Show that G is quasisplit . That is, show that some Borel sub-
group of G is defined over Q.

b) Show that every proper parabolic Q-subgroup of G is a Borel
subgroup of G.

[Hint: Let B be the group of upper-triangular matrices in SL(3,R). Then B is a Borel
subgroup of SL(3,R), and ρ(B) is defined over Q.]

#4. Let Γ1 and Γ2 be noncocompact arithmetic subgroups of SL(3,R)
that correspond to two different values of r , say r1 and r2. Show
that Γ1 is not commensurable to any conjugate of Γ2.
[Hint: There is a diagonal matrix in Γ1 whose trace is not in Z

[√
r2
]
.]

§6.7. Cocompact arithmetic subgroups of SL(3,R)

Example 6.3.2 used unitary groups over a totally real extension to con-
struct cocompact, arithmetic subgroups of SL(2,R). The same technique
can be applied to SL(3,R):

(6.7.1) Proposition. Let

• F be a totally real algebraic number field, such that F ≠ Q,

• t, a, b ∈ F, such that
◦ t, a, b > 0, but
◦ σ(t),σ(a),σ(b) < 0 for every place σ ≠ Id,

• L = F[√t],
• τ be the Galois automorphism of L over F,

• O be the ring of integers of L, and

• Γ = SU
(
diag(a, b,−1), τ ;O).

Then Γ is a cocompact, arithmetic subgroup of SL(3,R).

Here is a specific example:

(6.7.2) Corollary. Let

• t = √2,
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• F = Q[t] = Q[√2
]
,

• L = F[√t] = Q[4
√

2
]
,

• τ be the Galois automorphism of L over F,

• O É Z[4
√

2
]

be the ring of integers of L, and

• Γ = SU(Id3×3, τ ;O).
Then Γ is a cocompact, arithmetic subgroup of SL(3,R).

(6.7.3) Remark. It is necessary to assume F ≠ Q in Proposition 6.7.1 (in
other words, there is no analogue of Example 6.3.1 for SL(3,R)), because
unitary groups over Q yield only noncompact lattices in SL(3,R) (as in
Proposition 6.6.1), not cocompact ones (see Exercise 1).

Here is a quite different construction (not using unitary groups) that
yields additional examples of cocompact, arithmetic subgroups. See Ex-
ample 6.7.6 for explicit examples of L and p that satisfy the hypotheses.

(6.7.4) Proposition. Let

• L be a cubic, Galois extension of Q (that is, a Galois extension of Q,
such that |L : Q| = 3),

• σ be a generator of Gal(L/Q) (note that Gal(L/Q), being of order 3,
is cyclic),

• O be the ring of integers of L,
• p ∈ Z+,

• ϕ : L3 → Mat3×3(L) be given by

ϕ(x,y, z) =

 x y z
pσ(z) σ(x) σ(y)
pσ 2(y) pσ 2(z) σ 2(x)

 , (6.7.5)

and

• Γ = {γ ∈ ϕ(O3) | detγ = 1 }.
Then:

1) Γ is an arithmetic subgroup of SL(3,R).
2) Γ is cocompact if and only if p ≠ t σ(t)σ 2(t), for all t ∈ L.

Proof. (1) It is easy to see that:

• L ⊂ R (see Exercise 2).

• ϕ(L3) and ϕ(O3) are subrings of Mat3×3(L) (even though ϕ is not
a ring homomorphism).

• ϕ(L3) is a Q-form of Mat3×3(R).
• ϕ(O3) is a Z-lattice in ϕ(L3).
• If we define ρ : Mat3×3(R) → EndR

(
Mat3×3(R)

)
by ρ(g)(v) = gv,

then ρ
(
SL(3,R)

)
is defined over Q (with respect to the Q-form

ϕ(L3) (see Exercise 3)).
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• Γ = {g ∈ SL(3,R) | gϕ(O3) = ϕ(O3) }.
So Γ is an arithmetic subgroup of SL(3,R) (see Proposition 5.4.5(1)).

(2⇐) If SL(3,R)/Γ is not compact, then the Godement Criterion (5.3.1)
tells us there is a nontrivial unipotent element u in Γ . This means 1 is
an eigenvalue of u (indeed, it is the only eigenvalue of u), so there is
some nonzero v ∈ R3 with uv = v. Hence (u − 1)v = 0. Since u ≠ Id
and v ≠ 0, we conclude that ϕ(L3) has a nonzero element that is not
invertible.

Hence, letting D = ϕ(L3), it suffices to show that every nonzero el-
ement of D is invertible. (That is, D is a “division algebra.”) For conve-
nience, define N : L → Q by N(t) = t σ(t)σ 2(t). (In Algebraic Number
Theory, N is called the “norm” from L to Q.) We know that p ≠ N(t), for
all t ∈ L. It is easy to see that N(t1t2) = N(t1)N(t2).

Note that if xyz = 0, but (x,y, z) ≠ (0,0,0), then ϕ(x,y, z) is in-
vertible. For example, if z = 0, then detϕ(x,y, z) = N(x) + pN(y).
Since p ≠ N(−x/y) = −N(x)/N(y) (assuming y ≠ 0), we see that
detϕ(x,y, z) ≠ 0, as desired. The other cases are similar.

For any x,y, z ∈ L, with z ≠ 0, we have

ϕ
(

1,− x
pσ(z)

,0
)
ϕ(x,y, z) = ϕ(0,∗,∗)

is invertible, so ϕ(x,y, z) is invertible.
(2 ⇒) If p = t σ(t)σ 2(t), for some t ∈ L, then ϕ(L3) ≊ Mat3×3(Q)

(see Exercise 5). From this, it is easy clear thatϕ(O3)contains nonidentity
unipotent matrices. Since the determinant of any unipotent matrix is 1,
these unipotents belong to Γ . Therefore Γ is not cocompact. □

(6.7.6) Example. Let

• ζ = 2 cos(2π/7),
• L = Q[ζ], and

• p be any prime that is congruent to either 3 or 5, modulo 7.

Then

1) L is a cubic, Galois extension of Q, and

2) p ≠ t σ(t)σ 2(t), for all t ∈ L, and any generator σ of Gal(L/Q).
To see this, letω = e2πi/7 be a primitive 7th root of unity, so ζ =ω+ω6.
Now it is well known that the Galois group of Q[ω] is cyclic of order 6,
generated by τ(ω) =ω3 (see Proposition B3.4). So the fixed field L of τ3

is a cyclic extension of degree 6/2 = 3.
Now suppose t σ(t)σ 2(t) = p, for some t ∈ L×. Clearing denomina-

tors, we have s σ(s)σ 2(s) = pm, where

• m ∈ Z+,

• s = a+b(ω+ω6)+c(ω+ω6)2, with a,b, c ∈ Z and p ∤ gcd(a, b, c).
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Replacing ω with the variable x, we obtain integral polynomials s1(x),
s2(x), and s3(x), such that

s1(x)s2(x)s3(x) = pm = 0 in
Zp[x]

⟨x6 + x5 + · · · + 1⟩ .
This implies that x6 + x5 + · · · + 1 is not irreducible in Zp[x]. This
contradicts the choice of p (see Exercise 6).

(6.7.7) Remark. The famous Kronecker-Weber Theorem tells us that if L is
a Galois extension ofQ, with abelian Galois group, then L is contained in
an extension obtained by adjoining annth root of unity toQ (for somen).
(Warning: this does not hold for abelian extensions of algebraic number
fields other than Q.) As a very special case, this implies that all of the
cubic, Galois extension fields L of Q can be constructed quite explicitly,
in the manner of Example 6.7.6:

• Choose n ∈ Z+, such that φ(n) is divisible by 3 (where

φ(n) = #{k | 1 ≤ k ≤ n, gcd(k,n) = 1 }
is the Euler φ-function).

• Let ω = e2πi/n be a primitive nth root of unity.

• Let H be any subgroup of index 3 in the multiplicative group (Zn)×
of units modulo n.

• Let ζ =∑k∈Hωk =∑k∈H cos(2πk/n).
• Let L = Q[ζ].
We have now seen that cocompact arithmetic subgroups of SL(3,R)

can be constructed by two different methods: some are constructed by
using unitary groups (as in Proposition 6.7.1) and others are constructed
by using “division algebras” D = ϕ(L3) (as in Proposition 6.8.8). We
will see in the following section that these two methods can be com-
bined: some cocompact arithmetic subgroups are constructed by using
both unitary groups and division algebras. The classification results in
Section 18.4 show that all cocompact arithmetic subgroups of SL(3,R)
can be obtained from these methods, using either unitary groups, divi-
sion algebras, or a combination of the two (perhaps also combined with
restriction of scalars). The same is true for the cocompact arithmetic
subgroups of any SL(n,R), with n ≥ 3.

Exercises for §6.7.

#1. Assume the situation of Proposition 6.7.1, except that F = Q. More
precisely, let
• a,b, c ∈ Q (all nonzero),
• L be a real quadratic extension of Q,
• τ be the Galois automorphism of L over Q,
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• O be the ring of integers of L,
• A = diag(a, b, c), and
• Γ = SU(A, τ ;O), so Γ is an arithmetic subgroup of SL(3,R).

Show that Γ is not cocompact.
[Hint: The equation τ(xT )Ax = 0 for x ∈ L3 can be considered as an equation in
6 variables over Q, so the Number Theory fact mentioned in the proof of Proposi-
tion 6.4.1 implies it has a nontrivial solution.]

#2. Let L be a Galois extension of Q , with |L : Q| odd. Show L ⊂ R.

#3. Assume the notation of the proof of Proposition 6.7.4. For h ∈ L3,
define Th ∈ EndR

(
Mat3×3(R)

)
by Th(v) = ϕ(h)v.

a) Show that ϕ(h) ∈ EndR
(
Mat3×3(R)

)
Q, where the Q-form is in-

duced by the Q-form ϕ(L3) of Mat3×3(R).
[Hint: Show ϕ(h)ϕ(L3) ⊆ ϕ(L3).]

b) Show that ρ
(
Mat3×3(R)

)
is the centralizer of {Th | h ∈ L3 }.

c) Show that ρ
(
SL(3,R)

)
is defined over Q.

#4. In the notation of Proposition 6.7.4, show that if p = t σ(t)σ 2(t),
then the element ϕ

(
1,1/t,1/

(
t σ(t)

))
of ϕ(L3) is not invertible.

#5. In the notation of Proposition 6.7.4, show that if p = t σ(t)σ 2(t),
for some t ∈ L, then ϕ(L3) ≊ Mat3×3(Q).
[Hint:

{(
a, tσ(a), tσ(t)σ2(a)

)}
is a 3-dimensional, ϕ(L)-invariant Q-subspace

of L3.]

#6. Let p and q be distinct primes, and

f(x) = xq−1 + · · · + x + 1.
Show that f(x) is reducible over Zp if and only if there exists
r ∈ {1,2, . . . , q − 2}, such that pr ≡ 1 (mod q).
[Hint: Let g(x) be an irreducible factor of f(x), and let r = degg(x) < q−1. Then
f(x) has a root α in a finite field F of order pr . Since α is an element of order q
in F×, we must have q | #F×.]

§6.8. Arithmetic subgroups of SL(n,R)

We will briefly explain how the previous results on SL(3,R) can be gen-
eralized to higher dimensions. (The group SL(2,R) is a special case that
does not fit into this pattern.) The proofs are similar to those for SL(3,R).

In Section 6.2, and in the proof of Proposition 6.7.4, we have seen
that cocompact arithmetic subgroups of SL(n,R) can sometimes be con-
structed by using rings in which every nonzero element has a multiplica-
tive inverse. More such “division algebras” will be needed in order to
construct all the arithmetic subgroups of SL(n,R) with n > 3.
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§6.8(i). Division algebras.

(6.8.1) Definition. An associative ring D is a division algebra over a
field F if

1) D contains F in its center (that is, xf = fx for all x ∈ D and f ∈ F),

2) the element 1 ∈ F is the identity element of D,

3) D is finite-dimensional as a vector space over F, and

4) every nonzero element of D has a multiplicative inverse.

Furthermore, it is central over F if the entire center of D is precisely F.

(6.8.2) Remarks.

1) D is an algebra over F if (1) and (2) hold.

2) The word division requires (4). We also assume (3), although not all
authors require this.

(6.8.3) Other terminology. Division algebras are also called skew fields.

(6.8.4) Examples.

1) Any extension field of F is a division algebra over F (but is not
usually central).

2) H = H−1,−1
R is a central division algebra over R.

3) More generally, a quaternion algebra Ha,bF is a central division alge-
bra over F if and only if Nred(x) ≠ 0, for every nonzero x ∈ Ha,bF
(see Exercise 6.2#4). Note that this is consistent with (2).

The following famous theorem shows that division algebras are the
building blocks of simple algebras:

(6.8.5) Theorem (Wedderburn’s Theorem). Let A be a finite-dimensional
algebra over a field F. If A is simple (that is, if A has no nonzero, proper,
two-sided ideals), then A ≊ Matn×n(D), for some n and some division
algebra D over F.

Proof. Since A is finite-dimensional, we may let I be a minimal left ideal.
Then I is a left A-module that is simple (that is, has no nonzero, proper
submodules). So EndA(I) is a division algebra (see Exercise 2); call it D.

We have IA = A, since IA is a 2-sided ideal and A is simple. Hence,
the minimality of I implies A = Ia1 ⊕ · · · ⊕ Ian, for some a1, . . . , an ∈ A
(see Exercise 3).

ForA considered as a leftA-module, it is easy to see that each element
of EndA(A) is multiplication on the right by an element of A (see Exer-
cise 4); therefore EndA(A) ≊ A. On the other hand, it is easy to see that
Iai is isomorphic to I as a left A-module (see Exercise 5), so we have

EndA(A) = EndA(Ia1 ⊕ · · · ⊕ Ian) ≊ EndA(In)

≊ Matn×n
(
EndA(I)

) = Matn×n(D).
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Therefore A ≊ Matn×n(D). □

(6.8.6) Corollary. If D is a central division algebra over F, then we have
dimF D = d2, for some d ∈ Z+. (This integer d is called the degree of D
over F.)

Proof. Let F be the algebraic closure of F. Then (from Wedderburn’s
Theorem), we see thatD⊗F F ≊ Matd×d(D′), for some d and some central
division algebra D′ over F. Since F is algebraically closed, we must have
D′ = F (see Exercise 6), so

dimF D = dimF(D ⊗F F) = dimF Matd×d(F) = d2. □

In order to produce arithmetic groups from division algebras, the fol-
lowing lemma provides an analogue of the ring of integers in an algebraic
number field F.

(6.8.7) Lemma. IfD is a division algebra over an algebraic number field F,
then there is a subring OD of D, such that OD is a Z-lattice in D. Any such
subring is called an order in D.

Proof. Let {v0, v1, . . . , vr} be a basis of D over Q, with v0 = 1. Let
{cℓj,k}rj,k,ℓ=0 be the structure constants of D with respect to this basis.

That is, for j, k ∈ {0, . . . , r}, we have vjvk =
∑r
ℓ=0 c

ℓ
j,kvℓ. There is some

nonzero m ∈ Z, such that mcℓj,k ∈ Z, for all j, k, ℓ. Let OD be the Z-span
of {1,mv1, . . . ,mvr}. □

In the proof of Proposition 6.7.4, we showed that ϕ(L3) is a division
algebra if p ≠ t σ(t)σ 2(t). Conversely, it is known that every division al-
gebra of degree 3 arises from the above construction. (In the terminology
of ring theory, this means that every central division algebra of degree 3
is “cyclic.”) Therefore, we can restate the proposition in the following
more abstract form.

(6.8.8) Proposition. Let

• L be a cubic, Galois extension of Q,

• D be a central division algebra of degree 3 over Q, such that D con-
tains L as a subfield, and

• OD be an order in D (see Lemma 6.8.7).

Then there is an embedding ϕ : D → Mat3×3(R), such that

1) ϕ
(
SL(1,D)

)
is a Q-form of Mat3×3(R), and

2) ϕ
(
SL(1,OD)

)
is a cocompact, arithmetic subgroup of SL(3,R).

Furthermore, ϕ
(
SL(1,OD)

)
is essentially independent of the choice

ofOD or of the embeddingϕ. Namely, ifO′D andϕ′ are some other choices,
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then there is an automorphism α of SL(3,R), such that αϕ′
(
SL(1,O′D)

)
is

commensurable to ϕ
(
SL(1,OD)

)
.

This generalizes in an obvious way to provide cocompact, arithmetic
subgroups of SL(n,R). By replacing SL(1,OD) with the more general
SL(m,OD), we can also obtain arithmetic subgroups that are not cocom-
pact (if n is not prime).

(6.8.9) Proposition. Let

• D be a central division algebra of degree d over Q, such thatD splits
over R,

• m ∈ Z+, and

• OD be Z-lattice in D that is also a subring of D.

Then ϕ
(
SL(m,OD)

)
is an arithmetic subgroup of SL(dm,R), for any em-

bedding ϕ : D → Matd×d(R), such that ϕ(D) is a Q-form of Matd×d(R).
It is cocompact if and only if m = 1.

§6.8(ii). Unitary groups over division algebras. The definition of a
unitary group is based on the Galois automorphism of a quadratic exten-
sion. This is a field automorphism of order 2. The following analogue
makes it possible to define unitary groups over division algebras that are
not required to be fields.

(6.8.10) Definition. Let D be a central division algebra. A map τ : D → D
is an anti-involution if τ2 = Id and τ is an anti-automorphism; that is,
τ(x + y) = τ(x)+ τ(y) and τ(xy) = τ(y)τ(x). (Note that τ reverses
the order of the factors in a product.)

(6.8.11) Other terminology. Some authors call τ an involution, rather
than an anti-involution, but, to avoid confusion, our terminology empha-
sizes the fact that τ is not an automorphism (unless D is commutative).

(6.8.12) Examples. Let D be a quaternion division algebra. Then:

1) The map τc : D → D defined by

τc(a+ bi+ cj + dk) = a− bi− cj − dk
is an anti-involution. It is called the standard anti-involution of D,
or the conjugation on D, so τc(x) can also be denoted x.

2) The map τr : D → D defined by

τr (a+ bi+ cj + dk) = a+ bi− cj + dk
is an anti-involution. It is called the reversion on D.

(6.8.13) Definitions. Let τ be an anti-involution of a division algebra D
over F.

1) A matrix A ∈ Matn×n(D) is said to be Hermitian (or, more pre-
cisely, τ-Hermitian) if (Aτ)T = A.
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2) Given a Hermitian matrix A, we let

SU(A, τ ;D) = {g ∈ SL(n,D) | (Aτ)TAg = A }.
This notation makes it possible to state a version of Proposition 6.7.1

that replaces the quadratic extension L with a larger division algebra.

(6.8.14) Proposition. Let

• L be a real quadratic extension of Q,

• D be a central simple division algebra of degree d over L,
• τ be an anti-involution of D, such that τ|L is the Galois automor-

phism of L over Q,

• b1, . . . , bm ∈ D×, such that τ(bj) = bj for each j,
• OD be an order in D, and

• Γ = SU
(
diag(b1, b2, . . . , bm), τ ;OD).

Then:

1) Γ is an arithmetic subgroup of SL(md,R).
2) Γ is cocompact if and only if, for all nonzero x ∈ Dm, we have

τ
(
xT ) diag(b1, b2, . . . , bm)x ≠ 0.

Additional examples of cocompact arithmetic subgroups can be ob-
tained by generalizing Proposition 6.8.14 to allow L to be a totally real
quadratic extension of a totally real algebraic number field F (as in Propo-
sition 6.7.1). However, in this situation, one must require b1, . . . , bm to
be chosen in such a way that SU

(
diag(b1, b2, . . . , bm), τ ;OD)σ is compact,

for every place σ of F, such that σ ≠ Id. For n ≥ 3, every arithmetic sub-
group of SL(n,R) is obtained either from this unitary construction or
from Proposition 6.8.9 (see Theorem 18.4.1).

Exercises for §6.8.

#1. Show Nred(xy) = Nred(x) Nred(y) for all elements x and y of a
quaternion algebra Ha,bF .

#2. (Schur’s Lemma) Suppose A is a (finite-dimensional) F-algebra, and
M is a simple A-module (that is finite-dimensional as a vector space
over F). Show EndA(M) is a division algebra, where

EndA(M) = {φ : M → M |φ(am) = aφ(m), ∀a ∈ A, m ∈ M }.
[Hint: If φ is not invertible, then it has a nontrivial kernel, which is a nontrivial
A-submodule of M.]

#3. Show that if I is any minimal left-ideal of a finite-dimensional alge-
braA, then there exist a1, . . . , an ∈ A, such thatA = Ia1⊕· · ·⊕Ian.
[Hint: By finite-dimensionality, A = Ia1 + · · · + Ian for some a1, . . . , an ∈ A.
If n is minimal, then Ian Æ a1 + · · · + Ian−1, so the minimality of I implies
Ian ∩ (a1 + · · · + Ian−1) = {0}.]
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#4. Show that if A is a ring with identity, and we consider A to be a left
A-module, then, for every φ ∈ EndA(A), there exists a ∈ A, such
that φ(x) = xa for all x ∈ A.
[Hint: Let a =φ(1).]

#5. For any minimal left ideal I of a ring A, and any a ∈ A, such that
Ia ≠ {0}, show I ≊ Ia as left A-modules.
[Hint: i , ia is a homomorphism of modules that is obviously surjective. The
minimality of I implies it is also injective.]

#6. Show that if D is a division algebra over an algebraically closed
field F, then D = F.
[Hint: Multiplication on the left by any x ∈ D is a linear transformation, which
must have an eigenvalue λ ∈ F. Then x − λ is not invertible.]

#7. Suppose Ha,bF is a quaternion algebra over some field F, and let
L = F + Fi ⊆ Ha,bF .

a) Show that if a is not a square in F, then L is a subfield of Ha,bF .
b) Show that Ha,bF is a two-dimensional (left) vector space over L.
c) For each x ∈ Ha,bF , define Rx : Ha,bF → Ha,bF by Rx(v) = vx, and

show that Rx is an L-linear transformation.
d) For each x ∈ Ha,bF , show det(Rx) = Nred(x).

#8. Let τ be an anti-involution on a division algebra D.
a) For any J ∈ Matn×n(D), define BJ : Dn ×Dn → D by

BJ(x,y) = τ(xT )Jy
for all x,y ∈ Dn = Matn×1(D). Show that BJ is a Hermitian
form if and only if τ(JT ) = J.

b) Conversely, show that if B is a Hermitian form on Dn, then
B = BJ, for some J ∈ Matn×n(D).

#9. Let D be a finite-dimensional algebra over a field F. Show that D
is a division algebra if and only if D has no proper, nonzero left
ideals. (We remark that, by definition, D is simple if and only if it
has no proper, nonzero two-sided ideals.)

Notes

Generalizing the examples considered here, see Chapter 18 for the
construction of all arithmetic subgroups of classical groups (except some
strange arithmetic subgroups of groups, such as SO(1,7), whose com-
plexification has SO(8,C) as a simple factor).

The construction of all arithmetic subgroups of SL(2,R) is discussed
(from the point of view of quaternion algebras) in [7, Chap. 5].

See [14, Cor. 2 of §4.3.2, p. 43] for a proof of the fact (used in Propo-
sition 6.4.1 and Exercise 6.7#1) that if a1, . . . , an+1 ∈ Q are not all of the
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same sign, and n ≥ 4, then the equation a1x2
1 + · · ·an+1x2

n+1 = 0 has a
nontrivial integer solution. It is called Meyer’s Theorem, and will be used
again in Corollary 18.6.2.

The original paper of Gromov and Piatetski-Shapiro [5] on the con-
struction of nonarithmetic lattices in SO(1, n) (§6.5) is highly recom-
mended. The exposition there is very understandable, especially for a
reader with some knowledge of arithmetic groups and hyperbolic mani-
folds. A brief treatment also appears in [9, App. C.2, pp. 362–364].

It was known quite classically that there are nonarithmetic lattices in
SO(1,2) (or, in other words, in SL(2,R)). This was extended to SO(1, n),
for n ≤ 5, by Makarov [8] and Vinberg [15]. The nonarithmetic lattices
of Gromov and Piatetski-Shapiro [5] came later. Nonarithmetic lattices
in SU(1, n) were constructed by Mostow [10] for n = 2, and by Deligne
and Mostow [3] for n = 3. These results on SO(1, n) and SU(1, n) are
presented briefly in [9, App. C, pp. 353–368].

The Kronecker-Weber Theorem can be found in books on Class Field
Theory, such as [11, Thm. 5.1.10, p. 324] (or see [4]).

Wedderburn’s Theorem (6.8.5) is proved in [12, Thm. 3.5, p. 49], and
other introductory texts on noncommutative rings (often in the more
general setting of semisimple Artinian rings).

The fact that division algebras of degree 3 are cyclic (mentioned on
page 145) is due to Wedderburn [16], and a proof can be found in [6,
Thm. 2.9.17, p. 69]. Much more generally, the famous (and much more
difficult) Albert-Brauer-Hasse-Noether Theorem states that any division
algebra (of any degree) over a finite extension of Q is cyclic. It was first
proved in [1, 2]. See [13, proof of Thm. 32.20, p. 280] for references to
more modern expositions of Class Field Theory that provide proofs.
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Chapter 7

SL(n, Z) is a lattice
in SL(n,R)

In this chapter, we describe two different proofs of the following crucial
fact, which is the basic case of the fundamental fact that if G is defined
over Q, then GZ is a lattice in G (see Theorem 5.1.11). This special case
was specifically mentioned (without proof) in Example 5.1.12(2).

(7.0.1) Theorem. SL(n,Z) is a lattice in SL(n,R).

The case n = 2 of Theorem 7.0.1 was established in Example 1.3.7,
by constructing a subset F of SL(2,R), such that

1) SL(2,Z) · F = SL(2,R), and

2) F has finite measure.

Our first proof of Theorem 7.0.1 shows how to generalize this approach
to other values of n, by choosing F to be an appropriate “Siegel set”
(see Sections 7.2 and 7.3).

(7.0.2) Remarks.

1) As was mentioned on page 87, the statement thatGZ is a lattice inG
is more important than the proof. The same is true of the special
case in Theorem 7.0.1, but it is advisable to understand at least the
statements of the three main ingredients of our first proof:

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: definition of Z-lattices
(Definition 5.4.1) and Moore Ergodicity Theorem (Section 4.10).
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(a) the definition of a Siegel set (see Section 7.2),
(b) the fact that every Siegel set has finite measure (see Proposi-

tion 7.2.5), and
(c) the fact that some Siegel set is a coarse fundamental domain

for SL(n,Z) in SL(n,R) (cf. Theorem 7.3.1).

2) This subject is often called Reduction Theory . The idea is that,
given an element g ofG, we would like to multiply g by an element γ
of Γ to make the matrix γg as simple as possible. That is, we would
like to “reduce” g to a simpler form by multiplying it by an element
of Γ . This is a generalization of the classical reduction theory of
quadratic forms, which goes back to Gauss and others.

Unfortunately, serious complications arise when using Siegel sets to
establish in general that GZ is a lattice in G Theorem 5.1.11 (see the proof
in Section 19.4). Therefore, we will give a second proof with the virtue
that it can easily be extended to establish that all arithmetic subgroups
are lattices (see Section 7.4 for this proof of Theorem 7.0.1, and see Ex-
ercise 7.4#20 for the generalization to a proof of Theorem 5.1.11). How-
ever, this argument relies on a fact about SL(n,R)/ SL(n,Z) that we will
not prove in general (see Theorem 7.4.7).

(7.0.3) Warning. The Standing Assumptions (4.0.0 on page 41) are not
in effect in this chapter, because we are proving that Γ = SL(n,Z) is a
lattice, instead of assuming that it is a lattice.

§7.1. Iwasawa decomposition: SL(n,R) = KAN
The definition of a “Siegel set” is based on the following fundamental
structure theorem:

(7.1.1) Theorem (Iwasawa Decomposition of SL(n,R)). In G = SL(n,R),
let

K = SO(n), N =




1
1 ∗

0
...

1


 , A =



a1
a2 0

0
. . .
an



◦
.

Then G = KAN. In fact, every g ∈ G has a unique representation of the
form g = kau with k ∈ K, a ∈ A, and u ∈ N.

Proof. It is important to note that, because of the superscript “◦” in its
definition, A is only the identity component of the group of diagonal ma-
trices; the entire group of diagonal matrices has a nontrivial intersection
with K. With this in mind, the uniqueness of the decomposition is easy
(see Exercise 1).
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We now prove the existence of k, a, andu. To get started, let ε1, . . . , εn
be the standard basis of Rn. Then, for any g ∈ G, the set {gε1, . . . , gεn}
is a basis of Rn.

The Gram-Schmidt Orthogonalization process constructs a corre-
sponding orthonormal basis w1, . . . ,wn. We briefly recall how this is
done: for 1 ≤ i ≤ n, inductively define

w∗
i = vi −

i−1∑
j=1

⟨vi | wj⟩wj and wi = 1
∥w∗

i ∥
w∗
i , where vi = gεi.

It is easy to verify that w1, . . . ,wn is an orthonormal basis of Rn (see Ex-
ercise 2).

Since {w1, . . . ,wn} and {ε1, . . . , εn} are orthonormal, there is an or-
thogonal matrix k ∈ O(n), such that kwi = εi for all i. Then

kw∗
i = k · ∥w∗

i ∥wi = ∥w∗
i ∥(kwi) = ∥w∗

i ∥ εi,
so there is a diagonal matrix a (with positive entries on the diagonal),
such that

kw∗
i = aεi for all i.

Also, it is easy to see (by induction) that wi ∈ ⟨v1, . . . , vi⟩ for every i.
With this in mind, we have

g−1w∗
i = g−1 vi − g−1

∑i−1

j=1
⟨vi | wj⟩wj

∈ g−1 vi + g−1 ⟨v1, . . . , vi−1
⟩

= εi +
⟨
ε1, . . . , εi−1

⟩
,

so there exists u ∈ N, such that

g−1w∗
i = uεi for all i.

Therefore

u−1g−1w∗
i = εi = a−1kw∗

i ,

so u−1g−1 = a−1k. Hence, g = k−1au−1 ∈ KAN (see Exercise 4). □

Exercises for §7.1.

#1. Show that if k1a1u1 = k2a2u2, with ki ∈ K, ai ∈ A, and ui ∈ N,
then k1 = k2, a1 = a2, and u1 = u2.
[Hint: Show k−1

1 k2 = a1u1u−1
2 a

−1
2 ∈ K ∩ AN = {e}, so k1 = k2. This implies

a−1
1 a2 = u1u−1

2 ∈ A∩N = {e}, so a1 = a2 and u1 = u2.]

#2. In the notation of the proof of Theorem 7.1.1, show {w1, . . . ,wn}
is an orthonormal basis of Rn.
[Hint: Calculating an inner product shows that w∗i ⊥ wk whenever i > k.]

#3. Show that the components k, a, and u in the Iwasawa decomposi-
tion g = kau are real analytic functions of g.
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[Hint: The matrix entries of a and k−1 can be written explicitly in terms of the
vectors w∗i and wi, which are real-analytic functions of g. Then u = a−1k−1g is
also real analytic.]

#4. In the proof of Theorem 7.1.1, note that:
• a is a diagonal matrix, but we do not know the determinant

of a, so it is not obvious that a ∈ SL(n,R), and
• k ∈ O(n), but K = SO(n), so it is not obvious that k ∈ K.

From the fact that g = k−1au−1, show a ∈ A and k ∈ K.
[Hint: We know detk ∈ {±1}, deta > 0, detu = 1, and the determinant of a product
is the product of determinants.]

#5. Let G = SL(n,R).
a) Show G = KNA = ANK = NAK.

[Hint: We have AN = NA and G = G−1.]

b) (optional) (harder ) Show G ≠ NKA (if n ≥ 2).
[Hint: For n = 2, the action ofG by isometries on H2 yields a simply transitive
action on the set of unit tangent vectors. Let v be a vertical tangent vector
at the point i, and let w be a horizontal tangent vector at the point 2i. The
N-orbit of w consists of horizontal vectors at points on the line R + 2i, but
vectors in the KA-orbit of v are horizontal only on the line R+ i.]

#6. Show that every compact subgroup of SL(n,R) is conjugate to a
subgroup of SO(n).
[Hint: For every compact subgroup C of SL(n,R), there is a C-invariant inner prod-
uct on Rn, defined by ⟨v | w⟩ =

∫
C(cv · cw)dc. Since ⟨v | w⟩ = gv ·gw for some

g ∈ SL(n,R), the usual dot product is invariant under some conjugate of C. This
conjugate is contained in SO(n).]

§7.2. Siegel sets for SL(n, Z)

(7.2.1) Example. Let Γ = SL(2,Z) and G = SL(2,R). Figure 7.2A(a) (on
page 155) depicts a well-known fundamental domain for the action of Γ
on the upper half plane H. (We have already seen this in Figure 1.3A.)
For convenience, let us give it a name, say F0. There is a corresponding
fundamental domain F0 for Γ in G, namely

F0 = {g ∈ G | g(i) ∈ F0 }
(cf. Exercise 1).

Unfortunately, the shape ofF0 is not entirely trivial, because the bot-
tom edge is curved. Furthermore, the shape of a fundamental domain
gets much more complicated when G is larger than just SL(2,R). There-
fore, we will content ourselves with finding a set that is easier to describe,
and is close to being a fundamental domain.

(7.2.2) Example. To construct a region that is simpler than F0, we can
replace the curved edge with an edge that is straight. Also, because we
do not need to find precisely a fundamental domain, we can be a bit
sloppy about exactly where to place the edges, so we can enlarge the



7.2. SIEGEL SETS FOR SL(n,Z) 155

−1 −1
2

1
2

1

i

Figure 7.2A(a). A fundamen-
tal domain F0.
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Figure 7.2A(b). A coarse fun-
damental domain F.

region slightly by moving the edges out a bit. The result is depicted in
Figure 7.2A(b). This new region F is slightly larger than a fundamental
domain, but it is within bounded distance of a fundamental domain, and
it suffices for many purposes. In particular, it is a coarse fundamental
domain, in the sense of Definition 4.7.2 (see Exercise 6).

An important virtue of this particular coarse fundamental domain is
that it can be specified quite easily:

F =
{
x +yi

∣∣∣∣∣ c1 ≤ x ≤ c2,
y ≥ c3

}
for appropriate c1, c2, c3 ∈ R.

By using the Iwasawa decomposition G = NAK (see Exercise 7.1#5),
we can give a fairly simple description of the corresponding coarse fun-
damental domain F in SL(2,R):

(7.2.3) Example. Let

• F = {g ∈ G | g(i) ∈ F },

• Nc1,c2 =
{[

1 t
0 1

] ∣∣∣∣∣ c1 ≤ t ≤ c2

}
,

• Ac3 =
{[
et

e−t

] ∣∣∣∣∣ e2t ≥ c3

}
, and

• K = SO(2).
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Then (see Exercise 10)
F = Nc1,c2Ac3K.

Any set of the form Nc1,c2Ac3K is called a “Siegel set,” so we can sum-
marize this discussion by saying that Siegel sets provide good examples
of coarse fundamental domains for SL(2,Z) in SL(2,R).

To construct a coarse fundamental domain for SL(n,Z) (with n > 2),
we generalize the notion of Siegel set to SL(n,R).

(7.2.4) Definition (Siegel sets for SL(n,Z)). LetG = SL(n,R), and consider
the Iwasawa decomposition G = NAK (see Exercise 7.1#5). To generalize
Example 7.2.3, we construct a “Siegel set” S by choosing appropriate
subsets N of N and A of A, and letting S = NAK.

• The setN can be any (nonempty) compact subset ofN. For example,
we could let

N = Nc1,c2 = {u ∈ N | c1 ≤ ui,j ≤ c2 for i < j }.
• Note that the set Ac3 of Example 7.2.3 has the following alternate

description:
Ac3 = {a ∈ A | a1,1 ≥ c3 a2,2 }.

Therefore, we can generalize to SL(n,R) by defining

Ac = {a ∈ A | ai,i ≥ c ai+i,i+1 for i = 1, . . . , n− 1}.
Thus, for c1, c2 ∈ R and c3 ∈ R+, we have a Siegel set

Sc1,c2,c3 = Nc1,c2Ac3K.

By calculating an appropriate multiple integral, it is not difficult to
see that Siegel sets have finite measure:

(7.2.5) Proposition (see Exercise 14). Sc1,c2,c3 has finite measure (with
respect to the Haar measure on SL(n,R)).

Exercises for §7.2.

#1. SupposeH is a closed subgroup of G, andF is a strict fundamental
domain for the action of Γ on G/H. For every x ∈ G/H, show that

F = {g ∈ G | gx ∈ F }
is a strict fundamental domain for Γ in G.

#2. Suppose F1 and F2 are coarse fundamental domains for Γ in G.
Show that if F1 ⊆ F ⊆ F2, then F is also a coarse fundamental
domain for Γ in G.

#3. Suppose
• F is a coarse fundamental domain for the action of Γ on X, and
• F is a nonempty, finite subset of Γ .

Show that FF = ∪f∈F fF is also a coarse fundamental domain.
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#4. SupposeH is a closed subgroup ofG, andF is a coarse fundamental
domain for the action of Γ on G/H. For every x ∈ G/H, show that

F = {g ∈ G | gx ∈ F }
is a coarse fundamental domain for Γ in G.

#5. In the notation of Figure 7.2A, show that the coarse fundamental
domain F is contained in the union of finitely many Γ-translates of
the fundamental domain F0.

#6. Show that the set F depicted in Figure 7.2A(b) is indeed a coarse
fundamental domain for the action of Γ on H.
[Hint: Exercises 3 and 5. You may assume (without proof) thatF0 is a fundamental
domain.]

#7. Suppose
• F is a coarse fundamental domain for Γ in G, and
• F1 is a nonempty, finite subset of Γ , and
• Γ1 is a finite-index subgroup of Γ .

Show:
a) that F1F is also a coarse fundamental domain for Γ in G.
b) If Γ1F1F = G, then F1F is a coarse fundamental domain for

both Γ and Γ1 in G.

#8. Assume Γ is infinite (or, equivalently, that G is not compact), and Γ1
is a finite-index, proper subgroup of Γ . Show there exists a (strict)
fundamental domain for Γ1 in G that is not contained in any coarse
fundamental domain for Γ in G.
[Hint: Construct a strict fundamental domain for Γ1 that contains a strict funda-
mental domain F0 for Γ, but is not covered by finitely many Γ-translates of F0.]

#9. Suppose
• F is a coarse fundamental domain for Γ in G, and
• g ∈NG(Γ).

Show that Fg = g−1Fg is also a coarse fundamental domain.

#10. Let F be the coarse fundamental domain for SL(2,Z) in SL(2,R)
that is defined in Example 7.2.3. Verify that F = Nc1,c2Ac3K.

#11. Let G = SL(n,R). Given c > 0, show there exists a ∈ A, such that
Ac = aA+.

#12. This exercise provides a description of the Haar measure on G.
Let dg, dk, da, and du be the Haar measures on the unimod-

ular groups G, K, A, and N, respectively, where G = KAN is an
Iwasawa decomposition. Also, for a ∈ A, let ρ(a) be the modulus
(or Jacobian) of the action of a on N by conjugation, so∫

N
f(a−1ua)du =

∫
N
f(u)ρ(a)du for f ∈ Cc(N).
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Show, for f ∈ Cc(G), that∫
G
f dg =

∫
K

∫
N

∫
A
f(kua)dadudk

=
∫
K

∫
A

∫
N
f(kau)ρ(a)dudadk.

[Hint: Since G is unimodular, dg is invariant under left translation by elements
of K and right translation by elements of AN.]

#13. Let G = SL(n,R), choose N, A, and K as in Definition 7.2.4, and
define ρ as in Exercise 12. Show

ρ



a1,1

a2,2

0
0

. . .
an,n


 =∏

i<j

aj,j
ai,i

.

#14. Let c1, c2, c3 ∈ R, with c1 < c2 and c3 > 0. Show that the Siegel set
Sc1,c2,c3 in SL(n,R) has finite measure.
[Hint: See Exercises 12 and 13 for a description of the Haar measure on SL(n,R).]

§7.3. Constructive proof using Siegel sets

In this section, we prove the following result:

(7.3.1) Theorem. Let

• G = SL(n,R),
• Γ = SL(n,Z), and

• S0,1, 12
= N0,1A1/2K be the Siegel set defined in Definition 7.2.4.

Then G = Γ S0,1, 12
.

This establishes Theorem 7.0.1:

Proof of Theorem 7.0.1. Combine the conclusion of Theorem 7.3.1 with
Propositions 4.1.11 and 7.2.5. □

(7.3.2) Remarks.

1) Γ is written on the left in the conclusion of Theorem 7.3.1, because
our definition of Siegel sets is motivated by a fundamental domain
for the action of SL(2,Z) on H2, and Γ acts on the left there. How-
ever, taking the transpose of both sides of the conclusion of The-
orem 7.3.1 yields G = ST

0,1, 12
Γ , where ST

0,1, 12
= KA1/2NTc1,c2

. Thus, Γ
can be written on the right, if the definition of Siegel set is modified
appropriately.

2) Our definition of Siegel sets uses the upper-triangular groupN, and
Theorem 7.3.1 puts Γ on the left. Then (1) uses the lower-triangular
group NT (also called N−), and puts Γ on the right. Some authors
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reverse this, using N− when Γ is on the left and using N when the
action on the right. However, to accomplish this, the inequality in
the definition of Ac needs to be reversed. (See Exercise 1 and the
proof of Theorem 7.3.1.)

The following elementary observation is the crux of the proof of The-
orem 7.3.1:

(7.3.3) Lemma. If L is any Z-lattice in Rn, then there is an ordered basis
v1, . . . , vn of Rn, such that

1) {v1, . . . , vn} generates L as an abelian group, and

2) ∥proj⊥i vi+1∥ ≥ 1
2∥proj⊥i−1 vi∥ for 1 ≤ i < n, where proj⊥i : Rn → V⊥i

is the orthogonal projection onto the orthogonal complement of the
subspace Vi spanned by {v1, v2, . . . , vi}.

Proof. Choose v1 to be a nonzero vector of minimal length in L. Then
define the remaining vectors v2, v3, . . . , vn by induction, as follows:

Given v1, v2, . . . , vi, choose vi+1 ∈ L to make proj⊥i vi+1 as short as
possible, subject to the constraint that vi+1 is linearly independent
from {v1, v2, . . . , vi} (so proj⊥i vi+1 is nonzero).

We now verify (1) and (2).
(1) For each i, let Li be the abelian group generated by v1, v2, . . . , vi.

If Ln ≠ L, we may let i be minimal with Li+1 ≠ L ∩ Vi+1. Then we
must have proj⊥i Li+1 ⊊ proj⊥i (L∩Vi+1) (see Exercise 2), so there is some
v ∈ L∩Vi+1 with proj⊥i vi+1 = k ·proj⊥i v for some k ≥ 2 (see Exercise 3).
This contradicts the minimality of ∥proj⊥i vi+1∥.

(2) For simplicity, assume i = 1 (see Exercise 4), and let v∗2 = proj⊥1 v2,
so v2 = v∗2 + αv1, with α ∈ R. Obviously, there exists k ∈ Z, such that
|α− k| ≤ 1/2. If ∥proj⊥1 v2∥ < 1

2∥v1∥, then

∥v2 − kv1∥ = ∥v∗2 + (α− k)v1∥ ≤ ∥v∗2 ∥ + |α− k| · ∥v1∥

<
1
2
∥v1∥ + 1

2
∥v1∥ = ∥v1∥.

This contradicts the minimality of ∥v1∥. □

Proof of Theorem 7.3.1. We wish to show G = Γ S0,1, 12
= Γ N0,1A1/2K.

However, since the proof uses an action of G, and most readers prefer
to have this action on the left, we will instead prove an analogous result
with Γ on the right: G = S−

0,1, 12
Γ . Namely, given g ∈ G,

we will show g ∈ KA−1/2N0,1 Γ ,
where A−c = {a−1 | a ∈ Ac } = {a ∈ A | ai,i ≤ ai+1,i+1/c for all i}.

For convenience, let L = gZn, and let {ε1, . . . , εn} be the standard
basis of Rn. Lemma 7.3.3 provides us with a sequence v1, . . . , vn of ele-
ments of L. From 7.3.3(1), we see that, after multiplying g on the right
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by an element of Γ , we may assume

gεi = vi for i = 1, . . . , n
(see Exercise 6).

From the Iwasawa decomposition G = KAN (see Theorem 7.1.1), we
may write g = kau with k ∈ K, a ∈ A, and u ∈ N. For simplicity, let us
assume k is trivial (see Exercise 7), so

g = au with a ∈ A and u ∈ N.

Since g ∈ AN, we know g is upper triangular (and its diagonal entries
are exactly the same as the diagonal entries of a), so

⟨ε1, ε2, . . . , εi⟩ = ⟨gε1, gε2, . . . , gεi⟩ = ⟨v1, v2, . . . , vi⟩ for all i.
This implies that the diagonal entry ai,i of a is given by

ai,i = gi,i = ∥proj⊥i−1 gεi∥ = ∥proj⊥i−1 vi∥
≤ 2∥proj⊥i vi+1∥ = 2∥proj⊥i gεi+1∥ = 2gi+1,i+1 = 2ai+1,i+1.

Therefore a ∈ A−1/2.
Also, there exists γ ∈ Γ ∩ N, such that u ∈ N0,1 γ (see Exercise 8).

Therefore g = au ∈ A−1/2N0,1 γ ⊆ KA−1/2N0,1 Γ , as desired. □

(7.3.4) Remark. It can be shown that that the Siegel set S0,1, 12
is a coarse

fundamental domain for SL(n,Z) in SL(n,R) (cf. Subsection 19.4(ii)), but
this fact is not needed in the proof that SL(n,Z) is a lattice in SL(n,R).

Exercises for §7.3.

#1. Let
• N−c1,c2

=
{[

1 0
t 1

] ∣∣∣ c1 ≤ t ≤ c2

}
,

• A−c3
=
{[
et
e−t

] ∣∣∣∣ e2t ≤ c3

}
,

• K = SO(2), and
• F ′ = N−c1,c2

A−c3
K.

Show thatF ′ is a coarse fundamental domain for SL(2,Z) in SL(2,R)
if and only if the set F = Nc1,c2Ac3K of Example 7.2.3 is a coarse
fundamental domain.
[Hint: Conjugate by

[
0 1
1 0

]
.]

#2. In the notation of Lemma 7.3.3, show that if X and Y are two sub-
groups of Vi+1, such that

X ⊆ Y , X ∩ Vi = Y ∩ Vi, and proj⊥i X = proj⊥i Y ,

then X = Y .

#3. In the notation of Lemma 7.3.3, show that the group proj⊥i (L∩Vi+1)
is cyclic.
[Hint: Since dim proj⊥i Vi+1 = 1, it suffices to show proj⊥i (L∩ Vi+1) is discrete.]
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#4. Prove Lemma 7.3.3(2) without assuming i = 1.
[Hint: Mod out Vi−1, which is in the kernel of both proj⊥i−1 and proj⊥i .]

#5. For g ∈ GL(n,R), show g ∈ GL(n,Z) if and only if gZn ⊆ Zn and
g−1Zn ⊆ Zn.

#6. For every n-element generating set {v1, . . . , vn} of the group Zn,
show there exists γ ∈ SL(n,Z), such that gεi = ±vi for every i.
[Hint: Show there exists γ ∈ GL(n,Z), such that gεi = vi for every i.]

#7. Complete the proof of Theorem 7.3.1 (without assuming the ele-
ment k is trivial).
[Hint: The group K acts by isometries on Rn, so replacing {v1, . . . , vn} with its
image under an element of K does not affect the validity of 7.3.3(2).]

#8. For all c ∈ R, show N = Nc,c+1NZ.

§7.4. Elegant proof using nondivergence of unipotent orbits

We now present a very nice proof of Theorem 7.0.1 that relies on two key
facts: the Moore Ergodicity Theorem (4.10.3), and an important observa-
tion about orbits of unipotent elements (Theorem 7.4.7). The statement
of this observation will be more enlightening after some introductory
remarks.

(7.4.1) Example. Let a =
[
2 0
0 1/2

]
, or, more generally, let abe any element

of SL(2,R) that is diagonalizable over R (and is not ± Id). Then a has one
eigenvalue that is greater than 1, and one eigenvalue that is less than 1
(in absolute value), so it is obvious that there exist linearly independent
vectors v+ and v− in R2, such that

akv+ → 0 and a−kv− → 0 as k→ +∞.
By the Mahler Compactness Criterion (4.4.7), this implies that some of
the orbits of a on SL(2,R)/ SL(2,Z) are “divergent” or “go off to infinity”
or “leave compact all sets.” That is, there exists x ∈ SL(2,R)/ SL(2,Z),
such that, for every compact subset C of SL(2,R)/ SL(2,Z),

{k ∈ Z | akx ∈ C } is finite

(see Exercise 1).

In contrast, if u =
[
1 1
0 1

]
, then it is clear that there does not exist a

nonzero vector v ∈ R2, such that ukv → 0 as k → ∞. In fact, if v is not
fixed by u (i.e., if uv ≠ v), then

∥ukv∥ → ∞ as k→ ±∞ (7.4.2)

(see Exercise 2). Therefore, it is not very difficult to show that none of
the orbits of u on SL(2,R)/ SL(2,Z) go off to infinity:
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(7.4.3) Proposition. If u is any unipotent element of SL(2,R), then, for all
x ∈ SL(2,R)/ SL(2,Z), there is a compact subset C of SL(2,R)/ SL(2,Z),
such that

{k ∈ Z+ | ukx ∈ C } is infinite.

Proof. We may assume u is nontrivial. Then, by passing to a conjugate
(and perhaps taking the inverse), we may assume u = [ 1 1

0 1

]
.

Choose a small neighborhoodO of 0 inR2 so that, for all g ∈ SL(2,R),
there do not exist two linearly independent vectors in O∩gZ2 (see Exer-
cise 4). Since xZ2 is discrete, we may assume O is small enough that

O ∩ xZ2 = {0}. (7.4.4)

Since O is open and 0 is a fixed point of u (and the action of u−1 is
continuous), there exists r > 0, such that

Br (0)∪u−1Br (0) ⊆ O, (7.4.5)

where Br (0) is the open ball of radius r around 0. Let

C =
{
c ∈ SL(2,R)/ SL(2,Z)

∣∣∣ cZ2 ∩ Br (0) = {0}
}
.

The Mahler Compactness Criterion (4.4.7) tells us that C is compact.
Given N ∈ Z+, it suffices to show there exists k ≥ 0, such that

uN+kx ∈ C. That is,

we wish to show there exists k ≥ 0, such that uN+kxZ2 ∩ Br (0) = {0}.
Let v be a nonzero vector of smallest length in uNxZ2. We may assume
∥v∥ < r (for otherwise we may let k = 0). Hence, (7.4.4) implies that v
is not fixed by u. Then, from (7.4.2), we know there is some k > 0, such
that ∥ukv∥ ≥ r , and we may assume k is minimal with this property.
Therefore ∥uk−1v∥ < r , so uk−1v ∈ Br (0) ⊆ O by (7.4.5).

From the choice of O, we know that O∩uN+k−1xZ does not contain
any vector that is linearly independent from uk−1v. Therefore uN+kxZ2

does not contain any nonzero vectors of length less than r (see Exer-
cise 5), as desired. □

This result has a natural generalization to SL(n,R) (but the proof is
more difficult; see Section 7.5):

(7.4.6) Theorem (Margulis). Suppose

• u is a unipotent element of SL(n,R), and

• x ∈ SL(n,R)/ SL(n,Z).
Then there exists a compact subset C of SL(n,R)/ SL(n,Z), such that

{k ∈ Z+ | ukx ∈ C } is infinite.

In other words, every unipotent orbit visits some compact set infin-
itely many times. In fact, it can be shown that the orbit visits the compact
set quite often — it spends a nonzero fraction of its life in the set:
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(7.4.7) Theorem (Dani-Margulis). Suppose

• u is a unipotent element of SL(n,R), and

• x ∈ SL(n,R)/ SL(n,Z).
Then there exists a compact subset C of SL(n,R)/ SL(n,Z), such that

lim inf
m→∞

#
{
k ∈ {1,2, . . . ,m}

∣∣∣ ukx ∈ C }
m

> 0.

Before saying anything about the proof of this important fact, let us
see how it implies the main result of this chapter:

Proof of Theorem 7.0.1. Let

• X = SL(n,R)/ SL(n,Z), and

• µ be an SL(n,R)-invariant measure on X (see Proposition 4.1.3).

We wish to show µ(X) <∞.
Fix a nontrivial unipotent element u of SL(n,R). For each x ∈ X and

compact C ⊆ X, let

ρC(x) = lim inf
m→∞

#
{
k ∈ {1,2, . . . ,m}

∣∣∣ ukx ∈ C }
m

.

Since X can be covered by countably many compact sets, Theorem 7.4.7
implies there is a compact set C, such that

ρC > 0 on a set of positive measure (7.4.8)

(see Exercise 6). Letting χC be the characteristic function of C, we have∫
X
ρC dµ =

∫
X

lim inf
m→∞

#
{
k ∈ {1,2, . . . ,m}

∣∣∣ ukx ∈ C }
m

dµ(x)

≤ lim inf
m→∞

∫
X

#
{
k ∈ {1,2, . . . ,m}

∣∣∣ ukx ∈ C }
m

dµ(x)

Fatou’s
Lemma
(B6.4)


= lim inf

m→∞
1
m

∫
X

(
χu−1C +χu−2C + · · · +χu−mC

)
dµ

= lim inf
m→∞

1
m

(∫
X
χu−1C dµ +

∫
X
χu−2C dµ + · · · +

∫
X
χu−mC dµ

)
= lim inf

m→∞
1
m

(
µ(u−1C)+ µ(u−2C)+ · · · + µ(u−mC)

)
= lim inf

m→∞
1
m

(
µ(C)+ µ(C)+ · · · + µ(C)

)
= µ(C)
<∞,

so ρC ∈ +1(X, µ).
It is easy to see that ρC is u-invariant (see Exercise 7), so the Moore

Ergodicity Theorem (4.10.3) implies that ρC is constant (a.e.). Also, from



164 7. SL(n,Z) IS A LATTICE IN SL(n,R)

(7.4.8), we know that the constant is not 0. Therefore, we have a nonzero
constant function that is in +1(X, µ), which tells us that µ(X) is finite. □

Now, to begin our discussion of the proof of Theorem 7.4.7, we intro-
duce a bit of terminology and notation, and make some simple observa-
tions. First of all, let us restate the result by using the Mahler Compact-
ness Criterion (4.4.7), and also replace the discrete times {1,2,3, . . . ,m}
with a continuous interval [0, T ]. Exercise 10 shows that this new version
implies the original.

(7.4.9) Definition. For any Z-lattice L in Rn, there is some g ∈ GL(n,R),
such that L = gZn. We say L is unimodular if detg = ±1.

(7.4.10) Theorem (restatement of Theorem 7.4.7). Suppose

• {ut} is a one-parameter unipotent subgroup of SL(n,R),
• L is a unimodular Z-lattice in Rn, and

• l is the usual Lebesgue measure (i.e., length) on R.

Then there exists a neighborhood O of 0 in Rn, such that

lim inf
T→∞

l
({
t ∈ [0, T ]

∣∣ utL∩O = {0} })
T

> 0.

(7.4.11) Notation. Suppose W is a discrete subgroup of Rn.

• A vector w ∈ W is primitive in W if λw ∉ W , for 0 < λ < 1.

• Let Ŵ be the set of primitive vectors in W .

• Let Ŵ+ ⊆ Ŵ be a set of representatives that contains either w
or −w, but not both, for every w ∈ Ŵ . (Note that Ŵ = −Ŵ ; see
Exercise 11.)

For simplicity, let us assume now that n = 2 (see Section 7.5 for a
discussion of the general case).

(7.4.12) Lemma.

1) There is a neighborhood O1 of 0 in R2, such that if W is any uni-
modular Z-lattice in R2, then #

(
Ŵ+ ∩O1

)
≤ 1.

2) Given any neighborhood O1 of 0 in R2, and any ϵ > 0, there exists
a neighborhood O2 of 0 in R2, such that if x ∈ R2, and [a, b] is an
interval in R, such that there exists t ∈ [a, b] with utx ∉ O1, then

l
({
t ∈ [a, b]

∣∣∣ utx ∈ O2

})
≤ ϵ l

({
t ∈ [a, b]

∣∣∣ utx ∈ O1

})
.

Proof. (1) A unimodular Z-lattice in R2 cannot contain two linearly inde-
pendent vectors of norm less than 1 (see Exercise 12).

(2) Note that utx moves at constant velocity along a straight line
(see Exercise 13). So we simply wish to choose O2 small enough that
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Figure 7.4A. Part (2) of Lemma 7.4.12: Any line segment
that reaches the boundary of the large disk has only a
small fraction of its length inside the tiny disk.

every line segment that reaches the boundary of O1 has only a small
fraction of its length inside O2 (cf. Figure 7.4A).

By making O1 smaller, there is no harm in assuming it is a disk cen-
tered at 0. Let R be the radius of O1, and let O2 be a disk of radius r
centered at 0, with r small enough that

2r
R − r < ϵ.

Then, for any line segment L that reaches bothO2 and the boundary ofO1,
we have:

• the length of L∩O2 is ≤ the diameter 2r of O2, and

• the length of L∩O1 is ≥ the distance R − r from ∂O1 to ∂O2.

Therefore, the segment of L that is in O2 has length less than ϵ times the
length of the segment that is O1 (cf. Figure 7.4A). □

Proof of Theorem 7.4.10 when n = 2. Let O1 and O2 be as described in
Lemma 7.4.12, with ϵ = 1/2. We may assume O1 and O2 are convex, that
they are small enough that they contain no nonzero elements of L, and
that O2 ⊆ O1.

Fix T ∈ R+. For each x ∈ L̂+, and k = 1,2, let

Ikx = { t ∈ [0, T ] | xut ∈ Ok }.
Since Ok is convex, and utx traces out a line (see Exercise 13), we know
that Ikx is an interval (possibly empty). Note that:

1) from Lemma 7.4.12(2) (and the fact that ϵ = 1/2), we see that
l(I2x) ≤ 1

2 l(I
1
x), and

2) from Lemma 7.4.12(1), we see that I1x1
is disjoint from I1x2

whenever
x1 ≠ x2.
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Therefore

l
({ t ∈ [0, T ] | utL∩O2 ≠ {0}

) = ∑
x∈L̂+

l(I2x) ≤
∑
x∈L̂+

l(I1x)
2

= 1
2
l

 ∪
x∈L̂+

I1x

 ≤ 1
2
l
(
[0, T ]

) = T
2
.

So, passing to the complement, we have

l
({ t ∈ [0, T ] | utL∩O2 = {0}

) ≥ T
2
. □

Unfortunately, Theorem 7.4.10 is not nearly as easy to prove when
n > 2, because two basic complications arise.

1) The first difficulty is that the ut-orbit of a vector is usually not a
straight line (contrary to Exercise 13 for n = 2). However, the coor-
dinates of utx are always polynomials of bounded degree (see Ex-
ercise 14), so, for any fixed vector x,

the function ∥utx∥2 is a polynomial in t
and the degree of this polynomial is bounded (independent of x).
Therefore, it is easy to prove that the appropriate analogue of
Lemma 7.4.12(2) holds even if n > 2 (see Exercise 15), so the non-
linearity is not a major problem.

2) A much more serious difficulty is the failure of 7.4.12(1): if n > 2,
then a unimodular lattice in Rn may have two linearly independent
primitive vectors that are very small (see Exercise 16). This means
that the sets I2x in the above proof may not be disjoint, which is
a major problem. It is solved by looking at not only single vec-
tors, but at larger sets of linearly independent vectors. More pre-
cisely, we look at the subgroups generated by sets of small vectors
in utL. These subgroups can intersect in rather complicated ways,
and sorting this out requires a study of chains of these subgroups
(ordered by inclusion) and a rather delicate proof by induction. Al-
though the proof is completely elementary, using only some obser-
vations about polynomial functions, it is very clever and intricate.
The main idea is presented in Section 7.5.

Exercises for §7.4.

#1. Suppose a ∈ SL(2,R), and there exist linearly independent vectors
v+ and v− in R2, such that

anv+ → 0 as n→ +∞ and anv− → 0 as n→ −∞.
Show ∃ x ∈ SL(2,R)/ SL(2,Z), such that {n ∈ Z | anx ∈ C } is
finite, for every compact subset C of SL(2,R)/ SL(2,Z).
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[Hint: There exists g ∈ SL(2,R) that takes the two standard basis vectors of R2 to
vectors that are scalar multiples of v+ and v−.]

#2. Let u = [ 1 1
0 1

]
. For every v ∈ R2, show that either

• unv = v for all n ∈ Z, or
• ∥unv∥ → ∞ as n→∞.

#3. Generalize the preceding exercise to SL(n,R):
Let u be any unipotent element of SL(n,R). For every v ∈ Rn,

show that either
• unv = v for all n ∈ Z, or
• ∥unv∥ → ∞ as n→∞.

[Hint: Each coordinate of unv is a polynomial function of n, and non-constant
polynomials cannot be bounded.]

#4. Suppose v1 and v2 are linearly independent vectors in Z2, and we
have g ∈ SL(2,R). Show that if ∥gv1∥ < 1, then ∥gv2∥ > 1.
[Hint: Since g ∈ SL(2,R), the area of the parallelogram spanned by the vectors gv1
and gv2 is the same as the area of the parallelogram spanned by v1 and v2, which
is an integer.]

#5. Near the end of the proof of Proposition 7.4.3, verify the assertion
that un+NxZ2 does not contain any nonzero vectors of length less
than r .
[Hint: If ∥w∥ < r, then un−1v and u−1w are linearly independent vectors in
O∩un+N−1xZ.]

#6. Prove (7.4.8).
[Hint: X cannot be the union of countably many sets of measure 0.]

#7. In the proof of Theorem 7.0.1, verify (directly from the definition)
that ρC is u-invariant.

#8. Show Definition 7.4.9 is well-defined. More precisely, given any
g1, g2 ∈ GL(n,R), such that g1Zn = g2Zn, show

detg1 ∈ {±1} ⇐⇒ detg2 ∈ {±1}.
#9. Assume

• ut is a one-parameter unipotent subgroup of G,
• x ∈ G/Γ , and
• C∗ is a compact subset of G/Γ .

Show that if

lim inf
T→∞

l
({
t ∈ [0, T ]

∣∣ utx ∈ C∗ })
T

> 0,

then there is a compact subset C of G/Γ , such that

lim inf
m→∞

#
{
k ∈ {1,2, . . . ,m}

∣∣∣ ukx ∈ C }
m

> 0.

[Hint: Let C = ∪t∈[0,1]utC∗.]
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#10. Show Theorem 7.4.10 implies Theorem 7.4.7.
[Hint: Mahler Compactness Criterion (4.4.7) and Exercise 9.]

#11. Suppose w is a nonzero element of a discrete subgroup W of Rn.
Show the following are equivalent:

a) w is primitive in W .
b) Rw ∩W = {Zw}.
c) If kw′ = w, for some k ∈ Z and w′ ∈ W , then k ∈ {±1}.
d) −w is primitive in W .

#12. Suppose v andw are linearly independent vectors in a unimodular
Z-lattice in R2. Show ∥v∥ · ∥w∥ ≥ 1.

#13. Show that if x ∈ R2, and {ut} is any nontrivial one-parameter
unipotent subgroup of SL(2,R), then utx moves at constant ve-
locity along a straight line.
[Hint: Calculate the coordinates of utx after choosing a basis so that ut =

[
1 t
0 1

]
.]

#14. Given n ∈ Z+, show there is a constant D, such that if x ∈ Rn, and
{ut} is any one-parameter unipotent subgroup of SL(n,R), then the
coordinates of utx are polynomial functions of t, and the degrees
of these polynomials are ≤ D.
[Hint: We haveut = exp(tv) for some v ∈ Matn×n(R). Furthermore, v is nilpotent,
because ut is unipotent, so the power series exp(tv) is just a polynomial.]

#15. Given R,D, ϵ > 0, show there exists r > 0, such that if
• f(x) is a (real) polynomial of degree ≤ D, and
• [a, b] is an interval in R, with |f(t)| ≥ R for some t ∈ [a, b],

then

l
({
t ∈ [a, b]

∣∣ |f(t)| < r }) ≤ ϵ l({ t ∈ [a, b] ∣∣ |f(t)| < R }).
[Hint: If not, then taking a limit yields a polynomial of degree D that vanishes on
a set of positive measure, but is ≥ R at some point.]

#16. For every ϵ > 0, find a unimodular Z-lattice L in Rn with n − 1
linearly independent primitive vectors of norm ≤ ϵ.

#17. Assume G is defined over Q (and connected). Show there exist
• a finite-dimensional real vector space V,
• a vector v in V, and
• a homomorphism ρ : SL(ℓ,R)→ SL(V),

such that
a) G = StabSL(ℓ,R)(v)◦, and
b) ρ

(
SL(ℓ,Z)

)
v is discrete.

[Hint: See the hint to Exercise A4#8, and choose v to be the exterior product of
polynomials with integer coefficients.]

#18. Show that if G is defined over Q, then the natural embedding
G/GZ ↩ SL(ℓ,R)/ SL(ℓ,Z) is a proper map.
[Hint: Use Exercise 17.]
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#19. Prove Theorem 5.1.11 under the additional assumption that G is
simple.
[Hint: The natural embedding G/GZ ↩ SL(ℓ,R)/ SL(ℓ,Z) is a proper map (see Ex-
ercise 18), so the G-invariant measure on G/GZ provides a G-invariant measure µ
on SL(ℓ,R)/ SL(ℓ,Z), such that all compact sets have finite measure. The proof of
Theorem 7.0.1 (with u ∈ G) implies that µ is finite.]

#20. Prove Theorem 5.1.11 (without assuming that G is simple).
[Hint: You may assume Exercise 11.2#10 (without proof). This provides a version
of the Moore Ergodicity Theorem for groups that are not simple.]

§7.5. Proof that unipotent orbits return to a compact set

The proof of Theorem 7.4.10 is rather complicated. To provide the gist
of the argument, while eliminating some of the estimates that obscure
the main ideas, we prove only Theorem 7.4.6, which is a qualitative
version of the result. (The quantitative conclusion in Theorem 7.4.10
makes additional use of observations similar to Lemma 7.4.12(2) and Ex-
ercise 7.4#15.) This section is optional, because none of the material is
needed elsewhere in the book.

By the Mahler Compactness Criterion (and an appropriate modifica-
tion of Exercise 7.4#9), it suffices to prove the following statement:

(7.5.1) Theorem (restatement of Theorem 7.4.6). Suppose

• {ut} is a one-parameter unipotent subgroup of SL(n,R), and

• L is a unimodular Z-lattice in Rn.

Then there exists a neighborhood O of 0 in Rn, such that{
t ∈ R+

∣∣∣ utL∩O = {0}} is unbounded.

(7.5.2) Definition. Suppose

• W is a discrete subgroup of Rn, and

• k is the dimension of the linear span ⟨W⟩ of W .

We make the following definitions:

1) We define an inner product on the exterior power
∧kRn by declaring

{εi1 ∧εi2 ∧· · ·∧εik} to be an orthonormal basis, where {ε1, . . . , εn}
is the standard basis of Rn.

2) Since
∧kW is cyclic (see Exercise 3), it has a generatorw1∧· · ·∧wk

that is unique up to sign, and we define

d(W) = ∥w1 ∧ · · · ∧wk∥.
(However, by convention, we let d

({0}) = 1.)

(7.5.3) Remark. If W is the cyclic group generated by a nonzero vec-
tor w ∈ Rn, then it is obvious that d(W) = ∥w∥. Therefore, Defini-
tion 7.5.2(2) presents a notion that generalizes the norm of a vector.
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The following generalization of Exercise 7.4#14 is straightforward to
prove (see Exercise 5).

(7.5.4) Lemma. Suppose

• {ut} is a one-parameter unipotent subgroup of SL(n,R), and

• W is a discrete subgroup of Rn.

Then d(utW)2 is a polynomial function of t, and the degree of this poly-
nomial is bounded by a constant D that depends only on n.

Lemma 7.5.4 allows us to make good use of the following two ba-
sic properties of polynomials of bounded degree. (See Exercises 6 and 7
for the proofs.) The first follows from the observation that polynomi-
als of bounded degree form a finite-dimensional real vector space, so
any closed, bounded subset is compact. The second uses the fact that
nonzero polynomials of degree D cannot have more than D zeroes.

(7.5.5) Lemma. Suppose D ∈ Z+, ϵ > 0, and f is any real polynomial of
degree ≤ D. Then there exists C > 1, depending only on D and ϵ, such
that, for all T , τ > 0:

1) If f(s) ≥ τ for some s ∈ [0, T ], and |f(T)| ≤ τ/C, then there exists
t ∈ [0, ϵT], such that |f(T + t)| = τ/C.

2) If |f(s)| ≤ τ for all s ∈ [0, T ], and f(T) = τ, then there exists
T1 ∈ [T ,4DT], such that

τ/C ≤ |f(t)| ≤ τC for all t ∈ [T1,2T1].

(7.5.6) Notation. Suppose L is a Z-lattice in Rn.

• A subgroup W of L is full if it is the intersection of Lwith a vector
subspace of Rn. (This is equivalent to requiring L/W to be torsion-
free.)

• Let S(L) be the collection of all full, nontrivial subgroups of L,
partially ordered by inclusion.

• For W ⊆ L, we let ⟨W⟩L be the (unique) smallest full subgroup of L
that contains W . In other words, ⟨W⟩L = ⟨W⟩ ∩ L.

The following simple observation uses full subgroups of L to provide
a crucial lower bound on the norms of vectors (see Exercise 8):

(7.5.7) Lemma. If W ∈ S(L) and v ∈ L∖W , then ∥v∥ ≥ d
(⟨W,v⟩L)
d
(⟨W⟩L) .

We can now prove Theorem 7.5.1. However, to avoid the need for a
proof by induction, we assume n = 3.

Proof of Theorem 7.5.1 when n = 3. It is easy to see that

{W ∈ S(L) | d(W) < 1 } is finite
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(see Exercise 10). Hence, there exists τ > 0, such that

d(W) > τ, for allW ∈ S(L).
Let:

• D be the constant provided by Lemma 7.5.4,

• ϵ = 4−(D+1), and

• C be the constant provided by Lemma 7.5.5.

Given T > 0, it suffices to find R ≥ 0, such that ∥uT+Rv∥ ≥ τ/C2 for all
nonzero v ∈ L.

Let
D = {W ∈ S(L) | d(uTW) < τ/C }.

We assume D ≠ ∅ (otherwise, we could let R = 0). For each W ∈ D,
Lemma 7.5.5(1) implies

there exists tW ∈ [0, ϵT], such that d
(
uT+tWW

) = τ/C.
By choosing tW minimal, we may assume

d(uT+tW) < τ/C for all t ∈ [0, tW ).
Since D is finite (see Exercise 10), we may

fix someW+ ∈ D that maximizes tW .

From Lemma 7.5.5(2), we see that there exists

T1 ∈ [tW+ ,4DtW+] ⊆
[
tW+ ,

T
2

]
,

such that

τ/C2 ≤ d(uT+tW+) ≤ τC2 for all t ∈ [T1,2T1].
Since dim⟨L⟩ = n = 3, we know dim⟨W+⟩ is either 1 or 2. To be

concrete, let us assume it is 2. (See Exercise 11 for the other case.) Then,
for any v ∈ L ∖ W+, we have ⟨W+, v⟩L = L, so Lemma 7.5.7 implies
∥uT+tv∥ ≥ 1/τ for all t ∈ [T1,2T1]. Hence, it is only the vectors in W+

that can be small anywhere in this interval.
Therefore, we may assume there is some nonzero v0 ∈ W+, such

that ∥uT+T1v0∥ < τ/C2. There is no harm in assuming that Zv0 is a
full subgroup of L. Then, since T1 ≥ tW+, the maximality of tW+ im-
plies ∥uT+sv0∥ ≥ τ/C for some s ∈ [0, T1]. Therefore, Lemma 7.5.5(1)
provides some t ∈ [T1,2T1], such that ∥uT+tv0∥ = τ/C2. Now, for any
nonzero v ∈ L,

either ⟨v⟩L = ⟨v0⟩L, or ⟨v0, v⟩L = W+, or ⟨v,W+⟩L = L .
In each case, we see (by using Lemma 7.5.7 in the latter two cases) that
∥uT+tv∥ ≥ τ/C2 (if τ ≤ 1). □

Exercises for §7.5.

#1. Show that Theorem 7.5.1 is a corollary of Theorem 7.4.10.
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#2. Use Theorem 7.5.1 (and not Theorem 7.4.7 or Theorem 7.4.10) to
show that if {ut}, X, and x are as in Theorem 7.4.7, then there
exists a compact subset K of X, such that{

t ∈ R+
∣∣∣ utx ∈ K } is unbounded.

#3. In the notation of Definition 7.5.2, show
∧kW is cyclic.

[Hint: If {w1, . . . ,wk} generates W, then
∧kW is generated by w1 ∧w2 ∧· · ·∧wk.]

#4. Suppose
• W is (nontrivial) discrete subgroup of Rn, and
• M ∈ SO(n).

Show d(MW) = d(W).
#5. Prove Lemma 7.5.4.

#6. Prove Lemma 7.5.5(1).
[Hint: Since rescaling does not change the degree of a polynomial, we may assume
T = τ = 1. If C does not exist, then taking a limit results in a polynomial of
degree ≤ D that is 1 at some point of [0,1], but vanishes on all of [1,1+ ϵ].]

#7. Prove Lemma 7.5.5(2).
[Hint: Assume, without loss of generality, that T = τ = 1. The polynomials of
degree≤ D that are≤ 1on [0,1] form a compact set, so they are uniformly bounded
by some constant on [1,4D+1]. For T1 ∈ {1,4, . . . ,4D}, the intervals [T1,2T2] are
pairwise disjoint. If f is not bounded away from 0 on any of these intervals, then
taking a limit results in a nonzero polynomial of degree ≤ D that vanishes at D+1
distinct points.]

#8. Prove Lemma 7.5.7.
[Hint: This is easy ifW is generated by scalar multiples of the standard basis vectors
of Rk, and v ∈ Rk+1.]

#9. Show that if L is a discrete subgroup of Rn, and 1 ≤ k ≤ n, then∧kL is a discrete subset of
∧kRn.

[Hint: By choosing an appropriate basis, you can assume L ⊆ Zn.]

#10. Assume
• L is a Z-lattice in Rn, and
• δ > 0.

Show there are only finitely many full subgroups of L, such that
d(W) < δ.
[Hint: Exercise 9. (If W1 and W2 are two different k-dimensional subspaces of Rn,
then

∧kW1 ≠
∧kW2.)]

#11. Complete the proof of Theorem 7.5.1 in the special case where
dim⟨W+⟩ = 1 (and n = 3).
[Hint: If there exist v ∈ L∖W+ and t ∈ [T1,2T1], such that ∥uT+tv∥ < 1/C, then
d
(
uT+R⟨W+, v⟩L

) = τ/C for some R ∈ [T1,2T1].]



REFERENCES 173

Notes

See [1, §1] or [7, §4.2] for more information on Siegel sets in SL(n,R),
and the proof of Theorem 7.0.1 that appears in Sections 7.2 and 7.3.

A brief discussion of the connection with the reduction theory of
positive-definite quadratic forms can be found in [1, §2, pp. 20–24].

See [7, Prop. 3.12, p. 129] for a proof of Theorem 7.1.1. A generaliza-
tion to other semisimple groups will be stated in Theorem 8.4.9.

The clever proof in Section 7.4 is by G. A. Margulis [6, Rem. 3.12(II)].
Theorem 7.4.6 is due to G. A. Margulis [5]. (Section 7.5 is adapted

from the nice exposition in [3, Appendix, pp. 162–173], where all de-
tails can be found.) The result had been announced previously (without
proof), and J. Tits [8, p. 59] commented that:

“For a couple of years, Margulis’ proof remained unpub-
lished and every attempt by other specialists to supply it
failed. When it finally appeared …, the proof came as a
great surprise, both for being rather short and using no
sophisticated technique: it can be read without any spe-
cial knowledge and gives a good idea of the extraordinary
inventiveness shown by Margulis throughout his work.”

The quantitative version stated in Theorem 7.4.7 is due to S. G. Dani
[2]. See [4] for a recent generalization, and applications to number theory.
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Chapter 8

Real Rank

§8.1. R-split tori and R-rank

(8.1.1) Definition. A closed, connected subgroup T of G is a torus if it
is diagonalizable over C; that is, if there exists g ∈ GL(n,C), such that
gTg−1 consists entirely of diagonal matrices. A torus is R-split if it is
diagonalizable over R; that is, if g may be chosen to be in GL(n,R).
(8.1.2) Examples.

1) Let A be the identity component of the group of diagonal matrices
in SL(n,R). Then A is obviously an R-split torus.

2) SO(1,1)◦ is an R-split torus in SL(2,R) (see Exercise 1).

3) SO(2) is a torus in SL(2,R) that is not R-split. It is diagonalizable
over C (see Exercise 2), but not over R (see Exercise 3).

(8.1.3) Warning. An R-split torus is never homeomorphic to the topolo-
gist’s torus Tn (except in the trivial case n = 0).

(8.1.4) Remarks.

1) If T is an R-split torus, then every element of T is hyperbolic
(see Definition A5.1). In particular, no nonidentity element of T
is elliptic or unipotent.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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2) When G is compact, every torus in G is isomorphic to SO(2)n, for
some n. This is homeomorphic to Tn, which is the reason for the
terminology “torus.”

It is a key fact in the theory of semisimple Lie groups that maximal
R-split tori are conjugate:

(8.1.5) Theorem. If A1 and A2 are maximal R-split tori in G, then there
exists g ∈ G, such that A1 = gA2g−1.

This implies that all maximal R-split tori have the same dimension,
which is called the “real rank” (or “R-rank”) of G, and is denoted rankRG:

(8.1.6) Definition. rankRG is the dimension of a maximal R-split torus A
in G. This is independent of both the choice of A and the choice of the
embedding of G in SL(ℓ,R).

(8.1.7) Examples.

1) rankR
(
SL(n,R)

) = n − 1. (Let A be the identity component of the
group of all diagonal matrices in SL(n,R).)

2) We have rankR
(
SL(n,C)

) = rankR
(
SL(n,H)

) = n − 1. This is
because only the real diagonal matrices remain diagonal when
SL(n,C) or SL(n,H) is embedded in SL(2n,R) or SL(4n,R), respec-
tively.

3) rankRG = 0 if and only if G is compact (see Exercise 9).

(8.1.8) Proposition. rankR SO(m,n) = min{m,n}.
Proof. Since SO(m,n) contains a copy of SO(1,1)min{m,n} (see Exercise 7),
and the identity component of this subgroup is an R-split torus (cf. Ex-
ercise 1), we have

rankR SO(m,n) ≥ dim
(
SO(1,1)min{m,n})◦ = min{m,n}.

We now establish the reverse inequality. Let A be a maximal R-split
torus. We may assume A is nontrivial. (Otherwise rankR SO(m,n) = 0,
so the desired inequality is obvious.) Therefore, there is some nontrivial
a ∈ A. Since a is diagonalizable over R, and nontrivial, there is an eigen-
vector v of a, such that av ≠ v; hence, av = λv for some λ ≠ 1. Now, if
we let ⟨· | ·⟩m,n be an SO(m,n)-invariant bilinear form on Rm,n, we have

⟨v | v⟩m,n = ⟨av | av⟩m,n = ⟨λv | λv⟩m,n = λ2⟨v | v⟩m,n.
By choosing a to be near e, we may assume λ ≈ 1, so λ ≠ −1. Since,
by assumption, we know λ ≠ 1, this implies λ2 ≠ 1. So we must have
⟨v | v⟩m,n = 0; that is, v is an isotropic vector. Hence, we have shown
that if the real rank is ≥ 1, then there is an isotropic vector in Rm+n.

By arguing more carefully, it is not difficult to see that if the real
rank is at least k, then there is a k-dimensional subspace of Rm+n that
consists entirely of isotropic vectors (see Exercise 10). Such a subspace
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is said to be totally isotropic . The maximum dimension of a totally
isotropic subspace is min{m,n} (see Exercise 11), so we conclude that
min{m,n} ≥ rankR SO(m,n), as desired. □

(8.1.9) Remarks.

1) Other classical groups, not just SO(m,n), have the property that
their real rank is the maximal dimension of a totally isotropic sub-
space. More concretely, we have

rankR SU(m,n) = rankR Sp(m,n) = min{m,n}.
2) The Mostow Rigidity Theorem (15.1.1) will tell us that if Γ is (iso-

morphic to) a lattice in both G and G1, then G◦ is isomorphic to G′1,
modulo compact groups. Modding out a compact subgroup does
not affect the real rank (cf. Exercise 9), so this implies that the real
rank of G is uniquely determined by the algebraic structure of Γ .

3) Although it is not usually very useful in practice, we now state an
explicit relationship between Γ and rankRG. Let Sr be the set of all
elements γ of Γ , such that the centralizer CΓ (γ) is commensurable
to a subgroup of the free abelian group Zr of rank r . Then it can
be shown that

rankRG = min

{
r ≥ 0

∣∣∣∣∣ Γ is covered by finitely
many translates of Sr

}
.

We omit the proof, which is based on the very useful (and nontriv-
ial) fact that if T is any maximal torus of G, then there exists g ∈ G,
such that gTg−1/(Γ ∩ gTg−1) is compact.

Exercises for §8.1.

#1. Show that the identity component of SO(1,1) is an R-split torus.

[Hint: Let g =
[
1 1
1 −1

]
. Alternatively, note that each element of SO(1,1) is a sym-

metric matrix (hence, diagonalizable via an orthogonal matrix), and use the fact
that any set of commuting diagonalizable matrices is simultaneously diagonaliz-
able.]

#2. For g =
[
1 −i
1 i

]
, show every element of g SO(2)g−1 is diagonal.

#3. Show that SO(2) is not diagonalizable over R.
[Hint: If T is diagonalizable over R, then eigenvalues of the elements of T are real.]

#4. Show that every R-split torus is abelian.

#5. Suppose
• T is an R-split torus in G, and
• A is a maximal R-split torus in G.

Show that T is conjugate to a subgroup of A.
[Hint: By considering dimension, it is obvious that T is contained in some maximal
R-split torus of G.]
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#6. Show that every maximalR-split torus inG is almost Zariski closed.

#7. Assume m ≥ n. Then m + n ≥ 2n, so there is a natural embed-
ding of SO(1,1)n in SL(m + n,R). Show that SO(m,n) contains a
conjugate of this copy of SO(1,1)n.
[Hint: Permute the basis vectors.]

#8. Prove, directly from Definition 8.1.1, that if G1 is conjugate to G2

in GL(ℓ,R), then rankR(G1) = rankR(G2).

#9. Show rankRG = 0 if and only if G is compact.
[Hint: Remarks A5.2 and A2.6(2).]

#10. Show that if rankR SO(m,n) = r , then there is an r-dimensional
subspace V of Rm+n, such that ⟨v | w⟩m,n = 0 for all v,w ∈ V.
[Hint: Because A is diagonalizable over R, there is a basis {v1, . . . , vm+n} of Rm+n
whose elements are eigenvectors for every element of A. Since dimA = r, we may
assume, after renumbering, that for all λ1, . . . , λr ∈ R+, there exists a ∈ A, such
that avi = λivi, for 1 ≤ i ≤ r. This implies ⟨v1, . . . , vr ⟩ is totally isotropic.]

#11. Show that if V is a subspace of Rm+n that is totally isotropic for
⟨· | ·⟩m,n, then dimV ≤ min{m,n}.
[Hint: If v ≠ 0 and the last n coordinates of v are 0, then ⟨v | v⟩m,n > 0.]

#12. Show rankR(G1 ×G2) = rankRG1 + rankRG2.

#13. Show rankRG ≥ 1 if and only if G contains a subgroup that is
isogenous to SL(2,R).
[Hint: Remark A2.6.]

#14. Show that Γ contains a subgroup that is isomorphic to Zr , where
r = rankRG.
[Hint: You may assume the fact stated in the last sentence of Remark 8.1.9(3).]

§8.2. Groups of higher real rank

In some situations, there is a certain subset S of G, such that the central-
izer of each element of S is well-behaved, and it would be helpful to know
that these centralizers generate G. The results in this section illustrate
that an assumption on the real rank of Gmay be exactly what is needed.
(However, we will often only prove the special case where G = SL(3,R).
A reader familiar with the theory of “real roots” should have no difficulty
generalizing the arguments.)

(8.2.1) Proposition. Let A be a maximal R-split torus in G. Then we have
rankRG ≥ 2 if and only if there exist nontrivial elements a1 and a2 of A,
such that G = ⟨CG(a1),CG(a2)⟩.
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Proof. (⇒) Assume, for simplicity, thatG = SL(3,R). (See Exercise 1(a) for
another special case.) Then we may assume A is the group of diagonal
matrices (after replacing it by a conjugate). Let

a1 =

2 0 0
0 2 0
0 0 1/4

 and a2 =

1/4 0 0
0 2 0
0 0 2

 .
Then

CG(a1) =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 and CG(a2) =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 .
These generate G.

(⇐) Suppose rankRG = 1, so dimA = 1. Then, since A is almost
Zariski closed (and contains ⟨a1⟩), we have CG(a1) = CG(A) = CG(a2), so

⟨CG(a1),CG(a2)⟩ = CG(A).
It is obvious that CG(A) ≠ G (because the center of G is finite, and there-
fore cannot contain the infinite group A). □

The following explicit description of CG(A) will be used in some of
the proofs.

(8.2.2) Lemma. If A is any maximal R-split torus in G, then CG(A) = A×C,
where C is compact.

Proof. (optional) A subgroup of SL(ℓ,R) is said to be reductive if it is isoge-
nous to M × T , where M is semisimple and T is a torus. It is known that
the centralizer of any torus is reductive (see Exercise 2), so, if we assume,
for simplicity, that CG(A) is connected, then we may write CG(A) = M×A,
whereM is reductive (see Exercise 3). The maximality ofA implies thatM
does not contain anyR-split tori, soM is compact (see Exercise 8.1#9). □

(8.2.3) Proposition (see Exercise 4). rankRG ≥ 2 if and only if there exist
a nontrivial hyperbolic element a and a nontrivial unipotent element u,
such that au = ua.

For use in the proof of the proposition that follows it, we mention a
very useful characterization of a somewhat different flavor:

(8.2.4) Lemma (see Exercise 5). rankRG ≤ 1 if and only if every nontriv-
ial unipotent subgroup of G is contained in a unique maximal unipotent
subgroup.

(8.2.5) Proposition. rankRG ≥ 2 if and only if there exist nontrivial unipo-
tent subgroups U1, . . . , Uk, such that

• ⟨U1, . . . , Uk⟩ = G, and

• Ui centralizes Ui+1 for each i.
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Proof. (⇒) Assume, for simplicity, that G = SL(3,R). Then we take the
sequence[

1 ∗ 0
0 1 0
0 0 1

]
,
[

1 0 ∗
0 1 0
0 0 1

]
,
[

1 0 0
0 1 ∗
0 0 1

]
,
[

1 0 0∗ 1 0
0 0 1

]
,
[

1 0 0
0 1 0∗ 0 1

]
,
[

1 0 0
0 1 0
0 ∗ 1

]
.

(⇐) Since Ui commutes with Ui+1, we know that ⟨Ui, Ui+1⟩ is unipo-
tent, so, if rankRG = 1, then it is contained in a unique maximal unipo-
tent subgroup Ui of G. Since Ui and Ui+1 both contain Ui+1, we conclude
that Ui = Ui+1 for all i. Hence, ⟨U1, . . . , Uk⟩ is contained in the unipotent
group U1, and is therefore not all of G. □

(8.2.6) Remark. See Lemma 16.5.7 for yet another result of the same type,
which will be used in the proof of the Margulis Superrigidity Theorem in
Section 16.5. A quite different characterization, based on the existence
of subgroups of the form SL(2,R)⋉Rn, appears in Exercise 13.2#2, and
is used in proving Kazhdan’s Property (T) in Chapter 13.

We know that SL(2,R) is the smallest group of real rank one (see Exer-
cise 8.1#13). However, the smallest group of real rank two is not unique:

(8.2.7) Proposition. Assume G is simple. Then rankRG ≥ 2 if and only if
G contains a subgroup that is isogenous to either SL(3,R) or SO(2,3).

Exercises for §8.2.

#1. Prove the following results in the special case where G = G1 ×G2,
and rankRGi ≥ 1 for each i.

a) Proposition 8.2.1(⇒)
b) Proposition 8.2.3(⇒)
c) Lemma 8.2.4(⇐)
d) Proposition 8.2.5(⇒)

#2. (optional) It is known that if M is a subgroup that is almost Zariski
closed, and MT = M, then M is reductive (cf. Corollary A7.8). As-
suming this, show that if T is a subgroup of the group of diagonal
matrices, and GT = G, then CG(T) is reductive.

#3. (optional) Suppose M is reductive, and A is an R-split torus in the
center of M. Show there exists a reductive subgroup L of M◦, such
that M◦ = L×A.
[Hint: Up to isogeny, write M = M0 × T, with A ⊆ T. Then it suffices to show
T = E×A for some E. You may assume, without proof, that, since T is a connected,
abelian Lie group, it is isomorphic to Rm × Tn for some m and n.]

#4. a) Prove Proposition 8.2.3(⇒) under the additional assumption
that G = SL(3,R).

b) Prove Proposition 8.2.3(⇐).
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#5. Find a nontrivial unipotent subgroup of SL(3,R) that is contained
in two different maximal unipotent subgroups.

#6. (Assumes the theory of real roots) Prove the general case of the
following results.

a) Lemma 8.2.2
b) Proposition 8.2.1(⇒)
c) Proposition 8.2.3(⇒)
d) Lemma 8.2.4
e) Proposition 8.2.5(⇒)

#7. Show (without assuming G is simple): rankRG ≥ 2 if and only
if G contains a subgroup that is isogenous to either SL(3,R) or
SL(2,R)× SL(2,R).
[Hint: Proposition 8.2.7. You may assume, without proof, that SO(2,2) is isogenous
to SL(2,R)× SL(2,R).]

§8.3. Groups of real rank one

As a complement to Section 8.2, here is an explicit list of the simple
groups of real rank one.

(8.3.1) Theorem. If G is simple, and rankRG = 1, then G is isogenous to
either

• SO(1, n) for some n ≥ 2,

• SU(1, n) for some n ≥ 2,

• Sp(1, n) for some n ≥ 2, or

• F−20
4 (also known as F4,1), a certain exceptional group.

(8.3.2) Remark. The special linear groups SL(2,R), SL(2,C) and SL(2,H)
have real rank one, but they are already on the list under different names,
because

1) SL(2,R) is isogenous to SO(1,2) and SU(1,1),
2) SL(2,C) is isogenous to SO(1,3) and Sp(1,1), and

3) SL(2,H) is isogenous to SO(1,4).

(8.3.3) Remark. Each of the simple groups of real rank one has a very
important geometric realization. Namely, SO(1, n), SU(1, n), Sp(1, n),
and F4,1 (respectively) are isogenous to the isometry groups of:

1) (real) hyperbolic n-space Hn,

2) complex hyperbolic n-space CHn,

3) quaternionic hyperbolic n-space HHn, and

4) the Cayley plane, which can be thought of as the hyperbolic plane
over the (nonassociative) ring O of Cayley octonions.
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§8.4. Minimal parabolic subgroups

The group of upper-triangular matrices plays a very important role in the
study of SL(n,R). In this section, we introduce subgroups that play the
same role in other semisimple Lie groups:

(8.4.1) Definition. Let A be a maximal R-split torus of G, and let a be a
generic element of A, by which we mean that CG(a) = CG(A). Then the
corresponding minimal parabolic subgroup of G is

P =
{
g ∈ G

∣∣∣∣∣ lim sup
n→∞

∥a−ngan∥ <∞
}
. (8.4.2)

This is a Zariski closed subgroup of G.

(8.4.3) Theorem. All minimal parabolic subgroups of G are conjugate.

(8.4.4) Examples.

1) The group of upper triangular matrices is a minimal parabolic sub-
group of SL(n,R). To see this, let A be the group of diagonal ma-
trices, and choose a ∈ A with a1,1 > a2,2 > · · · > an,n > 0 (see Ex-
ercise 1).

2) It is easier to describe a minimal parabolic subgroup of SO(1, n)
if we replace Idm,n with a different symmetric matrix of the same
signature: let G = SO(A;R), for

A =

0 0 1
0 Id(n−1)×(n−1) 0
1 0 0

 .
ThenG is conjugate to SO(1, n) (see Exercise 4), the (1-dimensional)
group of diagonal matrices in G form a maximal R-split torus, and
a minimal parabolic subgroup in G is

t ∗ ∗
0 SO(n− 1) ∗
0 0 1/t




(see Exercise 2).

The following result explains that a minimal parabolic subgroup of
a classical group is simply the stabilizer of a (certain kind of) flag. Re-
call that a subspace W of a vector space V, equipped with a bilinear (or
Hermitian) form ⟨· | ·⟩, is said to be totally isotropic if ⟨W | W⟩ = 0.

(8.4.5) Theorem (see Exercise 3).

1) A subgroup P of SL(n,R) is a minimal parabolic if and only if there
is a chain V0 ⊊ V1 ⊊ · · · ⊊ Vn of subspaces of Rn (with dimVi = i),
such that

P = {g ∈ SL(n,R) | ∀i, gVi = Vi }.
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Similarly for SL(n,C) and SL(n,H), taking chains of subspaces in
Cn or Hn, respectively.

2) A subgroup P of SO(m,n) is a minimal parabolic if and only if there
is a chain V0 ⊊ V1 ⊊ · · · ⊊ Vr of totally isotropic subspaces ofRm+n

(with dimVi = i and r = min{m,n}), such that

P = {g ∈ SO(m,n) | ∀i, gVi = Vi }.
Similarly for SO(n,C), SO(n,H), Sp(2m,R), Sp(2m,C), SU(m,n)
and Sp(m,n).

Note that any upper triangular matrix in SL(n,R) can be written
uniquely in the form mau, where

• abelongs to theR-split torusAof diagonal matrices whose nonzero
entries are positive,

• m is in the finite group M consisting of diagonal matrices whose
nonzero entries are ±1, and

• u belongs to the unipotent group N of upper triangular matrices
with 1’s on the diagonal.

The elements of every minimal parabolic subgroup have a decomposition
of this form, except that the subgroupMmay need to be compact, instead
of only finite:

(8.4.6) Theorem (Langlands decomposition). If P is a minimal parabolic
subgroup of G, then we may write it in the form P = CG(A)N = MAN,
where

• A is a maximal R-split torus,

• M is a compact subgroup of CG(A), and

• N is the unique maximal unipotent subgroup of P.

Furthermore, N is a maximal unipotent subgroup of G, and, for some
generic a ∈ A, we have

N =
{
u ∈ G

∣∣∣∣ lim
n→∞a

−nuan = e
}
. (8.4.7)

Before discussing the proof (which is not so important for our pur-
poses), let us consider a few examples:

(8.4.8) Example.

1) If G = SL(n,C), then, for the Langlands decomposition of the
group P of upper-triangular matrices, we may let:
• Abe the group of diagonal matrices inGwhose nonzero entries

are positive real numbers (just as for SL(n,R)),
• M be the group of diagonal matrices in G whose nonzero en-

tries have absolute value 1, and
• N be the group of upper triangular matrices with 1’s on the

diagonal.
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The same description applies to G = SL(n,H) (and, actually, also
to SL(n,R)).

2) Assume m ≤m, and let G = SO(A;R), where

A =

 0 0 Jm
0 Id(n−m)×(n−m) 0
Jm 0 0

 and Jm =

 1

0 1
. .

.
1 01


(and the size of the matrix Jm is m ×m). Then G is conjugate to
SO(m,n) (see Exercise 4), and a minimal parabolic P of G is:

b ∗ ∗
0 k ∗
0 0 b†


∣∣∣∣∣∣∣ b ∈ GL(m,R) is upper triangular,

k ∈ SO(n−m)


where x† = Jm(x−1)TJm, so, for example,

diag(b1, . . . , bm)† = diag(1/bm, . . . ,1/b1).
Hence, we may let
• A = {diag(a1, . . . , am,0, . . . ,0,1/am, . . . ,1/a1) | ai > 0 },
• M ≊ SO(n−m)× {±1}m, and
• N be the group of upper triangular matrices with 1’s on the

diagonal that are in G.

Proof of Theorem 8.4.6 (optional). Choose a generic element a of A sat-
isfying (8.4.2), and define N as in (8.4.7). Then, since a is diagonalizable
over R, it is not difficult to see that P = CG(a)N (see Exercise 5). Since
a is a generic element of A, this means P = CG(A)N.

It is easy to verify that N is normal in P (see Exercise 6); then, since
P/N ≊ CG(A) = A× (compact) (see Lemma 8.2.2), and therefore has no
nontrivial unipotent elements, it is clear that N contains every unipotent
element of P. Conversely, the definition of N implies that it is unipotent
(see Exercise 7). Therefore, N is the unique maximal unipotent subgroup
of P.

Suppose U is a unipotent subgroup of G that properly contains N.
Since unipotent subgroups are nilpotent (see Exercise 9), then NU(N)
properly contains N (see Exercise 10). However, it can be shown that
NG(N) = P (see Exercise 8), so this implies NU(N) is a unipotent sub-
group of P that properly contains N, which contradicts the conclusion of
the preceding paragraph. □

The subgroups A and N that appear in the Langlands decomposition
of P are two components of the Iwasawa decomposition of G:

(8.4.9) Theorem (Iwasawa decomposition). Let

• K be a maximal compact subgroup of G,

• A be a maximal R-split torus, and



8.4. MINIMAL PARABOLIC SUBGROUPS 187

• N be a maximal unipotent subgroup that is normalized by A.

Then G = KAN.
In fact, every g ∈ G has a unique representation of the form g = kau

with k ∈ K, a ∈ A, and u ∈ N.

(8.4.10) Remark. A stronger statement is true: if we define a function
φ : K × A × N → G by φ(k,a,u) = kau, then φ is a (real analytic) dif-
feomorphism. Indeed, Theorem 8.4.9 tells us that φ is a bijection, and
it is obviously real analytic. It is not so obvious that the inverse of φ is
also real analytic, but this is proved in Exercise 7.1#3 when G = SL(n,R),
and the general case can be obtained by choosing an embedding of G
in SL(n,R) for which the subgroups K, A, and N of G are equal to the
intersection of G with the corresponding subgroups of SL(n,R).

The Iwasawa decomposition implies KP = G (since AN ⊆ P), so it has
the following important consequence:

(8.4.11) Corollary. If P is any minimal parabolic subgroup of G, then G/P
is compact.

(8.4.12) Remark. A subgroup of G is called parabolic if it contains a
minimal parabolic subgroup.

1) Corollary 8.4.11 implies that if Q is any parabolic subgroup, then
G/Q is compact. The converse does not hold. (For example, if
P = MAN is a minimal parabolic, then G/(AN) is compact, but
AN is not parabolic unless M is trivial.) However, passing to the
“complexification” does yield the converse: Q is parabolic if and
only if GC/QC is compact. Furthermore, Q is parabolic if and only
if QC contains a maximal solvable subgroup (“Borel subgroup”)
of GC.

2) All parabolic subgroups can be described fairly completely (there
are only finitely many that contain any given minimal parabolic),
but we do not need the more general theory.

Exercises for §8.4.

#1. Let a be a diagonal matrix as described in Example 8.4.4(1), and
show that the corresponding minimal parabolic subgroup is pre-
cisely the group of upper triangular matrices.

#2. Show that the subgroup at the end of Example 8.4.4(2) is indeed a
minimal parabolic subgroup of SO(A;R).

#3. Show the minimal parabolic subgroups of each of the following
groups are as described in Theorem 8.4.5:

a) SL(n,R).
b) SO(m,n).
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[Hint: It suffices to find one minimal parabolic subgroup in order to understand
all of them (see Theorem 8.4.3).]

#4. For A as in Example 8.4.8(2), show that SO(A;R) is conjugate to
SO(m,n).
[Hint: Let α = 1/

√
2, and define vi to be: α(ei+en+1−i) for i ≤m, ei form < i ≤ n,

and α(ei − en+1−i) for i > n. Then vTi Avi is 1 for i ≤ n, and is −1 for i > n.]

#5. (optional) For P, a, and N as in the proof of Theorem 8.4.6, show
P = CG(a)N.
[Hint: Given g ∈ P, show that a−ngan converges to some element c of CG(a).
Also show c−1g ∈ N. You may assume a is diagonal, with a11 ≥ a22 ≥ · · · ≥ aℓℓ
(why? ).]

#6. For P, a, andN as in the proof of Theorem 8.4.6, showN is a normal
subgroup of P.

#7. Show that a subgroup N satisfying (8.4.7) must be unipotent.
[Hint: u has the same characteristic polynomial as a−nuan.]

#8. For P and N as in Theorem 8.4.5(2), show P =NG(N).
[Hint: P is the stabilizer of a certain flag, and the subgroup N also uniquely deter-
mines this same flag.]

#9. Show that every unipotent subgroup of SL(ℓ,R) is nilpotent. (Recall
that a group N is nilpotent if there is a series

{e} = N0 ◁ · · · ◁ Nr = N
of subgroups of N, such that [N,Nk] ⊆ Nk−1 for each k.)
[Hint: Engel’s Theorem (A5.7).]

#10. Show that if N is a proper subgroup of a nilpotent group U, then
NU(N) ̸⊆ N.
[Hint: If [N,Uk] ⊆ N, then Uk normalizes N.]

#11. Assume K is a maximal compact subgroup of G. Show:
a) G is diffeomorphic to the cartesian product K×Rn, for some n,
b) G/K is diffeomorphic to Rn, for some n,
c) G is connected if and only if K is connected, and
d) G is simply connected if and only if K is simply connected.

[Hint: Remark 8.4.10.]

Notes

The comprehensive treatise of Borel and Tits [1] is the standard ref-
erence on rank, parabolic subgroups, and other fundamental properties
of reductive groups over any field. See [5, §7.7, pp. 474–487] for a dis-
cussion of parabolic subgroups of Lie groups (which is the special case
in which the field is R).

Remark 8.1.9(3) is due to Prasad-Raghunathan [7, Thms. 2.8 and 3.9].
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Proofs of the Iwasawa decomposition for both SL(n,R) (7.1.1) and the
general case (8.4.9) can be found in [6, Prop. 3.12, p. 129, and Thm. 3.9,
p. 131]. (Iwasawa’s original proof is in [4, §3].) The decomposition also
appears in many textbooks on Lie groups. In particular, Remark 8.4.10
is proved in [3, Thm. 6.5.1, pp. 270–271].

Regarding Remark 8.4.12(1), the obvious cocompact subgroups of G
are parabolic subgroups and (cocompact) lattices. See [8] for a short
proof that every cocompact subgroup is a combination of these two
types. (A similar result had been proved previously in [2, (5.1a)].)
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Chapter 9

Q-Rank

Algebraically, the definition of real rank extends in a straightforward way
to a notion of rank over any field: if G is defined over F, then we can talk
about rankF G. In the study of arithmetic groups, we assume G is defined
over Q, and the corresponding Q-rank is an important invariant of the
associated arithmetic group Γ = GZ.
Disclaimer. The reading of this chapter may be postponed without severe consequences
(and can even be skipped entirely), because the material here will not arise elsewhere in this
book (except marginally) other than in Chapter 19, where a coarse fundamental domain
for Γ will be constructed. Furthermore, unlike the other chapters in this part of the book,
the topic is of importance only for arithmetic groups and closely related subjects, not a
broad range of areas of mathematics.

§9.1. Q-rank

(9.1.1) Definition. Assume G is defined overQ. A closed, connected sub-
group T of G is a Q-split torus if

• T is defined over Q, and

• T is diagonalizable overQ. (That is, there exists g ∈ GL(ℓ,Q), such
that gTg−1 consists entirely of diagonal matrices.)

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Real rank and minimal parabolic
subgroups (Chapter 8), and groups defined over Q (Definition 5.1.2).

191
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(9.1.2) Example.

1) SO(1,1)◦ is a Q-split torus, because g SO(1,1)g−1 consists of diag-
onal matrices if g =

[
1 1
1 −1

]
.

2) Although it is obvious that every Q-split torus is an R-split torus,
the converse is not true (even if the torus is defined over Q). For
example, let T = SO(x2 − 2y2;R)◦. Then T is defined over Q, and
it is R-split (because it is conjugate to SO(1,1)◦). However, it is not
Q-split. To see this, note that

[
3 4
2 3

]
∈ TQ, but the eigenvalues of

this matrix are irrational (namely, 3± 2
√

2), so this rational matrix
is not diagonalizable over Q.

The following key fact implies that the maximal Q-split tori of G all
have the same dimension (which is called the “Q-rank”):

(9.1.3) Theorem. Assume G is defined over Q. If S1 and S2 are maximal
Q-split tori in G, then S1 = gS2g−1 for some g ∈ GQ.

(9.1.4) Definition (for arithmetic lattices). Assume

• G is defined over Q, and

• Γ is commensurable to GZ.
Then rankQ Γ is the dimension of any maximal Q-split torus in G.

(More generally, if ϕ : G/K ≊→ G′/K′, where K and K′ are compact,
and ϕ(Γ) is commensurable to G′Z (see Definition 5.1.19), then rankQ Γ is
the dimension of any maximal Q-split torus in G′.)

(9.1.5) Examples.

1) rankQ
(
SL(n,Z)

) = n − 1. (Let S be the identity component of the
group of all diagonal matrices in SL(n,R).)

2) Let G = SO(Q;R), where Q(x1, . . . , xℓ) is some quadratic form
on Rℓ, such thatQ is defined overQ. (That is, all of the coefficients
of Q are rational.) Then G is defined over Q, and the discussion
of Example 8.1.7, with Q in place of R, shows that rankQGZ is the
maximum dimension of a totally isotropic Q-subspace of Qℓ.
(a) For example, rankQ SO(m,n)Z = min{m,n}. Similarly,

rankQ SU(m,n)Z = rankQ Sp(m,n)Z = min{m,n}.
So rankQGZ = rankRG for these groups.

(b) Let G = SO(x2
1 + x2

2 + x2
3 − 7x2

4 ;R). Then, because the con-
gruence a2 + b2 + c2 + d2 ≡ 0 (mod 8) implies that all the
variables are even, it is not difficult to see that this quadratic
form has no nonzero isotropic vectors in Q4 (see Exercise 4).
This means rankQGZ = 0.

Note, however, that G is isomorphic to SO(3,1), so its real
rank is 1. Therefore, rankQGZ ≠ rankRG.
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3) rankQ Γ = 0 if and only if G/Γ is compact (see Exercise 5).

4) rankQ SU(B, τ ;OD) is the dimension (over D) of a maximal totally
isotropic subspace ofDn, if B is a τ-Hermitian form onDn, andD is
a division algebra over F.

(9.1.6) Warning. In analogy with Exercise 8.1#13 and Exercise 5.3#7(e),
one might suppose that rankQ Γ ≠ 0 if and only if Γ contains a subgroup
that is isomorphic to SL(2,Z) (modulo finite groups). However, this is
false: every lattice in G contains a subgroup that is abstractly commen-
surable to SL(2,Z) (unless G is compact). Namely, the Tits Alternative
tells us that Γ contains a nonabelian free subgroup (see Corollary 4.9.2),
and it is well known that SL(2,Z) has a finite-index subgroup that is free
(see Exercise 4.9#5).

(9.1.7) Remarks.

1) The definition of rankQ Γ is somewhat indirect, because theQ-split
tori ofG are not subgroups of Γ . Therefore, it would be more correct
to say that we have defined rankQGQ.

2) Although different embeddings of G in SL(ℓ,R) can yield maximal
Q-split tori of different dimensions, the theory of algebraic groups
shows that the Q-rank is the same for all of the embeddings in
which Γ is commensurable to GZ (see Corollary 9.4.7); therefore,
rankQ Γ is well defined as a function of Γ .

3) We have 0 ≤ rankQ Γ ≤ rankRG, since everyQ-split torus is R-split.
It can be shown that:
(a) The extreme values are always realized: there exist lattices Γ0

and Γr in G, such that rankQ Γ0 = 0 and rankQ Γr = rankRG
(see Theorem 18.7.1 and Exercise 7).

(b) In some cases, there are intermediate values that are not re-
alized. For example, the Q-rank of every lattice in SO(2,5) is
either 0 or 2 (see Corollary 18.6.2).

4) Suppose Γ is defined by restriction of scalars (5.5.8), so Γ is com-
mensurable to G′O, where G′ is defined over a finite extension F
ofQ, and O is the ring of integers of F. Then rankQ Γ is equal to the
“F-rank” of G′, or, in other words, the maximal dimension (over F∞)
of a subgroup of G′ that is diagonalizable over F. For example, the
Q-rank of SO(B;O) is the dimension of a maximal totally isotropic
F-subspace of Fn.

Definition 9.1.4 applies only to arithmetic lattices, but the Margulis
Arithmeticity Theorem (5.2.1) allows the definition to be extended to all
lattices:

(9.1.8) Definition (see Exercise 6). Up to isogeny, and modulo the maxi-
mal compact factor ofG, we may writeG = G1×· · ·×Gs, so that Γi = Γ∩Gi
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is an irreducible lattice in Gi for i = 1, . . . , r (see Proposition 4.3.3). We
let

rankQ(Γ) = rankQ(Γ1)+ · · · + rankQ(Γs),
where:

1) If G/Γi is compact, then rankQ Γi = 0.

2) If G/Γi is not compact, and rankRG = 1, then rankQ Γi = 1.

3) If G/Γi is not compact, and rankRG ≥ 2, then the Margulis Arith-
meticity Theorem (5.2.1) implies that Γi is arithmetic, so Defini-
tion 9.1.4 applies.

Exercises for §9.1.

#1. Show that if T is a Q-split torus, then TZ is finite.

#2. Give an example of a torus T (that is defined over Q), such that TZ
is infinite.

#3. Verify the claim in Example 9.1.5(2) that rankQ SO(Q;Z) is the di-
mension of a maximal totally isotropic subspace of Qℓ.

#4. Verify the claim in Example 9.1.5(2b) that (0,0,0,0) is the only so-
lution in Q4 of the equation x2

1 + x2
2 + x2

3 − 7x2
4 = 0.

#5. Prove Example 9.1.5(3).
[Hint: (⇒) See Exercise 5.3#7. (⇐) If a is diagonalizable over Q, then there exists
v ∈ Zℓ, such that anv → 0 as n→ +∞, so the Mahler Compactness Criterion (4.4.7)
implies G/GZ is not compact.]

#6. Show that Definition 9.1.8 is consistent with Definition 9.1.4. More
precisely, assume Γ is arithmetic, and prove:

a) G/Γ is compact if and only if rankQ Γ = 0.
b) If G/Γ is not compact, and rankRG = 1, then rankQ Γ = 1.
c) If Γ = Γ1 × Γ2 is reducible, then rankQ Γ = rankQ Γ1 + rankQ Γ2.

#7. Suppose G is classical. Show that, for the natural embeddings de-
scribed in Examples A2.3 and A2.4, we have rankQGZ = rankRG.
[Hint: Example 9.1.5(1,2)).]

§9.2. Lattices of higher Q-rank

This section closely parallels Section 8.2, because the results there on
semisimple groups of higher real rank can be extended in a natural way
to lattices of higher Q-rank.

(9.2.1) Assumption. Throughout this section, if the statement of a result
mentions GQ, GZ, or aQ-split torus in G, then G is assumed to be defined
over Q.
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(9.2.2) Proposition (see Exercise 1). Let S be any maximal Q-split torus
in G. Then we have rankQGZ ≥ 2 if and only if there exist nontrivial
elements s1 and s2 of SQ, such that G = ⟨CG(s1),CG(s2)⟩.
(9.2.3) Lemma. If S is any maximal Q-split torus in G, then we have
CG(S) = S ×M = S × CL, where

• M, C, and L are defined over Q,

• rankQM = 0,

• L is semisimple, and

• C is a torus that is the identity component of the center of M.

(9.2.4) Proposition (see Exercise 3). rankQGZ ≥ 2 if and only if there exist
nontrivial elements a and u of GQ, such that a belongs to a Q-split torus
of G, u is unipotent, and au = ua.

(9.2.5) Lemma (see Exercise 4). Assume Γ is commensurable to GZ. The
following are equivalent:

1) rankQ Γ ≤ 1.

2) Every nontrivial unipotent subgroup of Γ is contained in a unique
maximal unipotent subgroup of Γ .

3) Every nontrivial unipotent Q-subgroup ofG is contained in a unique
maximal unipotent Q-subgroup of G.

(9.2.6) Proposition. rankQ Γ ≥ 2 if and only if Γ contains nontrivial unipo-
tent subgroups U1, . . . , Uk, such that

• ⟨U1, . . . , Uk⟩ is a finite-index subgroup of Γ , and

• Ui centralizes Ui+1 for each i.

(9.2.7) Proposition. Assume Γ is irreducible. Then rankQ Γ ≥ 2 if and
only if Γ contains a subgroup that is commensurable to either SL(3,Z) or
SO(2,3)Z.

(9.2.8) Remarks.

1) Unfortunately, the list of lattices ofQ-rank one is longer and much
more complicated than the list of simple groups of real rank one
in Theorem 8.3.1. The classical arithmetic groups (of any Q-rank)
are described in Chapter 18 (see the table on 380), but there are
also infinitely many different lattices of Q-rank one in exceptional
groups of type E6 and F4, and the nonarithmetic lattices of Q-rank
one in SO(1, n) and SU(1, n) have not yet been classified.

2) Suppose rankQ Γ ≤ 1. Proposition 9.2.6 shows that it is impossi-
ble to find a generating set {γ1, . . . , γr} for Γ , such that each γi is
nontrivial and unipotent, and γi commutes with γi+1, for each i.
However, it is possible, in some cases, to find a generating set
{γ1, . . . , γr} that has all of these properties except the requirement
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that γi is unipotent. For example, this is easy (up to finite index) if
Γ is reducible (see Exercise 7).

Exercises for §9.2.

#1. a) Prove Proposition 9.2.2(⇒) for the special case where we have
GQ = SL(3,Q).

b) Prove Proposition 9.2.2(⇐).

#2. Prove the following results in the special case where Γ = Γ1 × Γ2,
and rankQ Γi ≥ 1 for each i.

a) Proposition 9.2.2(⇒)
b) Proposition 9.2.4(⇒)
c) Lemma 9.2.5(⇐)
d) Proposition 9.2.6(⇒)

#3. a) Prove Proposition 9.2.4(⇒) in the special case where we have
GQ = SL(3,Q).

b) Prove Proposition 9.2.4(⇐).

#4. For each of these groups, find a nontrivial unipotent subgroup that
is contained in two different maximal unipotent subgroups.

a) SL(3,Q).
b) SL(3,Z).

#5. Prove Proposition 9.2.6.

#6. (Assumes the theory of Q-roots) Prove the general case of the fol-
lowing results.

a) Proposition 9.2.2.
b) Lemma 9.2.3.
c) Proposition 9.2.4(⇒).
d) Lemma 9.2.5.
e) Proposition 9.2.6.
f) Proposition 9.2.7.

#7. Show that if Γ is reducible, and G has no compact factors, then
there is a finite subset {γ1, . . . , γr} of Γ , such that

a) {γ1, . . . , γr} generates a finite-index subgroup of Γ ,
b) each γi is nontrivial, and
c) γi commutes with γi+1, for each i.

#8. Let Γ be a torsion-free, cocompact lattice in SL(3,R), constructed
as in Proposition 6.7.4. Show that if γ1 and γ2 are any nontrivial el-
ements of Γ , such that γ1 commutes with γ2, then CΓ (γ1) = CΓ (γ2).
(Hence, it is impossible to find a sequence of nontrivial generators
of Γ , such that each generator commutes with the next.)
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[Hint: Let D = ϕ(L3), so D is a division ring of degree 3 over Q. Then CD(γ1) is
subring of D that contains the field Q[γ1] in its center. Because the degree of D is
prime, we conclude that CD(γ1) = Q[γ1] ⊆ CD(γ2).]

§9.3. Minimal parabolic Q-subgroups

Minimal parabolic subgroups of G play an important role in the study of
arithmetic subgroups, even when they are not defined over Q. However,
for some purposes (especially when we construct a coarse fundamental
domain in Chapter 19), we want a subgroup that is both defined over Q
and is similar to a minimal parabolic subgroup:

(9.3.1) Definition (cf. Definition 8.4.1). Let S be a maximal Q-split torus
ofG, and letabe a generic element of S. Then the corresponding minimal
parabolic QQ-subgroup of G is

P =
{
g ∈ G

∣∣∣∣∣ lim sup
n→∞

∥a−ngan∥ <∞
}
.

This is a Zariski closed subgroup of G that is defined over Q.

(9.3.2) Examples.

1) Since the group of upper triangular matrices is a minimal parabolic
Q-subgroup of SL(n,R), we see that, in this case, the minimal par-
abolic Q-subgroup is also a minimal parabolic subgroup.

2) This is a special case of the fact that if rankQ Γ = rankRG, then
every minimal parabolic Q-subgroup is also a minimal parabolic
subgroup (see Exercise 1).

3) (Cf. Theorem 8.4.5(2)) Suppose Q is a nondegenerate quadratic
form on Qℓ that is defined over Q. A subgroup P of SO(Q;R)
is a minimal parabolic Q-subgroup if and only if there is a chain
V0 ⊊ V1 ⊊ · · · ⊊ Vr of totally isotropic subspaces of Qℓ, such that
• dimVi = i, for each i,
• Vr is a maximal totally isotropic subspace, and
• P = {g ∈ SO(Q;R) | ∀i, gVi = Vi }.

We have a Langlands decomposition over Q. However, unlike in the
real case, where the subgroup M is compact (i.e., rankRM = 0), we now
have a subgroup that may be noncompact (but whose Q-rank is 0):

(9.3.3) Theorem (Langlands decomposition). If P is a minimal parabolic
Q-subgroup of G, then we may write P in the form P = MSN = LCSN,
where

1) M, S, N, L, and C are defined over Q,

2) S is a maximal Q-split torus,

3) rankQM = 0,
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4) MS = CG(S),
5) M = LC, where L is semisimple and C is the identity component of

the center of M, and

6) N is the unipotent radical of P; that is, the unique maximal unipo-
tent normal subgroup of P.

Furthermore, for some a ∈ SQ, we have

P =
{
g ∈ G

∣∣∣∣∣ lim sup
n→∞

∥a−ngan∥ <∞
}

(9.3.4)

and

N =
{
g ∈ G

∣∣∣∣ lim
n→∞a

−ngan = e
}
. (9.3.5)

Proof. The examples and proof are essentially the same as for the real
Langlands decomposition (8.4.6), but withQ in the place ofR, and groups
of Q-rank 0 in place of compact groups. □

(9.3.6) Proposition. Assume G is defined over Q, and P is a minimal par-
abolic Q-subgroup, with Langlands decomposition P = MSN. Then:

1) Every minimal parabolic Q-subgroup of G is GQ-conjugate to P.

2) Every unipotent Q-subgroup of G is GQ-conjugate to a subgroup
of N.

3) P =NG(N) =NG(P).

(9.3.7) Definition. For P, M, S, N, L, and C as in Theorem 9.3.3, the posi-
tive Weyl chamber of S (with respect to P) is the set S+ of all elements a
of S, such that P is contained in the right-hand side of (9.3.4). (Equiva-
lently, it is the closure of the set of elements a of S for which equality
holds in (9.3.4).)

Exercises for §9.3.

#1. Show that if we have rankQ Γ = rankRG, then every minimal para-
bolic Q-subgroup is also a minimal parabolic subgroup.
[Hint: Choose A to be both a maximal Q-split torus and a maximal R-split torus.]

#2. Show that the converse of Exercise 1 is not true.
[Hint: Proposition 6.6.1.]

#3. Show that every minimal parabolicQ-subgroup ofG contains a min-
imal parabolic subgroup.
[Hint: Choose a maximal Q-split torus S. Then choose a maximal R-split torus A
that contains S. There is a generic element of A that is very close to a generic
element of S.]



9.4. ISOGENIES OVER Q 199

#4. If P is any minimal parabolicQ-subgroup ofG, andK is any maximal
compact subgroup of G, show that G = KP.
[Hint: The Iwasawa decomposition (8.4.9) tells us G = KAN, and some conjugate
of AN is contained in P.]

#5. Assume the notation of Theorem 9.3.3. Show that if rankQG = 1,

then there is an isomorphism ϕ : S ≊→ R, such that ϕ(S+) = R+.

#6. Show that if U is a unipotent Q-subgroup of SL(ℓ,R), then UZ is a
cocompact lattice in U.
[Hint: Induct on the nilpotence class of U (see Exercise 8.4#9). Note that the expo-
nential map exp: u→ U is a polynomial with rational coefficients, as is its inverse,
so UZ is Zariski dense in U.]

#7. Show that if U1 and U2 are maximal unipotent subgroups of Γ , and
Γ is commensurable to GZ, then there exists g ∈ GQ, such that
g−1U1g is commensurable to U2.

§9.4. Isogenies over Q

We have seen examples in which G is isogenous (or even isomorphic)
to G′, but the arithmetic subgroup GZ is very different from G′Z. (For
example, it may be the case that GZ is cocompact, but G′Z is not.) This
does not happen if the isogeny is defined over Q, in the following sense:

(9.4.1) Definition.

1) A homomorphism ϕ : G → G′ is defined over QQ if ϕ(GQ) ⊆ G′Q.

2) G1 is isogenous to G2 over QQ (denoted G1 ≈Q G2) if there is a
group G that is defined over Q, and isogenies ϕi : G → Gi that are
defined over Q.

The following result shows that any isogeny over Q can be thought
of as a polynomial with rational coefficients.

(9.4.2) Definition. A function ϕ : G → G′ is a polynomial with rational
coefficients if

• the matrix entries of ϕ(g) can be written as polynomial functions
of the coefficients of g, and

• the polynomials can be chosen so that all of their coefficients are
in Q.

(9.4.3) Proposition. If G1 ≈Q G2, then there is a group G that is defined
over Q, and isogenies ϕi : G → Gi for i = 1,2, that are polynomials with
rational coefficients.

Proof. Given isogenies ϕi : G → Gi that are defined over Q, let

G′ = { (ϕ1(g),ϕ2(g)
) ∣∣ g ∈ G◦ } .



200 9. Q-RANK

This is defined over Q, since G′Q is dense (see Proposition 5.1.8). The
projection maps ϕ′i : G

′ → Gi defined by ϕ′i(g1, g2) = gi are polynomials
with rational coefficients. □

(9.4.4) Warning. There are examples where ϕ : G1 → G2 is an isomor-
phism, and ϕ is a polynomial, but ϕ−1 is not a polynomial. For example,
the natural homomorphism ϕ : SL(3,R)→ PSL(3,R)◦ is an isomorphism
(because SL(3,R)has no center). However, there is no isomorphism from
PSL(3,C) to SL(3,C) (because one of these groups has a center and the
other does not), so the inverse of ϕ cannot be a polynomial (because it
does not extend to a well-defined map between the complexifications).

The following fundamental result implies that different embeddings
of G with the same Q-points have essentially the same Z-points.

(9.4.5) Proposition. Suppose ϕ : G → G′ is a surjective homomorphism
that is defined over Q. Then ϕ(GZ) is commensurable to G′Z.

Proof. From the proof of Proposition 9.4.3, we see that, after replacing G
with an isogenous group, we may assume that ϕ is a polynomial with
rational coefficients. Assume G ⊆ SL(ℓ,R) and G′ ⊆ SL(m,R).

Define ϕ̃ : G → Matm×m(R) by ϕ̃(x) = ϕ(x− Id). Then ϕ̃ is a polyno-
mial, so it is defined on all of Matℓ×ℓ(R). Since the coefficients are in Q,
there is some nonzero n ∈ N, such that ϕ̃

(
nMatℓ×ℓ(R)

) ⊆ Matm×m(Z).
Therefore, letting Γn be the “principal congruence subgroup” of GZ of
level n (see page 66), we have ϕ(Γn) ⊆ G′Z.

Because Γn is a lattice inG (andϕ(Γn) is discrete), we know thatϕ(Γn)
is a lattice in G′. Since ϕ(Γn) ⊆ G′Z, this implies that ϕ(Γn) is commensu-
rable to G′Z (see Exercise 4.1#10). □

The following fundamental fact is, unfortunately, not obvious from
our definition of “Q-split.”

(9.4.6) Proposition. Assume

• T and H are connected Lie groups that are defined over Q, and

• T ≈Q H.

Then T is a Q-split torus if and only if H is a Q-split torus.

(9.4.7) Corollary. If G ≈Q G′, then rankQGZ = rankQG′Z.

Proof. Suppose G is a Q-group, and there is an isogeny φi : G → Gi that
is defined over Q for i = 1,2. If T1 is a maximal Q-split torus in G1, then
Proposition 9.4.6 implies thatφ2

(
φ−1

1 (T1)◦
)

is aQ-split torus inG2. Since
isogeny preserves dimension, we conclude that rankQG1 ≤ rankQG2. By
symmetry, equality must hold. □
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Notes

As was mentioned in the notes of Chapter 8, the comprehensive trea-
tise of Borel and Tits [3] is the standard reference on rank, parabolic sub-
groups, and other fundamental properties of reductive groups over any
field (including Q). Abbreviated accounts can be found in many texts,
including [1, §10 and §11] and [2, Chap. 5].

See [1, Rem. 8.11, p. 60] for a proof of Proposition 9.4.5.
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Chapter 10

Quasi-Isometries

§10.1. Word metric and quasi-isometries

The field of Geometric Group Theory equips groups with a metric, which
allows them to be studied as metric spaces:

(10.1.1) Definition. Fix a finite generating set S of Γ (see Theorem 4.7.10),
and assume, for simplicity, that S is symmetric , which means s−1 ∈ S
for every s ∈ S.

1) For g ∈ Γ , the word length of g is the length ℓ of the shortest
sequence (s1, s2, . . . , sℓ) of elements of S, such that s1s2 · · · sℓ = g.
It is denoted ℓ(g). (By convention, ℓ(e) = 0.)

2) For g,h ∈ Γ , we let d(g,h) = ℓ(g−1h). This defines a metric on Γ ,
called the word metric (see Exercise 1).

The word metric has the important property that the action of Γ on
itself by left-translations is an action by isometries (see Exercise 2).

(10.1.2) Remark. The word metric can be pictured geometrically, by con-
structing a Cayley graph. Namely, Cay(Γ ;S) is a certain 1-dimensional
simplicial complex (or “graph”):

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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• its 0-skeleton is Γ , and

• it has a 1-simplex (or “edge”) of length 1 joining v to vs, for every
v ∈ Γ and s ∈ S.

Define a metric on Cay(Γ ;S) by letting d(x,y) be the length of the short-
est path from x to y. Then the restriction of this metric to the 0-skeleton
is precisely the word metric on Γ .

Unfortunately, the word metric on Γ is not canonical, because it de-
pends on the choice of the generating set S (see Exercise 3). However,
it is “almost” well-defined, in that changing the generating set can only
distort the distances by a bounded factor. This idea is formalized in the
following notion:

(10.1.3) Definition. Let X1 and X2 be metric spaces, with metrics d1

and d2, respectively.

1) A function f : X1 → X2 is a quasi-isometry if there is a constant
C > 0, such that
(a) for all x,y ∈ X1 with d1(x,y) > C, we have

1
C
<
d2
(
f(x), f (y)

)
d1(x,y)

< C,

and
(b) for all x2 ∈ X2, there exists x1 ∈ X1, such that

d2
(
f(x1), x2

)
< C.

Note that f need not be continuous (and need not be one-to-one or
onto, either).

2) We say X1 is quasi-isometric to X2 (and write X1
QI∼ X2) if there

is a quasi-isometry from X1 to X2. This is an equivalence relation
(see Exercise 4).

(10.1.4) Proposition (see Exercise 5). Let

• S1 and S2 be two finite, symmetric generating sets for Γ , and

• di be the word metric on Γ corresponding to the generating set Si.
Then (Γ , d1)

QI∼ (Γ , d2).

Therefore, if Γ1 and Γ2 are quasi-isometric for some choice of the word
metrics on the two groups, then they are quasi-isometric for all choices
of the word metrics. So it makes sense to say that two groups are quasi-
isometric, without any mention of generating sets (as long as both of the
groups are finitely generated).

(10.1.5) Remark. A property is said to be geometric if is is invariant
under quasi-isometry. For example, we will see (in Proposition 12.7.22
and Remark 13.4.10, respectively) that amenability is a geometric prop-
erty, but Kazhdan’s property (T) is not. In other words, if Λ1

QI∼ Λ2, and
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Λ1 is amenable, then Λ2 is amenable, but the same cannot be said for
Kazhdan’s property (T). In general, quasi-isometric groups can be very
different from each other, so most of the usual algebraic properties of
groups are not geometric.

Quasi-isometries also arise from cocompact actions. Before stating
the result, we introduce some terminology.

(10.1.6) Definition. Let (X,d) be a metric space, and let C > 0.

1) X is proper if the closed ball Br (x) is compact, for all r > 0 and
all x ∈ X.

2) Let x,y ∈ X. A (C)-coarse geodesic from x toy is a finite sequence
x0, x1, . . . , xn in X, such that x0 = x, xn = y, and∣∣d(xi, xj)− |i− j|∣∣ < C for all i, j.

3) X is (C-)coarsely geodesic if, for all x,y ∈ X, there is a C-coarse
geodesic from x to y.

(10.1.7) Proposition (see Exercise 6). Suppose

• (X,d) is a metric space that is proper and coarsely geodesic,

• Γ has a properly discontinuous action on X by isometries, such that
Γ\X is compact, and

• d′ is a word metric on Γ .
Then (Γ , d′) QI∼ (X,d).

More precisely, for any basepoint x0 ∈ X, the map γ , γx0 is a quasi-
isometry from Γ to X.

(10.1.8) Corollary. If G/Γ is compact, then the inclusion Γ ↩ G is a quasi-
isometry, where we use any word metric on Γ , and we use any (coarsely
geodesic, proper ) metric on G that is invariant under left-translations.

This implies that any two cocompact lattices in the same group are
quasi-isometric:

(10.1.9) Corollary. If Γ1 and Γ2 are cocompact lattices in G, then Γ1
QI∼ Γ2.

Proof. We have Γ1
QI∼ G QI∼ Γ2, so Γ1

QI∼ Γ2 by transitivity. □

We will see in Section 15.4 that the situation is usually very different
for lattices that are not cocompact: in most cases, there are infinitely
many different (noncocompact) lattices in G that are not quasi-isometric
to each other.

Any (coarsely geodesic, proper) metric on G provides a metric on Γ ,
by restriction. In most cases, this restriction is the word metric (up to
quasi-isometry):
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(10.1.10) Theorem (Lubotzky-Mozes-Raghunathan). If rankRG ≥ 2, and
Γ is irreducible, then the inclusion Γ ↩ G is a quasi-isometry onto its image.

The assumption that rankRG ≥ 2 is essential:

(10.1.11) Example. Let

• G = SL(2,R),
• Γ be a free subgroup of finite index in SL(2,Z) (see Exercise 4.9#5),

• u =
[

1 k
0 1

]
∈ Γ , and

• at =
[
et 0
0 e−t

]
∈ G.

Then:

1) For any word metric dΓ on Γ , the function dΓ (un, e) grows linearly
with n, because Γ is free.

2) For any left-invariant metric dG on G, the function dG(un, e) grows
only logarithmically, because alognua− logn = u2n.

Therefore, the restriction of dG to Γ is not quasi-isometric to dΓ .

Exercises for §10.1.

#1. Show that the word metric is indeed a metric. More precisely, for
x,y, z ∈ Γ , show

d(x,y) ≥ 0, d(x,y) = 0 ⇐⇒ x = y,
d(x,y) = d(y,x), d(x,y) ≤ d(x, z)+ d(z,y).

#2. Assume d is a word metric on Γ (with respect to a finite, symmetric
generating set S). Show thatd(ax,ay) = d(x,y) for alla,x,y ∈ Γ .
[Warning: d(xa,ya) is usually not equal to d(x,y).]

#3. Assume Γ is infinite. Show there exist two word metrics d1 and d2

on Γ (corresponding to finite, symmetric generating sets S1 and S2),
such that the metric space (Γ1, d1) is not isometric to the metric
space (Γ2, d2).
[Hint: A ball of radius r can have different cardinality for the two metrics.]

#4. Show that QI∼ is an equivalence relation.

#5. Prove Proposition 10.1.4.
[Hint: Show the identity map is a quasi-isometry from (Γ , d1) to (Γ , d2), by choosing
C so that d1(e, s) ≤ C for each s ∈ S2.]

#6. Prove Proposition 10.1.7.
[Hint: Assume S ⊇ {γ | ∃x ∈ X, d(γx,x) ≤ 3C }, and Γ · BC(x) = X for all
x ∈ X. Given x0, x1, . . . , xn ∈ X with d(xi, xi+1) ≤ C, there exists γi ∈ Γ, such that
d(γix0, xi) ≤ C, so ℓ(γn) ≤ n.]
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§10.2. Hyperbolic groups

Manifolds of negative sectional curvature play an important role in dif-
ferential geometry, both in applications and as a source of examples.
The triangles in these manifolds have a very special “thinness” property
that we will now explain. Groups whose triangles have this same prop-
erty are said to be “negatively curved,” or, in our terminology, “Gromov
hyperbolic.”

(10.2.1) Definition (Gromov). Let δ > 0, and letX be aC-coarsely geodesic
metric space.

1) A (C-coarse) triangle abc in X is a set {sab, sbc , sac}, where sxy is a
C-coarse geodesic from x to y for x,y ∈ {a,b, c}.

2) A triangle abc is δ-thin if each of the three sides of the triangle is
contained in the (closed) δ-neighborhood of the union of the other
two sides. That is, each point in sab is at distance no more than δ
from some point in sac ∪ sbc, and similarly for sac and sbc.

3) X is Gromov hyperbolic if there exists some δ > 0, such that every
(C-coarse) triangle in X is δ-thin.

(10.2.2) Theorem. The universal cover of any compact manifold of strictly
negative sectional curvature is Gromov hyperbolic.

Idea of proof. As an illustration, let us show that the hyperbolic planeH2

is Gromov hyperbolic. We use the disk model.

p

a

b

c

Any three distinct points a, b, and c
on ∂H2 are the vertices of an ideal triangle
(with geodesic sides). Choose a point p on
ab. Since the geodesic ray --------------------------------→pa is asymptotic
to -----------------------→ca, there is some δ > 0, such that ev-
ery point of --------------------------------→pa is in the δ-neighborhood of
-----------------------→ca. Similarly, every point of

-------------------------------→
pb is in the

δ-neighborhood of
----------------------→
cb (after we enlarge δ).

Therefore, all ofab is in the δ-neighborhood
of the union of the other two sides. By ap-
plying the same argument to the sides bc
and ac, we see there is some δ, such that
the triangle abc is δ-thin.

Since the isometry group SL(2,R) acts transitively on the (unordered)
triples of distinct points on the boundary, we conclude that every ideal
triangle is δ-thin for this same value of δ. Having vertices on the bound-
ary is the worst-case scenario, so this implies that all geodesic triangles
in H2 are δ-thin. □
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The following important “shadowing property” tells us that “quasi-
geodesics” are always close to geodesics. Unfortunately, its proof is
somewhat lengthy, so we omit it. (See Exercises 1 and 2 for some weaker
results that are easier.)

(10.2.3) Theorem. Suppose

• X is a C-coarsely geodesic δ-hyperbolic metric space, and

• {x0, x1, . . . , xn} is finite sequence of points in X, such that, for all i, j
we have:

|i− j|
C

− C ≤ d(xi, xj) ≤ C|i− j| + C.
Then there exists C′ > 0 (depending only on C and δ), such that the set
{x0, x1, . . . , xn} is contained in the C′-neighborhood of every C-coarse ge-
odesic from x0 to x1.

This implies that being Gromov hyperbolic is invariant under quasi-
isometry:

(10.2.4) Corollary (see Exercise 4). Assume

• X1 and X2 are coarsely geodesic metric spaces, and

• X1
QI∼ X2.

If X1 is Gromov hyperbolic, then X2 is Gromov hyperbolic.

(10.2.5) Corollary. The fundamental group of any compact manifold M
of strictly negative sectional curvature is Gromov hyperbolic.

Proof. Since M is compact, the fundamental group π1(M) acts cocom-
pactly on the universal cover M̃ of M, so π1(M)

QI∼ M̃ (see Proposi-
tion 10.1.7). Now apply Theorem 10.2.2 and Corollary 10.2.4. □

This observation allows us to determine precisely which lattices are
Gromov hyperbolic:

(10.2.6) Proposition. Γ is Gromov hyperbolic if and only if rankRG = 1
and either G/Γ is compact, or the unique noncompact simple factor of G
is isogenous to SL(2,R).

Sketch of proof. With a bit more theory than has been presented here,
it is not difficult to show that Gromov hyperbolic groups never contain a
subgroup isomorphic to Z× Z, so we may assume Γ is irreducible.

Case 1. Assume G/Γ is compact. From Proposition 10.1.7, we know that
Γ is quasi-isometric to the symmetric space G/K associated to G.

• If rankRG = 1, thenG/K has negative sectional curvature, bounded
away from 0, so it is Gromov hyperbolic.

• If rankRG ≥ 2, then G/K contains 2-dimensional flats, so it is not
Gromov hyperbolic.
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Case 2. Assume G/Γ is not compact. (⇒) We may assume that G has no
compact factors. Let U be a maximal unipotent subgroup of Γ . We know
that U does not contain a subgroup isomorphic to Z×Z. Also, since G/Γ
is not compact, we know U is infinite (see Remark 4.4.5). Therefore, since
U is nilpotent (and torsion-free), it is easy to see that U must be cyclic.
It can be shown that this implies G is isogenous to SL(2,R).

(⇐) Γ is virtually free, so it is Gromov hyperbolic (see Exercise 3). □

Exercises for §10.2.

#1. Show that the coarse geodesic between two points in a Gromov hy-
perbolic space is coarsely unique. More precisely, given C, show
there is some C′ > 0, such that if γ and γ′ are two C-coarse
geodesics with the same endpoints, then γ is contained in the C′-
neighborhood of γ′.
[Hint: If a and b are the two endpoints, consider the (degenerate) triangle abb.]

#2. Show that if X is a C-coarsely geodesic δ-hyperbolic space, and
C′ ≥ C, then there exists δ′, such that every C′-coarse geodesic
from a to b is in the δ′-neighborhood of every C-coarse geodesic
from a to b. (This is a generalization of Exercise 1.)
[Hint: For any point c on a C′-coarse geodesic from a to b, there is a C-coarse
triangle abc. If c is not in the δ-neighborhood of ab, then there exist a′, b′ ∈ ab
that are distance less than δ from points a′′ and b′′ on ac and bc, respectively,
such that d(a′, b′) < C + 1. Bound d(a′, c) by noting that c is on the C′′-coarse
geodesic a′′c ∪ cb′′.]

#3. Show that free groups are Gromov hyperbolic.
[Hint: The word metric corresponding to a set of free generators is 0-hyperbolic.]

#4. Prove Corollary 10.2.4.
[Hint: Use Theorem 10.2.3 to show that coarse triangles in X2 can be approximated
by coarse triangles in X1.]

Notes

Almost all of the material in this chapter can be found in any treat-
ment of geometric group theory, such as [5], [7], or (more elementary) [1].
A detailed treatment of this and much more is in [2].

The Lubotzky-Mozes-Raghunathan Theorem (10.1.10) is proved in [9]
(or see [8] for an exposition of the special case where Γ = SL(n,Z)).

See [3] for an introduction to the theory of Gromov hyperbolic groups,
or [4, 6] for much more information. The notion of δ-hyperbolic group
is credited to E. Rips, who also proved some of the basic properties (such
as that they are finitely presented), but much of the foundational work
in the subject was done by M. Gromov [6].

Proposition 10.2.6 is well known.
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Chapter 11

Unitary Representations

Unitary representations are of the utmost importance in the study of Lie
groups. For our purposes, one of the main applications is the proof of
the Moore Ergodicity Theorem (4.10.3) in Section 11.2, but they are also
the foundation of the definition (and study) of Kazhdan’s Property (T)
in Chapter 13.

§11.1. Definitions

(11.1.1) Definition. AssumeH is a Hilbert space, with inner product ⟨ | ⟩,
and H is a Lie group.

1) U(H ) is the group of unitary operators on H .

2) A unitary representation of the Lie groupH on the Hilbert spaceH
is a homomorphism π : H →U(H ), such that the map h, π(h)φ
is continuous, for each φ ∈ H . (If we wish to spell out that a
unitary representation is on a particular Hilbert space H , we may
refer it as (π,H ), rather than merely π.)

3) The dimension of a unitary representation (π,H ) is the dimension
of the Hilbert space H .

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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4) Suppose (π1,H1) and (π2,H2) are unitary representations of H.
(a) The direct sum of the representations π1 and π2 is the unitary

representation π1 ⊕π2 of H on H1 ⊕H2 that is defined by

(π1 ⊕π2)(h)(φ1,φ2) =
(
π1(h)φ1, π2(h)φ2

)
,

for h ∈ H and φi ∈Hi.
(b) π1 and π2 are isomorphic if there is a Hilbert-space isomor-

phism T : H1
≊
-→H2 that intertwines the two representations.

This means T
(
π1(h)φ

) = π2(h)T(φ), for all h ∈ H and
φ ∈H1.

(11.1.2) Example. Every group H has a trivial representation, denoted
by 1 (or 1H, if it will avoid confusion). It is a unitary representation on
the 1-dimensional Hilbert space C, and is defined by 1(h)φ = φ for all
h ∈ H and φ ∈ C.

Here is a more interesting example:

(11.1.3) Example. Suppose

• H is a Lie group,

• H acts continuously on a locally compact, metrizable space X, and

• µ is an H-invariant Radon measure on X.

Then there is a unitary representation of H on +2(X, µ), defined by(
π(h)φ

)
(x) =φ(h−1x)

(cf. Exercise 4.10#11). For the action ofH on itself by translations (on the
left), the resulting representation πreg of H on +2(H) is called the (left)
regular representation of H.

(11.1.4) Definition. Suppose π is a unitary representation of H on H ,
H′ is a subgroup of H, and K is a closed subspace of H .

1) K is H′-invariant if π(h′)K =K, for all h′ ∈ H′. (If the represen-
tation π is not clear from the context, we may also say that K is
π(H′)-invariant.)

2) For the special case where H′ = H, an H-invariant subspace is sim-
ply said to be invariant , and the representation of H on any such
subspace is called a subrepresentation of π. More precisely, if
K is H-invariant (and closed), then the corresponding subrepre-
sentation is the unitary representation πK of H on K, defined by
πK(h)φ = π(h)φ, for all h ∈ H and φ ∈K.

(11.1.5) Lemma (see Exercise 2). If (π,H ) is a unitary representation
of H, and K is a closed, H-invariant subspace of H , then π ≊ πK ⊕πK⊥.
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The above lemma shows that any invariant subspace leads to a de-
composition of the representation into a direct sum of subrepresenta-
tions. This suggests that the fundamental building blocks are the repre-
sentations that do not have any (interesting) subrepresentations. Such
representations are called “irreducible:”

(11.1.6) Definitions. Let H be a Lie group.

1) A unitary representation (π,H ) of H is irreducible if it has no
nontrivial, proper, closed, invariant subspaces. That is, the only
closed, H-invariant subspaces of H are {0} and H .

2) The set of all irreducible representations of H (up to isomorphism)
is called the unitary dual of H, and is denoted Ĥ.

(11.1.7) Warnings.

1) Unfortunately, it is usually not the case that every unitary repre-
sentation of H is a direct sum of irreducible representations. (This
is a generalization of the fact that if U is a unitary operator on H ,
then H may not be a direct sum of eigenspaces of U.) However, it
will be explained in Section 11.6 that every unitary representation
is a “direct integral” of irreducible representations. In the special
case where H = Z, this is a restatement of the Spectral Theorem
for unitary operators (cf. Proposition B7.12).

2) Although the unitary dual Ĥ has a fairly natural topology, it can
be quite bad. In particular, the topology may not be Hausdorff.
Indeed, in some cases, the topology is so bad that there does not
exist an injective, Borel measurable function from Ĥ to R. Fortu-
nately, though, the worst problems do not arise for semisimple Lie
groups: the unitary dual is always “tame” (measurably, at least) in
this case.

Exercises for §11.1.

#1. Suppose π is a unitary representation ofH onH , and define a map
ξ : H ×H →H by ξ(h,v) = π(h)v. Show that ξ is continuous.
[Hint: Use the fact that π(H) consists of unitary operators.]

#2. Prove Lemma 11.1.5.
[Hint: If K is invariant, then K⊥ is also invariant. Define T : K ⊕K⊥ → H by
T(φ,ψ) = φ +ψ.]

#3. (Schur’s Lemma) Suppose (π,H ) is an irreducible unitary repre-
sentation of H, and T is a bounded operator on H that commutes
with every element of π(H ). Show there exists λ ∈ C, such that
Tφ = λφ, for every φ ∈H .
[Hint: Assume T is normal, by considering T+T∗ and T−T∗, and apply the Spectral
Theorem (B7.12).]
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#4. Suppose (π,H ) is an irreducible unitary representation of H, and
⟨ | ⟩′ is another H-invariant inner product on H that defines the
same topology onH as the original inner product ⟨ | ⟩. Show there
exists c ∈ R+, such that ⟨ | ⟩′ = c⟨ | ⟩.
[Hint: Each inner product provides an isomorphism of H with H∗. Exercise 3
implies they are the same, up to a scalar multiple.]

#5. (optional) In the situation of Example 11.1.3, a weaker assumption
onµ suffices to define a unitary representation on +2(X, µ). Namely,
instead of assuming that µ is invariant, it suffices to assume only
that the class of µ is invariant. This means, for every measurable
subset A, and all h ∈ H, we have µ(A) = 0 a µ(hA) = 0. Then, for
each h ∈ H, the Radon-Nikodym Theorem (B6.13) provides a func-
tion Dh : X → R+, such that h∗µ = Dhµ. Show that the formula(

π(h)φ
) = √

Dh(x) φ(h−1x)
defines a unitary representation of H on +2(X, µ).

§11.2. Proof of the Moore Ergodicity Theorem

Recall the following result that was proved only in a special case:

(11.2.1) Theorem (Moore Ergodicity Theorem (4.10.3)). Suppose

• G is connected and simple,

• H is a closed, noncompact subgroup of G,

• Λ is a discrete subgroup of G, and

• ϕ is an H-invariant +p-function on G/Λ (with 1 ≤ p <∞).

Then ϕ is constant (a.e.).

This is an easy consequence of the following result in representation
theory (see Exercise 1).

(11.2.2) Theorem (Decay of matrix coefficients). If

• G is simple,

• π is a unitary representation of G on a Hilbert space H , such that
no nonzero vector is fixed by π(G), and

• {gj} is a sequence of elements of G, such that ∥gj∥ → ∞,

then ⟨π(gj)ϕ | ψ⟩ → 0, for every ϕ,ψ ∈H .

Proof. Assume, for simplicity, that

G = SL(2,R).
(A reader familiar with the theory of real roots and Weyl chambers should
have little difficulty in extending this proof to the general case; cf. Exer-
cise 6.) Let

A =
[∗

∗
]
⊂ G.
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Further assume, for simplicity, that

{gj} ⊆ A.
(It is not difficult to eliminate this hypothesis; see Exercise 5.) By pass-
ing to a subsequence, we may assume π(gj) converges weakly, to some
operator E; that is,

⟨π(gj)ϕ | ψ⟩ → ⟨Eϕ | ψ⟩ for every ϕ,ψ ∈H
(see Exercise 2). Let

U = {v ∈ G | g−1
j vgj → e } (11.2.3)

and

U− = {u ∈ G | gjug−1
j → e }. (11.2.4)

For u ∈ U− and ϕ,ψ ∈H , we have

⟨Eπ(u)ϕ | ψ⟩ = lim⟨π(gju)ϕ | ψ⟩
= lim⟨π(gjug−1

j )π(gj)ϕ | ψ⟩
= lim⟨π(gj)ϕ | ψ⟩ (see Exercise 3)

= ⟨Eϕ | ψ⟩,
so Eπ(u) = E. Therefore, letting

HU− = {ϕ ∈H |π(u)ϕ = ϕ for all u ∈ U− }
be the space of U−-invariant vectors in H , we have

(HU−)⊥ ⊆ kerE (11.2.5)

(see Exercise 4). Similarly, since

⟨E∗ϕ | ψ⟩ = ⟨ϕ | Eψ⟩ = lim⟨ϕ | π(gj)ψ⟩ = lim⟨π(g−1
j )ϕ | ψ⟩,

the same argument, with E∗ in the place of E and g−1
j in the place of gj,

shows that

(HU)⊥ ⊆ kerE∗.

We also have

⟨π(gj)ϕ | π(gk)ϕ⟩ = ⟨π(g−1
k gj)ϕ | ϕ⟩ (π(g−1

k ) is unitary)

= ⟨π(gjg−1
k )ϕ | ϕ⟩ (A is abelian)

= ⟨π(g−1
k )ϕ | π(g−1

j )ϕ⟩.
Applying limj→∞ limk→∞ to both sides yields ∥Eϕ∥2 = ∥E∗ϕ∥2, and this
implies kerE = kerE∗. Hence,

kerE = kerE + kerE∗ ⊃ (HU−)⊥ + (HU)⊥

= (HU− ∩HU)⊥ = (H ⟨U,U−⟩)⊥.
Now, by passing to a subsequence of {gj}, we may assume ⟨U,U−⟩ = G
(see Exercise 7). Then H ⟨U,U−⟩ = HG = 0, so kerE ⊃ 0⊥ = H . This
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implies that, for all ϕ,ψ ∈H , we have

lim⟨π(gj)ϕ | ψ⟩ = ⟨Eϕ | ψ⟩ = ⟨0 | ψ⟩ = 0. □

(11.2.6) Remark. If A is a bounded operator on a Hilbert space H , and
ϕ,ψ ∈H , then the inner product ⟨Aϕ | ψ⟩ is called a matrix coefficient
of A. The motivation for this terminology is that if A ∈ Matn×n(R), and
ε1, . . . , εn is the standard basis of H = Rn, then ⟨Aεj | εi⟩ is the (i, j)
matrix entry of A.

The above argument yields the following more general result.

(11.2.7) Corollary (of proof). Assume

• G has no compact factors,

• π is a unitary representation of G on a Hilbert space H , and

• {gn} → ∞ in G/N, for every proper, normal subgroup N of G.

Then ⟨gnϕ | ψ⟩ → 0, for every ϕ,ψ ∈ (HG)⊥.

This has the following consequence, which implies the Moore Ergod-
icity Theorem (see Exercise 9).

(11.2.8) Corollary (Mautner phenomenon (see Exercise 8)). Assume

• G has no compact factors,

• π is a unitary representation of G on a Hilbert space H , and

• H is a closed subgroup of G.

Then there is a closed, normal subgroup N of G, containing a cocom-
pact subgroup of H, such that every π(H)-invariant vector in H is π(N)-
invariant.

(11.2.9) Remark. Theorem 11.2.2 does not give any information about
the rate at which the function ⟨ϕ(g)ϕ | ψ⟩ tends to 0 as ∥g∥ → ∞. For
some applications, it is helpful to know that, for many choices of the
vectors ϕ and ψ, the inner product decays exponentially fast:

If G, π, and H are as in Theorem 11.2.2, then there is a dense, linear
subspace H∞ of H , such that, for all ϕ,ψ ∈ H∞, there exist a,b > 1,
such that

|⟨ϕ(g)ϕ | ψ⟩| < b
a∥g∥

for all g ∈ G.

Specifically, if K is a maximal compact subgroup of G, then we may take

H∞ =
{
ϕ ∈H

∣∣ the linear span of Kϕ is finite-dimensional
}
.

(So H∞ is the space of “K-finite” vectors.)
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Exercises for §11.2.

#1. Show that Theorem 11.2.1 is a corollary of Theorem 11.2.2.
[Hint: If ϕ is an H-invariant function in +p(G/Γ), let ϕ′ = |ϕ|p/2 ∈ +2(G/Γ). Then
⟨ϕ′, gjϕ′⟩ = ⟨ϕ′,ϕ′⟩ for every gj ∈ H.]

#2. Let {Tj} be a sequence of unitary operators on a Hilbert space H .
Show there is a subsequence {Tji}of {Tj}and a bounded operator E

on H , such that ⟨Tjiv | w⟩
i→∞
-→ ⟨Ev | w⟩ for all v,w ∈H .

[Hint: Choose an orthonormal basis {ep}. For each p,q, the sequence {⟨Tjep | eq⟩
is bounded, and therefore has a subsequence that converges to some αp,q. Cantor
diagonalization implies that we may assume, after passing to a subsequence, that
⟨Tjep | eq⟩ → αp,q for all p and q.]

#3. Suppose
• π is a unitary representation of G on H ,
• {ϕj} is a sequence of unit vectors in H , and
• uj → e in G.

Show lim⟨π(uj)ϕj | ψ⟩ = lim⟨ϕj | ψ⟩, for all ψ ∈H .
[Hint: Move π(uj) to the other side of the inner product. Then use the continuity
of π and the boundedness of {ϕj}.]

#4. Prove (11.2.5).
[Hint: LetK be the closure of {π(u)ϕ−ϕ | u ∈ U−,ϕ ∈ (HU−)⊥ }, and note that
K ⊆ kerE. If ψ ∈K⊥, then π(u)ψ−ψ = 0 for all u ∈ U− (why?), so ψ ∈HU−.]

#5. Eliminate the assumption that {gj} ⊆ A from the proof of Theo-
rem 11.2.2.
[Hint: You may assume the Cartan decomposition, which states that G = KAK,
where K is compact. Hence, gj = cjajc′j, with cj , c′j ∈ K and aj ∈ A. Assume, by

passing to a subsequence, that {cj} and {c′j} converge. Then

lim⟨π(gj)ϕ | ψ⟩ = lim
⟨
π(aj)

(
π(c′)ϕ

) ∣∣ π(c)−1ψ
⟩ = 0

if cj → c and c′j → c′.]

#6. Prove Theorem 11.2.2 for the special case where G = SL(n,R).

#7. For G, A, {gj}, U, and U− as in the proof of Theorem 11.2.2 (with
{gj} ⊆ A), show that if {gj} is replaced by an appropriate subse-
quence, then ⟨U,U−⟩ = G.

[Hint: Arrange that U is
[
1 ∗

1

]
and U− is

[
1∗ 1

]
, or vice versa.]

#8. Derive Corollary 11.2.8 from Corollary 11.2.7.

#9. Derive Theorem 14.2.4 from Corollary 11.2.8.
[Hint: If f is H-invariant, then ⟨π(h)f | f ⟩ = ⟨f | f ⟩ for all h ∈ H.]

#10. Suppose
• G is connected, with no compact factors,
• Λ is a discrete subgroup of G,
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• H is a subgroup of G whose projection to every simple factor
of G is not precompact, and

• ϕ is an H-invariant +p function on G/Λ, with 1 ≤ p <∞.
Show that ϕ is constant (a.e.).

#11. Suppose
• H is a noncompact, closed subgroup of G,
• Γ is irreducible, and
• ϕ : G/Γ → R is any H-invariant, measurable function.

Show that ϕ is constant (a.e.).
[Hint: There is no harm in assuming that ϕ is bounded (why?), so it is in +2(G/Γ)
(why?). Apply Corollary 11.2.8.]

§11.3. Induced representations

It is obvious that if H is a subgroup of G, then any unitary representa-
tion of G can be restricted to a unitary representation of H. (That is,
if we define π|H by π|H(h) = π(h) for h ∈ H, then π|H is a unitary
representation of H.) What is not so obvious is that, conversely, every
unitary representation of H can be “induced” to a unitary representation
of G. We will need only the special case where H = Γ is a lattice in G (but
see Exercise 1 for the definition in general). This construction will be a
key ingredient of the proof in Section 13.4 that Γ often has Kazhdan’s
property (T).

(11.3.1) Definition (Induced representation). Suppose π is a unitary rep-
resentation of Γ on H .

1) A measurable function φ : G → H is said to be (essentially) right
Γ-equivariant if, for each γ ∈ Γ , we have

φ(gγ−1) = π(γ)φ(g) for a.e. g ∈ G.

2) We use +Γ(G;H ) to denote the space of right Γ-equivariant mea-
surable functions from G to H , where two functions are identified
if they agree almost everywhere.

3) Forφ ∈ +Γ(G;H ), we have ∥φ(gγ)∥H = ∥φ(g)∥H for every γ ∈ Γ
and a.e. g ∈ G (see Exercise 2). Hence, ∥φ(g)∥H is a well-defined
function on G/Γ (a.e.), so we may define the +2-norm of φ by

∥φ∥2 =
(∫

G/Γ
∥φ(g)∥2

H dg
)1/2

.

4) We use +2
Γ(G;H ) to denote the subspace of +Γ(G;H ) consisting of

the functions with finite +2-norm. It is a Hilbert space (see Exer-
cise 3).

5) Note that G acts by unitary operators on +2
Γ(G;H ), via

(g ·φ)(x) =φ(g−1x) for g ∈ G, φ ∈ +2
Γ(G;H ), and x ∈ G
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(see Exercise 4). This unitary representation of G is called the rep-
resentation induced from π, and it is denoted IndGΓ (π).

Exercises for §11.3.

#1. (optional) Suppose (π,H ) is a unitary representation of a closed
subgroup H of G. Define IndGH(π), without assuming that there is
a G-invariant measure on G/H.
[Hint: Since G/H is a C∞ manifold (see Proposition A6.2), we may use a nowhere-
vanishing differential form to choose a measure µ on G/H, such that f∗µ is in
the class of µ, for every diffeomorphism f of G/H. A unitary representation of G
on +2(G/H,µ) can be defined by using Radon-Nikodym derivatives, as in Exer-
cise 11.1#5, and the same idea yields a unitary representation on a space of H-
equivariant functions.]

#2. Let φ ∈ +Γ(G;H ) and γ ∈ Γ , where π is a unitary representation
of Γ on H . Show ∥φ(gγ)∥H = ∥φ(g)∥H , for a.e. g ∈ G.

#3. Show +2
Γ(G;H ) is a Hilbert space (with the given norm, and assum-

ing that two functions represent the same element of the space if
and only if they are equal a.e.).

#4. Show that the formula in Definition 11.3.1(5) defines a unitary rep-
resentation of G on +2

Γ(G;H ).
#5. Show that IndGΓ (1) is (isomorphic to) the usual representation of G

on +2(G/Γ) (by left translation).

#6. Show that if IndGΓ (π) is irreducible, then π is irreducible.

#7. Show that the converse of Exercise 6 is false.
[Hint: Is the representation of G on +2(G/Γ) irreducible?]

§11.4. Representations of compact groups

(11.4.1) Example. Consider the circle R/Z. For each n ∈ Z, define

en : R/Z→ C by en(t) = e2πint.
The theory of Fourier Series tells us that {en} is an orthonormal basis of
+2(R/Z), which means we have the direct-sum decomposition

+2(R/Z) =
⊕
n∈Z

Cen.

Furthermore, it is easy to verify that each subspace Cen is an invariant
subspace for the regular representation (see Exercise 1), and, being 1-
dimensional, is obviously irreducible. Hence, we have a decomposition
of the regular representation into a direct sum of irreducible represen-
tations. In addition, it is not difficult to see that every irreducible repre-
sentation of T occurs exactly once in this representation.

More generally, it is not difficult to show that every unitary represen-
tation of T is a direct sum of 1-dimensional representations.
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The following theorem generalizes this to any compact group. How-
ever, for nonabelian groups, the irreducible representations cannot all
be 1-dimensional (see Exercise 11.6#1).

(11.4.2) Theorem (Peter-Weyl Theorem). Assume H is compact. Then:

1) Every unitary representation of H is (isomorphic to) a direct sum of
irreducible representations.

2) Every irreducible representation of H is finite-dimensional.

3) Ĥ is countable.

4) For the particular case of the regular representation
(
πreg,+2(H)

)
,

we have
πreg ≊

⊕
(π,H )∈Ĥ

(dimH ) ·π,

where k · π denotes the direct sum π ⊕ · · · ⊕ π of k copies of π.
That is, the “multiplicity” of each irreducible representation is equal
to its dimension.

Proof. In order to establish both (1) and (2) simultaneously, it suffices
to show that if (π,H ) is any unitary representation of H, then H is
a direct sum of finite-dimensional, invariant subspaces. Zorn’s Lemma
(B5.3) provides a subspaceM ofH that is maximal among those that are
a direct sum of finite-dimensional, invariant subspaces. By passing to the
orthogonal complement of M, we may assume that H has no nonzero,
finite-dimensional, invariant subspaces.

Let

• P be the orthogonal projection onto some nonzero subspace of H
that is finite-dimensional,

• µ be the Haar measure on H, and

• P =
∫
H π(h)P π(h−1)dµ(h).

Note that, since P commutes withπ(H) (see Exercise 3), every eigenspace
of P is H-invariant (see Exercise 6).

Since P is self-adjoint and each π(h) is unitary (so π(h−1) = π(h)∗),
it is not difficult to see that P is self-adjoint. It is also compact (see Ex-
ercise 4) and nonzero (see Exercise 5). Therefore, the Spectral Theo-
rem (B7.14) implies that P has at least one eigenspace E that is finite-
dimensional. By contradicting the fact that H has no nonzero, finite-
dimensional, invariant subspaces, this completes the proof of (1) and (2).

Note that (3) is an immediate consequence of (4), since Hilbert spaces
are assumed to be separable (see Assumption B7.7), and therefore cannot
have uncountably many terms in a direct sum.

We now give the main idea in the proof of (4). Given an irreducible
representation (π,Ck), we will not calculate the exact multiplicity of π,
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but only indicate how to obtain the correct lower bound by using prop-
erties of matrix coefficients. Write π(x) = [fi,j(x)]. Then[(

πreg(h)fi,j
)
(x)

] = [fi,j(h−1x)
] = π(h−1x)

= π(h−1)π(x) = π(h−1)
[
fi,j(x)

]
.

(11.4.3)

Now, for 1 ≤ j ≤ k, define Tj : Ck → +2(H), by

Tj(a1, . . . , ak) = a1f1,j + a2f2,j + · · · + akfk,j .
Equating the jth columns of the two ends of (11.4.3) tells us that

Tj
(
π(h)v

) = πreg(h)Tj(v),
so Tj(Ck) is an invariant subspace, and the corresponding subrepresen-
tation is isomorphic toπ. Therefore, there are (at least) kdifferent copies
of π in πreg (one for each value of j). Since, by definition, k = dimπ, this
establishes the correct lower bound for the multiplicity of π. □

As an illustrative, simple case of the main results in Sections 11.5
and 11.6, we present two different reformulations of the Peter-Weyl The-
orem for the special case of abelian groups, after some preliminaries.

(11.4.4) Definition. Let A be an abelian Lie group.

1) A character of A is a continuous homomorphism χ: A→ T, where
T = {z ∈ C | |z| = 1 }.

2) The set of all characters of A is called the Pontryagin dual of A,
and is denoted A∗. It is an abelian group under the operation of
pointwise multiplication. (That is, the product χ1χ2 is defined by
(χ1χ2)(a) = χ1(a)χ2(a), for χ1,χ2 ∈ A∗ and a ∈ A.) Further-
more, if A/A◦ is finitely generated, then A∗ is a Lie group (with the
topology of uniform convergence on compact sets).

(11.4.5) Observation. If A is any abelian Lie group (compact or not ), then
every irreducible representation (π,H ) of A is 1-dimensional (see Exer-
cise 8). Therefore, the unitary dual Â can be identified with the Pontryagin
dual A∗ (see Exercise 9).

Hence, for the special case where H = A is abelian, we have the fol-
lowing reformulation of the Peter-Weyl Theorem:

(11.4.6) Corollary (see Exercise 10). Assume (π,H ) is a unitary repre-
sentation of a compact, abelian Lie group A. For each χ∈ A∗, let

• Hχ = {φ ∈H |ϕ(a)φ =χ(a)φ, for all a ∈ A}, and

• Pχ : H →Hχ be the orthogonal projection.

Then H =⊕χ∈A∗Hχ, so, for all a ∈ A, we have

π(a) =
∑

χ∈A∗
χ(a)Pχ.
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Here is another way of saying the same thing:

(11.4.7) Corollary (see Exercise 11). Assume (π,H ) is a unitary repre-
sentation of a compact, abelian Lie group A. Then there exist

• a Radon measure µ on a locally compact metric space Y , and

• a Borel measurable function χ: Y → A∗ : y , χy (where the count-
able set A∗ is given the discrete topology)

such that π is isomorphic to the the unitary representation ρχ of A on
+2(Y , µ) that is defined by(

ρχ(a)φ
)
(y) = χy(a)φ(y) for a ∈ A,φ ∈ +2(Y , µ), and y ∈ Y.

An analogue of this result for semisimple groups will be stated in
Section 11.6, after we define the “direct integral” of a family of represen-
tations.

Exercises for §11.4.

#1. In the notation of Example 11.4.1, show πreg(h)en = e−2πihen, for
all h ∈ R/Z.

#2. Suppose (π,H ) is a unitary representation of a compact group H,
let φ,ψ ∈ H , and define f : H → C by f(h) = ⟨π(h)φ | ψ⟩. Show
f ∈ +2(H).
[Hint: It is a bounded function on a compact set.]

#3. Suppose (π,H ) is a unitary representation of a compact group H.
Show that if T is any bounded operator on H , then

T =
∫
H
π(h)T π(h−1)dµ(h)

is an operator that commutes with every element of π(H).
[Hint: The invariance of Haar measure implies π(g)Tπ(g−1) = T.]

#4. Show that the operator P in the proof of Theorem 11.4.2 is compact.
[Hint: Apply Proposition B7.11, by noting that any integral can be approximated by
a finite sum, and the finite sum is an operator whose range is finite-dimensional.]

#5. Show that the operator P in the proof of Theorem 11.4.2 is nonzero.
[Hint: Choose some nonzero φ ∈H , such that Pφ =φ. Then ⟨Pφ |φ⟩ > 0, since
⟨Pψ | ψ⟩ ≥ 0 for all ψ ∈H .]

#6. Suppose (π,H ) is a unitary representation of a Lie group H, T is
a bounded operator on H , λ ∈ C, and φ ∈ H . Show that if
T commutes with every element of π(H), and T(φ) = λφ, then
T
(
π(h)φ

) = λπ(h)φ, for every h ∈ H.

#7. Assume H is compact. Show that H is finite if and only if it has
only finitely many different irreducible unitary representations (up
to isomorphism).
[Hint: You may assume Theorem 11.4.2.]
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#8. Show that every irreducible representation of any abelian Lie group
is 1-dimensional.
[Hint: If π(a) is not a scalar, for some a, then the Spectral Theorem (B7.12) yields
an invariant subspace.]

#9. Let H be a Lie group. Show there is a natural bijection between
the set of 1-dimensional unitary representations (modulo isomor-
phism) and the set of continuous homomorphisms from H to T.
[Hint: Any 1-dimensional unitary representation is isomorphic to a representation
on C.]

#10. Derive Corollary 11.4.6 from Theorem 11.4.2.

#11. Prove Corollary 11.4.7.
[Hint: If Hχ ≠ {0}, then Hχ is isomorphic to some +2(Yχ, µχ). Let Y = ∪χYχ.]

§11.5. Unitary representations of Rn

Any character χ of Rn is of the form
χ(a) = e2πi (a·y) for some (unique) y ∈ Rn

(see Exercise 1). Therefore, the Pontryagin dual (Rn)∗ (or, equivalently,
the unitary dual R̂n) can be identified with Rn (by matching χ with the
corresponding vector y). In particular, unlike in Theorem 11.4.2, the
unitary dual is uncountable.

Unfortunately, however, not every representation of Rn is a direct
sum of irreducibles. For example, the regular representation πreg of Rn

on +2(Rn) has no 1-dimensional, invariant subspaces (see Exercise 2),
so it does not even contain a single irreducible representation and is
therefore not a sum of them. Indeed, Fourier Analysis tells us that a
function in +2(Rn) is not a sum of exponentials, but an integral :

φ(a) =
∫
Rn
φ̂(y) e2πi (a·y) dy,

where φ̂ is the Fourier transform of φ. Now, for each Borel subset E
of Rn, let

HE = {f ∈ +2(Rn) | f̂ (y) = 0 for a.e. y ∉ E }. (11.5.1)

Then it is not difficult to show thatHE is a closed,πreg-invariant subspace
(see Exercise 3).

Now, let P(E) : H → HE be the orthogonal projection. Then we can
think of P as a projection-valued measure on Rn (or on (Rn)∗), and, for
all a ∈ Rn, we have

πreg(a) =
∫
Rn
ei(a·y) dP(y) =

∫
(Rn)∗

χ(a)dE(χ).

If we let π = πreg, this is a perfect analogue of the conclusion of Corol-
lary 11.4.6, but with the sum replaced by an integral.
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A version of the Spectral Theorem tells us that this generalizes in a
natural way to all unitary representations ofRn, or, in fact, of any abelian
Lie group:

(11.5.2) Proposition. Suppose π is a unitary representation of an abelian
Lie group A on H . Then there is a (unique) projection-valued measure P
on A∗, such that

π(a) =
∫
A∗
χ(a)dP(χ) for all a ∈ A.

This can be reformulated as a generalization of Corollary 11.4.7:

(11.5.3) Corollary. Let (π,H ) be a unitary representation of an abelian
Lie group A. Then there exist

• a probability measure µ on a locally compact metric space Y , and

• a Borel measurable function χ: Y → A∗ : y , χy,

such thatπ is isomorphic to the unitary representation ρχ ofA on +2(Y , µ)
that is defined by(

ρχ(a)φ
)
(y) = χy(a)φ(y) for a ∈ A,φ ∈ +2(Y , µ), and y ∈ Y.

Proof. Let P be the projection-valued measure given by Proposition 11.5.2.
A closed subspace H ′ of H is said to be cyclic for P if there exists
ψ ∈ H ′, such that the span of {P(E)ψ | E ⊂ A∗ } is a dense subspace
of H ′. It is not difficult to see that H is an orthogonal direct sum of
countably many cyclic subspaces (see Exercise 4). Therefore, we may as-
sumeH is cyclic (see Exercise 5) (and nonzero). So we may fix some unit
vector ψ that generates a dense subspace of H .

Define a probability measure µ on A∗ by

µ(E) = ⟨P(E)ψ | ψ⟩ = ⟨P(E)ψ | P(E)ψ⟩,
and let Id be the identity map on A∗.

For the characteristic function fE of each Borel subset E of A∗, define
Φ(fE) = P(E)ψ. Then ⟨Φ(fE1) | Φ(fE2)⟩ = ⟨fE1 | fE2⟩, by the definition
of µ, so Φ extends to a norm-preserving linear map Φ′ from +2(A∗, µ)
to H . Since ψ is a cyclic vector for H , we see that Φ′ is surjective, so it
is an isomorphism of Hilbert spaces. Indeed, Φ′ is an isomorphism from
ρId to π (see Exercise 6). □

Exercises for §11.5.

#1. Show that every character χ of Rn is of the form χ(a) = e2πi (a·t)

for some t ∈ Rn.
[Hint: Since Rn is simply connected, any continuous homomorphism from Rn to T
can be lifted to a homomorphism into the universal cover, which is R. Apply Exer-
cise A6#1.]
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#2. Let H be a noncompact Lie group. Show that the regular represen-
tation of H has no 1-dimensional, invariant subspaces.
[Hint: If φ is in a 1-dimensional, invariant subspace of +2(H), then |φ| is constant
(a.e.).]

#3. For every measurable subset E of Rn, show that the subspace HE
defined in (11.5.1) is closed, and is invariant under πreg(Rn).

[Hint: It is clear that { f̂ | f ∈HE } is closed. For invariance, note that the Fourier
transform of πreg(a)f is e−2πi(a·y)f̂ (y).]

#4. Given a projection-valued measure P on a Hilbert space H , show
that H is the orthogonal direct sum of countably many cyclic sub-
spaces.
[Hint: Every vector in H is contained in a cyclic subspace, the orthogonal com-
plement of a P(E)-invariant subspace is P(E)-invariant, and all Hilbert spaces are
assumed to be separable.]

#5. In the notation of Corollary 11.5.3, suppose ρχi is the represen-
tation on +2(Yi, µi) corresponding to some χi : Yi → A∗. Show⊕∞
i=1 ρχi ≊ ρχ, for some Y , µ, and χ.

[Hint: Let (Y , µ) be the disjoint union of (copies of) (Yi, µi).]

#6. In the notation of the proof of Corollary 11.5.3, show that Φ′ is an
isomorphism from ρId to π.
[Hint: Given a ∈ A and E ⊂ A∗, write E as the disjoint union of small sets E1, . . . , En
(so χ, χ(a) is almost constant on each Ei). Then

Φ′
(
ρId(a)fE

) ≈ Φ′(∑iχi(a)fEi) =∑iχi(a)P(Ei)ψ ≈ π(P(E)ψ) = π(Φ′(fE)),
for any χi ∈ Ei.]

§11.6. Direct integrals of representations

Before we define the direct integral of a collection of unitary represen-
tations, we first discuss the simpler case of a direct sum of a sequence
{(πn,Hn)}∞n=1 of unitary representations.

(11.6.1) Definition. If {Hn}∞n=1 is a sequence of Hilbert spaces, then the
direct sum

⊕∞
n=1Hn consists of all sequences {φn}∞n=1, such that

• φn ∈Hn for each n, and

• ∑∞
n=1 ∥φn∥2 <∞.

This is a Hilbert space, under the inner product⟨{φn} | {ψn}⟩ = ∞∑
n=1

⟨φn | ψn⟩.

It contains a copy of Hn, for each n, such that Hm ⊥Hn, for m ≠ n.
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Suppose, now, that all of the Hilbert spaces in the sequence are the
same; say,Hn =H , for alln. Then

⊕∞
n=1Hn is equal to the set of square-

integrable functions from Z+ to H , which can be denoted +2(Z+;H ). In
this notation, the direct sum of unitary representations is easy to de-
scribe:

(11.6.2) Definition. If {πn}∞n=1 is a sequence of unitary representations
of H on a fixed Hilbert space H , then

⊕∞
n=1πn is the unitary represen-

tation π on +2(Z+;H ) that is defined by(
π(h)φ

)
(n) = πn(h)φ(n) for h ∈ H,φ ∈ +2(Z+;H ), and n ∈ Z+.

This description of the direct sum naturally generalizes to a defini-
tion of the direct integral of representations:

(11.6.3) Definition. Suppose

• H is a Hilbert space,

• {πx}x∈X is a measurable family of unitary representations of H
on H , which means:
◦ X is a locally compact metric space,
◦ πx is a unitary representation of H on H , for each x ∈ X, and
◦ for each fixed φ,π ∈ H , the expression ⟨πx(h)φ | ψ⟩ is a

Borel measurable function on X ×H,
and

• µ is a Radon measure on X.

Then
∫
X πx dµ(x) is the unitary representation π of H on +2(X, µ;H )

that is defined by(
π(h)φ

)
(x) = πx(h)φ(x) for h ∈ H,φ ∈ +2(X, µ;H ), and x ∈ X.

This is called the direct integral of the family of representations {πx}.
The above definition is limited by requiring all of the representations

to be on the same Hilbert space. The construction can be generalized to
eliminate this assumption (see Remark 11.6.5), but there is often no need:

(11.6.4) Theorem. Assume

• π is a unitary representation of G,

• G is connected, and has no compact factors, and

• no nonzero vector is fixed by every element of π(G).
Then there exist H , {πx}x∈X, and µ, as in Definition 11.6.3, such that

1) π ≊
∫
X πx dµ(x), and

2) πx is irreducible for every x ∈ X.

(11.6.5) Remark. Up to isomorphism, there are only countably many dif-
ferent Hilbert spaces (since any two Hilbert spaces of the same dimen-
sion are isomorphic). It is therefore not difficult to generalize Defini-
tion 11.6.3 to deal with a family of representations in which the Hilbert
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space varies with x. Such a generalization allows every unitary represen-
tation of any Lie group to be written as a direct integral of representations
that are irreducible.

Here is one way. Let us say that {(πx,Hx}x∈X is a measurable family
of unitary representations of H if:

• X = ∪∞
n=1 is the union of countably many locally compact metric

spaces Xn,

• for each n, there is Hilbert space Hn, such that Hx = Hn for all
x ∈ Xn

• πx is a unitary representation of H on Hx, for each x ∈ X,

• for each n and each φ,π ∈ Hn, the expression ⟨πx(h)φ | ψ⟩ is a
Borel measurable function on Xn ×H, and

• µ is a Radon measure on X.

Given such a family of representations, we define∫
X
πx dµ(x) =

∞⊕
n=1

∫
Xn
πx dµ(x).

With this, more general, notion of direct integral, it can be proved that
every unitary representation of any Lie group is isomorphic to a direct
integral of a measurable family of irreducible unitary representations.

Exercises for §11.6.

#1. Let H be a Lie group. Show that if the regular representation of H
is a direct integral of 1-dimensional representations, then H is
abelian.

Notes

There are many books on the theory of unitary representations, in-
cluding the classics of Mackey [7, 8]. Several books, such as [6], specifi-
cally focus on the representations of semisimple Lie groups.

The Moore Ergodicity Theorem (11.2.1) is due to C. C. Moore [10].
Corollary 11.2.7 is due to R. Howe and C. C. Moore [5, Thm. 5.1] and

(independently) R. J. Zimmer [12, Thm. 5.2]. The elementary proof we
give here was found by R. Ellis and M. Nerurkar [2]. Other proofs are in
[9, §2.3, pp. 85–92] and [13, §2.4, pp. 28–31].

A more precise form of the quantitative estimate in Remark 11.2.9
can be found in [4, Cor. 7.2]. (As stated there, the result requires the
matrix coefficient ⟨π(g)ϕ | ψ⟩ to be an +p function of g, for ϕ,ψ in
a dense subspace of H , and for some p < ∞, but it was proved in [1,
Thm. 2.4.2] that this integrability hypothesis always holds.)

Theorem 11.4.2 is proved in [11, Chap. 3]



228 11. UNITARY REPRESENTATIONS

See [3, Chap. 2] for a nice proof of Proposition 11.5.2. (Although
most of the proof is written for n = 1, it is mentioned on p. 31 that the
argument works in general.)

See [7, Thm. 2.9, p. 108] for a proof of Remark 11.6.5’s statement that
every unitary representation is a direct integral of irreducibles. (This is
a generalization of Theorem 11.6.4.)

Regarding Warning 11.1.7(2), groups for which the set of irreducible
unitary representations admits an injective Borel map to [0,1] are called
“Type I” (and the others are “Type II”). See [7, §2.3, pp. 77–85] for some
discussion of this.
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Chapter 12

Amenable Groups

The classical Kakutani-Markov Fixed Point Theorem (12.2.3) implies that
any abelian group of continuous linear operators has a fixed point in any
compact, convex, invariant set. This theorem can be extended to some
non-abelian groups; the groups that satisfy such a fixed-point property
are said to be “amenable,” and they have quite a number of interesting
features. Many important subgroups of G are amenable, so the theory is
directly relevant to the study of arithmetic groups, even though we will
see that G and Γ are usually not amenable. In particular, the theory yields
an important equivariant map that will be constructed in Section 12.6.

§12.1. Definition of amenability

(12.1.1) Assumption. Throughout this chapter, H denotes a Lie group.
The ideas here are important even in the special case whereH is discrete.

(12.1.2) Definition. Suppose H acts continuously (by linear maps) on a
locally convex topological vector space V . Every H-invariant, compact,
convex subset of V is called a compact, convex H-space.

(12.1.3) Definition. H is amenable if and only if H has a fixed point in
every nonempty, compact, convex H-space.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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This is just one of many different equivalent definitions of amenabil-
ity. (A few others are discussed in Section 12.3.) The equivalence of
these diverse definitions is a testament to the fact that this notion is
very fundamental.

(12.1.4) Remarks.

1) All locally convex topological vector spaces are assumed to be
Hausdorff.

2) In most applications, the locally convex spaceV is the dual of a sep-
arable Banach space, with the weak∗ topology (see Definition B7.3).
In this situation, every compact, convex subset C is second count-
able, and is therefore metrizable (see Remark 12.3.4). With these
thoughts in mind, we feel free to assume metrizability when it elim-
inates technical difficulties in our proofs. In fact, we could restrict
to these spaces in our definition of amenability, because it turns
out that this modified definition results in exactly the same class
of groups (if we only consider groups that are second countable)
(see Exercise 12.3#17).

3) The choice of the term “amenable” seems to have been motivated
by two considerations:
(a) The word “amenable” can be pronounced “a-MEAN-able,” and

we will see in Section 12.3 that a group is amenable if and only
if it admits certain types of means.

(b) One definition of “amenable” from the Oxford American Dictio-
nary is “capable of being acted on a particular way.” In other
words, in colloquial English, something is “amenable” if it is
easy to work with. Classical analysis has averaging theorems
and other techniques that were developed for the study of
functions on the group Rn. Many of these methods can be
generalized to all amenable groups, so amenable groups are
easy to work with.

Exercises for §12.1.

#1. Show that every finite group is amenable.

[Hint: For some c0 ∈ C, let c = 1
#H

∑
h∈H hc0. Then c ∈ C and c is fixed by H.]

#2. Show that quotients of amenable groups are amenable. That is, if
H is amenable, and N is any closed, normal subgroup of H, then
H/N is amenable.

#3. SupposeH1 is amenable, and there is a continuous homomorphism
φ : H1 → H with dense image. Show H is amenable.
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§12.2. Examples of amenable groups

In this section, we will see that:

• abelian groups are amenable (see 12.2.3),

• compact groups are amenable (see 12.2.4),

• solvable groups are amenable (see 12.2.7), because the class of
amenable groups is closed under extensions (see 12.2.6), and

• closed subgroups of amenable groups are amenable (see 12.2.8).

On the other hand, however, it is important to realize that not all groups
are amenable. In particular, we will see in Section 12.4 that:

• nonabelian free groups are not amenable, and

• SL(2,R) is not amenable.

We begin by showing that Z is amenable:

(12.2.1) Proposition. Cyclic groups are amenable.

Proof. Assume H = ⟨T ⟩ is cyclic. Given a nonempty, compact, convex
H-space C, choose some c0 ∈ C. For n ∈ N, let

cn = 1
n+ 1

n∑
k=0

T k(c). (12.2.2)

Since C is compact, the sequence {cn}must have an accumulation point
c ∈ C. It is not difficult to see that c is fixed by T (see Exercise 1). Since
T generates H, this means that c is a fixed point for H. □

(12.2.3) Corollary (Kakutani-Markov Fixed Point Theorem). Every abelian
group is amenable.

Proof. Let us assume H = ⟨g,h⟩ is a 2-generated abelian group. (See
Exercise 5 for the general case.) If C is any nonempty, compact, convex
H-space, then Proposition 12.2.1 implies that the set Cg of fixed points
of g is nonempty. It is easy to see that Cg is compact and convex (see Ex-
ercise 2), and, becauseH is abelian, that Cg is invariant under h (see Exer-
cise 3). Hence, Cg is a nonempty, compact, convex ⟨h⟩-space. Therefore,
Proposition 12.2.1 implies that h has a fixed point c in Cg. Now c is fixed
by g (because it belongs to Cg), and c is fixed by h (by definition), so c is
fixed by ⟨g,h⟩ = H. □

Compact groups are also easy to work with:

(12.2.4) Proposition. Compact groups are amenable.

Proof. Assume H is compact, and let µ be a Haar measure on H. Given a
nonempty, compact, convex H-space C, choose some c0 ∈ C. Since µ is a
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probability measure, we may let

c =
∫
H
h(c0)dµ(h) ∈ C. (12.2.5)

(In other words, c is the center of mass of the H-orbit of c0.) The H-
invariance of µ implies that c is a fixed point for H (see Exercise 6). □

It is easy to show that amenable extensions of amenable groups are
amenable (see Exercise 7):

(12.2.6) Proposition. If H has a closed, normal subgroup N, such that N
and H/N are amenable, then H is amenable.

Combining the above results has the following consequences:

(12.2.7) Corollary.

1) Every solvable group is amenable.

2) If H has a solvable, normal subgroup N, such that H/N is compact,
then H is amenable.

Proof. Exercises 9 and 10. □

The converse of Corollary 12.2.7(2) is true for connected groups
(see Proposition 12.4.7).

(12.2.8) Proposition. Every closed subgroup of any amenable group is
amenable.

Proof. This proof employs a bit of machinery, so we postpone it to Sec-
tion 12.5. (For discrete groups, the result follows easily from some other
characterizations of amenability; see Remarks 12.3.13 and 12.3.24 be-
low.) □

Exercises for §12.2.

#1. Suppose T is a continuous linear map on a locally convex space V .
Show that if c is any accumulation point of the sequence {cn} de-
fined by (12.2.2), then c is T-invariant.
[Hint: If ∥cn − c∥ is small, then ∥T(cn) − T(c)∥ is small. Show that ∥T(cn) − cn∥
is small whenever n is large. Conclude that ∥T(c)− c∥ is smaller than every ϵ.]

#2. Suppose C is a compact, convex H-space. Show that the set CH of
fixed points of H is compact and convex.
[Hint: Closed subsets of C are compact.]

#3. Suppose H acts on a space C, A is a subgroup of H, and h is an
element of the centralizer ofA. Show that the set CA of fixed points
of A is invariant under h.
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#4. Establish Exercise 3 under the weaker assumption that h is an ele-
ment of the normalizer of A, not the centralizer.

#5. Prove Corollary 12.2.3.

[Hint: For each h ∈ H, let Ch be the set of fixed points of h. The given argument
implies (by induction) that {Ch | h ∈ H } has the finite intersection property, so
the intersection of these fixed-point sets is nonempty.]

#6. Show that if µ is the Haar measure on H, and H is compact, then
the point c defined in (12.2.5) is fixed by H.

#7. Prove Proposition 12.2.6.
[Hint: Exercises 2 and 4.]

#8. Show that H1 × H2 is amenable if and only if H1 and H2 are both
amenable.

#9. Prove Corollary 12.2.7(1).
[Hint: Proposition 12.2.6.]

#10. Prove Corollary 12.2.7(2).
[Hint: Proposition 12.2.6.]

#11. Suppose H is discrete, and H1 is a finite-index subgroup. Show H
is amenable if and only if H1 is amenable.

#12. Show that if Λ is a lattice in H, and Λ is amenable, then H is
amenable.
[Hint: Let µ =

∫
H/Λ hv dh, where v is a fixed point for Λ.]

#13. Assume H is discrete. Show that if every finitely generated sub-
group of H is amenable, then H is amenable.

[Hint: For each h ∈ H, let Ch be the set of fixed points of h. Then {Ch | h ∈ H }
has the finite intersection property, so

∩
h Ch ≠∅.]

#14. Let P =
[∗
∗ ∗
∗ ∗ ∗

]
⊂ SL(3,R). Show that P is amenable.

[Hint: P is solvable.]

#15. Assume there exists a discrete group that is not amenable. Show
the free group F2 on 2 generators is not amenable.
[Hint: Fn is a subgroup of F2.]

#16. Assume there exists a Lie group that is not amenable.
a) Show the free group F2 on 2 generators is not amenable.
b) Show SL(2,R) is not amenable.
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§12.3. Other characterizations of amenability

Here are a few of the many conditions that are equivalent to amenability.
The necessary definitions are provided in the discussions that follow.

(12.3.1) Theorem. The following are equivalent:

1) H is amenable.

2) H has a fixed point in every nonempty, compact, convex H-space.

3) IfH acts continuously on a compact, metrizable topological space X,
then there is an H-invariant probability measure on X.

4) There is a left-invariant mean on the space Cbdd(H) of all real-
valued, continuous, bounded functions on H.

5) There is a left-invariant finitely additive probability measure ρ de-
fined on the collection of all Lebesgue measurable subsets ofH, such
that ρ(E) = 0 for every set E of Haar measure 0.

6) The left regular representation of H on +2(H) has almost-invariant
vectors.

7) There exists a Følner sequence in H.

The equivalence (1 a 2) is the definition of amenability (12.1.3).
Equivalence of the other characterizations will be proved in the remain-
der of this section.

§12.3(i). Invariant probability measures.

(12.3.2) Definitions. Let X be a complete metric space.

1) A measure µ on X is a probability measure if µ(X) = 1.

2) Prob(X) denotes the space of all probability measures on X.

Any measure onX is also a measure on the one-point compactificationX+
of X, so, if X is locally compact, then the Riesz Representation Theorem
(B6.10) tells us that every finite measure on X can be thought of as a
linear functional on the Banach space C(X+) of continuous functions
on X+. This implies that Prob(X) is a subset of the closed unit ball in the
dual space C(X+)∗, and therefore has a weak∗ topology. If X is compact
(so there is no need to pass to X+), then the Banach-Alaoglu Theorem
(B7.4) tells us that Prob(X) is compact (see Exercise 1).

(12.3.3) Example. If a group H acts continuously on a compact, metriz-
able space X, then Prob(X) is a compact, convexH-space (see Exercise 2).

(12.3.4) Remark (Urysohn’s Metrization Theorem). Recall that a compact,
Hausdorff space is metrizable if and only if it is second countable, so
requiring a compact, separable, Hausdorff space to be metrizable is not
a strong restriction.
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(12.3.5) Proposition (1 a 3). H is amenable if and only if for every contin-
uous action ofH on a compact, metrizable spaceX, there is anH-invariant
probability measure µ on X.

Proof. (⇒) If H acts on X, and X is compact, then Prob(X) is a nonempty,
compact, convex H-space (see Example 12.3.3). So H has a fixed point in
Prob(X); this fixed point is the desired H-invariant measure.

(⇐) Suppose C is a nonempty, compact, convexH-space. By replacing
C with the closure of the convex hull of a single H-orbit, we may assume
C is separable; then C is metrizable (see Exercise 3). SinceH is amenable,
this implies there is an H-invariant probability measure µ on C. Since C
is convex and compact, the center of mass

p =
∫
C
c dµ(c)

belongs to C (see Exercise 4). Since µ is H-invariant (and the H-action is
by linear maps), a simple calculation shows that p is H-invariant (see Ex-
ercise 6). □

§12.3(ii). Invariant means.

(12.3.6) Definition. Suppose V is some linear subspace of +∞(H), and
assume V contains the constant function 1H that takes the value 1 at
every point of H. A mean on V is a linear functional λ on V , such that

• λ(1H) = 1, and

• λ is positive, i.e., λ(f) ≥ 0 whenever f ≥ 0.

(12.3.7) Remark. Any mean is a continuous linear functional; indeed,
∥λ∥ = 1 (see Exercise 8).

It is easy to construct means:

(12.3.8) Example. If ϕ is any unit vector in +1(H), and µ is the left Haar
measure on H, then defining

λ(f) =
∫
H
f |ϕ|dµ

produces a mean (on any subspace of +∞(H) that contains 1H). Means
constructed in this way are (weakly) dense in the set of all means (see Ex-
ercise 12).

Compact groups are the only ones with invariant probability mea-
sures, but invariant means exist more generally:

(12.3.9) Proposition (1 ⇒ 4). If H is amenable, then there exists a left-
invariant mean on the space Cbdd(H) of bounded, continuous functions
on H.
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Proof. The set of means on Cbdd(H) is obviously nonempty, convex and
invariant under left translation (see Exercise 13). Furthermore, it is a
weak∗ closed subset of the unit ball in Cbdd(H)∗ (see Exercise 14), so it is
compact by the Banach-Alaoglu Theorem (Proposition B7.4). Therefore,
the amenability of H implies that some mean is left-invariant. (Actually,
there is a slight technical problem here ifH is not discrete: the action ofH
on Cbdd(H) may not be continuous in the sup-norm topology, because
continuous functions do not need to be uniformly continuous.) □

(12.3.10) Remark. With a bit more work, it can be shown that if H is
amenable, then there is a left-invariant mean on +∞(H), not just on
Cbdd(H) (see Exercise 14). Therefore, Cbdd(H)can be replaced with +∞(H)
in Theorem 12.3.1(4). Furthermore, there exists a mean on +∞(H) that is
bi-invariant (both left-invariant and right-invariant) (cf. Exercise 16).

(12.3.11) Proposition (4 ⇒ 3). Suppose H acts continuously on a compact,
metrizable space X. If there is a left-invariant mean on Cbdd(H), then
there is an H-invariant probability measure on X.

Proof. Fix some x ∈ X. Then we have a continuous, H-equivariant linear
map from C(X) to Cbdd(H), defined by

f(h) = f(hx).
Therefore, any left-invariant mean on Cbdd(H) induces an H-invariant
mean λ on C(X) (see Exercise 15). Since X is compact, the Riesz Repre-
sentation Theorem (B6.10) tells us that any continuous, positive linear
functional on C(X) is a measure; thus, this H-invariant mean λ can be
represented by anH-invariant measure µ onX. Since λ is a mean, we have
λ(1) = 1, so µ(X) = 1, which means that µ is a probability measure. □

§12.3(iii). Invariant finitely additive probability measures. The fol-
lowing proposition is based on the observation that, just as probability
measures on X correspond to elements of the dual of C(X), finitely addi-
tive probability measures correspond to elements of the dual of +∞(X).

(12.3.12) Proposition (4 a 5). There is a left-invariant mean on +∞(X) if
and only if there is a left-invariant finitely additive probability measure ρ
defined on the collection of all Lebesgue measurable subsets of H, such
that ρ(E) = 0 for every set E of Haar measure 0.

Proof. (⇒) Because H is amenable, there exists a left-invariant mean λ
on +∞(H) (see Remark 12.3.10). For a measurable subset E of H, let
ρ(E) = λ(χE), where χE is the characteristic function of E. It is easy to
verify that ρ has the desired properties (see Exercise 18).
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(⇐) We define a mean λ via an approximation by step functions: for
f ∈ +∞(H), let

λ(f) = inf


n∑
i=1

aiρ(Ei)

∣∣∣∣∣∣ f ≤
n∑
i=1

aiχEi a.e.

 .
Since ρ is finitely additive, it is straightforward to verify that λ is a mean
on +∞(H) (see Exercise 19). Since ρ is bi-invariant, we know that λ is also
bi-invariant. □

(12.3.13) Remark.

1) Proposition 12.3.12 easily implies that every subgroup of a discrete
amenable group is amenable (see Exercise 20), establishing Propo-
sition 12.2.8 for the case of discrete groups. In fact, it is not very
difficult to prove the general case of Proposition 12.2.8 similarly
(see Exercise 21).

2) Because any amenable group H has a bi-invariant mean on +∞(H)
(see Remark 12.3.10), the proof of Proposition 12.3.12(⇒) shows
that the finitely additive probability measure ρ can be taken to be
bi-invariant.

§12.3(iv). Almost-invariant vectors.

(12.3.14) Definition. An action of H on a normed vector space B has
almost-invariant vectors if, for every compact subset C of H and every
ϵ > 0, there is a unit vector v ∈ B, such that

∥cv − v∥ < ϵ for all c ∈ C. (12.3.15)

(A unit vector satisfying (12.3.15) is said to be (ϵ, C)-invariant.)

(12.3.16) Example. Consider the regular representation of H on +2(H).
1) If H is a compact Lie group, then the constant function 1H belongs

to +2(H), so +2(H) has an H-invariant unit vector.

2) If H = R, then +2(H) does not have any (nonzero) H-invariant
vectors (see Exercise 22), but it does have almost-invariant vec-
tors: Given C and ϵ, choose n ∈ N so large that C ⊆ [−n,n] and
2/
√
n < ϵ. Let ϕ = 1

n
χn2, where χn2 is the characteristic function

of [0, n2]. Then ϕ is a unit vector and, for c ∈ C, we have

||cϕ−ϕ||2 ≤
∫ n
−n

1
n2
dx +

∫ n2+n

n2−n
1
n2
dx = 4

n
< ϵ2.

(12.3.17) Remark. +2(H)has almost-invariant vectors if and only if +1(H)
has almost-invariant vectors (see Exercise 23). Therefore, +2(H)may be
replaced with +1(H) in Theorem 12.3.1(6). (In fact, +2(H)may be replaced
with +p(H), for any p ∈ [1,∞) (see Exercise 24).)
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(12.3.18) Proposition (4 a 6). There is a left-invariant mean on +∞(H) if
and only if +2(H) has almost-invariant vectors.

Proof. Because of Remark 12.3.17, we may replace +2(H) with +1(H).
(⇐) By applying the construction of means in Example 12.3.8 to

almost-invariant vectors in +1(H), we obtain almost-invariant means on
+∞(H). A limit of almost-invariant means is invariant (see Exercise 25).

(⇒) Because the means constructed in Example 12.3.8 are dense in
the space of all means, we can approximate a left-invariant mean by an
+1function. Vectors close to an invariant vector are almost-invariant, so
+1(H) has almost-invariant vectors. However, there are technical issues
here; one problem is that the approximation is in the weak∗ topology, but
we are looking for vectors that are almost-invariant in the norm topology.
See Exercise 26 for a correct proof in the case of discrete groups (using
the fact that a convex set has the same closure in both the norm topology
and the weak∗ topology). □

§12.3(v). Følner sequences.

(12.3.19) Definition. Let {Fn}be a sequence of measurable sets inH, such
that 0 < µ(Fn) <∞ for every n. We say {Fn} is a Følner sequence if, for
every compact subset C of H, we have

lim
n→∞max

c∈C
µ(Fn△ cFn)
µ(Fn)

= 0, (12.3.20)

where µ is the Haar measure on H.

(12.3.21) Example.

1) If Fn = Bn(0) is the ball of radius n in Rℓ, then {Fn} is a Følner
sequence in Rℓ (see Exercise 29).

2) The free group F2 on 2 generators does not have Følner sequences
(see Exercise 12.4#2).

The reason that Rℓ has a Følner sequence, but the free group F2 does
not, is that Rℓ is amenable, but F2 is not:

(12.3.22) Proposition (6 a 7). There is an invariant mean on +2(H) if
and only if H has a Følner sequence.

Proof. (⇐) Normalized characteristic functions of Følner sets are almost
invariant vectors in +1(H) (see Exercise 30).

(⇒) Let us assume H is discrete. Given ϵ > 0, and a finite subset C
of H, we wish to find a finite subset F of H, such that

#
(
F △ c(F))
#(Fn)

< ϵ for all c ∈ C.
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SinceH is amenable, we know +1(H)has almost-invariant vectors (see Re-
mark 12.3.17); hence, there exists f ∈ +1(H), such that

1) f ≥ 0,

2) ∥f∥1 = 1, and

3) ∥cf − f∥1 < ϵ/#C, for every c ∈ C.

Note that if f were the normalized characteristic function of a set F,
then this set F would be what we want; for the general case, we will
approximate f by a sum of such characteristic functions.

Approximating f by a step function, we may assume f takes only
finitely many values. Hence, there exist:

• finite subsets A1 ⊆ A2 ⊆ · · · ⊆ An of H, and

• real numbers α1, . . . , αn > 0,

such that

1) α1 +α2 + · · · +αn = 1 and

2) f = α1f1 +α2f2 + · · ·αnfn,

where fi is the normalized characteristic function of Ai (see Exercise 33).
For all i and j, and any c ∈ H, we have

Ai ∖ cAi is disjoint from cAj ∖Aj (12.3.23)

(see Exercise 34), so, for any x ∈ H, we have

fi(x) > (cfi)(x) =⇒ fj(x) ≥ (cfj)(x)
and

fi(x) < (cfi)(x) =⇒ fj(x) ≤ (cfj)(x).
Therefore

|(cf − f)(x)| =
∑
i
αi|(cfi − fi)(x)| for all x ∈ H.

Summing over H yields∑
i
αi∥cfi − fi∥1 = ∥cf − f∥1 <

ϵ
#C
.

Summing over C, we conclude that∑
i
αi

∑
c∈C

∥cfi − fi∥1 < ϵ.

Since
∑
iαi = 1 (and all terms are positive), this implies there is some i,

such that ∑
c∈C

∥cfi − fi∥1 < ϵ.

Hence, ∥cfi − fi∥1 < ϵ, for every c ∈ C, so we may let F = Ai. □
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(12.3.24) Remark. Følner sets provide an easy proof that subgroups of
discrete amenable groups are amenable.

Proof. Let

• A be a closed subgroup of a discrete, amenable group H,

• C be a finite subset of A, and

• ϵ > 0.

Since H is amenable, there is a corresponding Følner set F in H.
It suffices to show there is some h ∈ H, such that Fh∩A is a Følner

set in A. We have

#F =
∑

Ah∈A\H
#(F ∩Ah)

and, letting ϵ′ = ϵ#C, we have

(1+ ϵ′)#F ≥ #(CF) =
∑

Ah∈A\H
#
(
C(F ∩Ah)),

so there must be some Ah ∈ A\H, such that

#
(
C(F ∩Ah)) ≤ (1+ ϵ′)#(F ∩Ah)

(and F ∩Ah ≠∅). Then, letting F ′ = Fh−1 ∩A, we have

#(CF ′) = #
(
C(F ∩Ah)) ≤ (1+ ϵ′)#(F ∩Ah) = (1+ ϵ′)#F ′,

so F ′ is a Følner set in A. □

Exercises for §12.3.

Invariant probability measures

#1. In the setting of Example 12.3.3, show that Prob(X) is a compact,
convex subset of C(X)∗.
[Hint: You may assume the Banach-Alaoglu Theorem (Proposition B7.4).]

#2. Suppose H acts continuously on a compact, metrizable space X.
There is an induced action of H on Prob(X) defined by

(h∗µ)(A) = µ(h−1A) for h ∈ H, µ ∈ Prob(X), and A ⊆ X.
Show that this induced action of H on Prob(X) is continuous (with
respect to the weak∗ topology on Prob(X)).

#3. Let A be a separable subset of a Fréchet space V . Show
a) A is second countable.
b) If A is compact, then A is metrizable.

[Hint: (b) Remark 12.3.4.]

#4. Let µ be a probability measure on a compact, convex subset C of a
Fréchet space V . The center of mass of C is a point c ∈ V , such
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that, for every continuous linear functional λ on V , we have

λ(c) =
∫
C
λ(x)dµ(x).

Show the center of mass of µ exists and is unique, and is an element
of C.

#5. Give an example of a probability measure µ on a Fréchet space,
such that the center of mass of µ does not exist.
[Hint: There are probability measures on R+, such that the center of mass is infi-
nite.]

#6. Show that if p is the center of mass of a probability measure µ on a
Fréchet spaceV , then p is invariant under every continuous, linear
transformation of V that preserves µ.

#7. Suppose H acts continuously on a compact, metrizable space X.
Show that the map

H × Prob(X) : (h, µ), h∗µ
defines a continuous action of H on Prob(X).

Left-invariant means

#8. Verify Remark 12.3.7.
[Hint: λ(1H) = 1 implies ∥λ∥ ≥ 1. For the other direction, note that if ∥f∥∞ ≤ 1,
then 1H − f ≥ 0 a.e., so λ(1H − f) ≥ 0; similarly, λ(f + 1H) ≥ 0.]

#9. Show that the restriction of a mean is a mean. More precisely, let
V1 andV2 be linear subspaces of +∞(H), with 1H ∈ V1 ⊆ V2. Show
that if λ is a mean on V2, then the restriction of λ to V1 is a mean
on V1.

#10. Suppose λ is a mean on Cbdd(H), the space of bounded, continuous
functions on H. For f ∈ Cbdd(H), show

minf ≤ λ(f) ≤ max f .

#11. For h ∈ H, define δh : Cbdd(H) → R by δh(f ) = f(h). Show δh is a
mean on Cbdd(H).

#12. Let B be any linear subspace of +∞(H), such that B contains 1H
and is closed in the +∞-norm. Show that the means constructed in
Example 12.3.8 are weak∗ dense in the set of all means on B.
[Hint: If not, then the Hahn-Banach Theorem implies there exist ϵ > 0, a mean λ,
and some f ∈ (B∗)∗ = B, such that

λ(f) > ϵ+
∫
H
f |ϕ|dµ,

for every unit vector ϕ in +1(H). This contradicts the fact that λ(f) ≤ ess. supf .]

#13. Let M be the set of means on Cbdd(H). Show:
a) M ≠∅.
b) M is convex.
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c) M is H-invariant.
[Hint: (a) Evaluation at any point is a mean.]

#14. Let M be the set of means on Cbdd(H). Show:
a) M is contained in the closed unit ball of Cbdd(H)∗. (That is, we

have |λ(f) ≤ ∥f∥∞ for every f ∈ Cbdd(H).)
b) (M) is weak∗ closed.
c) M is compact in the weak∗ topology.

[Hint: You may assume the Banach-Alaoglu Theorem (Proposition B7.4).]

Show that if H is amenable, then there is a left-invariant mean
on +∞(H).
[Hint: Define λ(f) = µ0(f ∗ η), where λ0 is a left-invariant mean on Cbdd(H), and
η is a nonnegative function of integral 1.]

#15. Supposeψ : Y → X is continuous, and λ is a mean on Cbdd(Y). Show
that ψ∗λ (defined by (ψ∗λ)(f) = λ(f ◦ψ)) is a mean on Cbdd(X).

#16. Assume H is amenable and discrete. Show there is a bi-invariant
mean on +∞(H).
[Hint: Since +∞(H) = Cbdd(H), amenability implies there is a left-invariant mean
on +∞(H) (see Theorem 12.3.1(4)). Now H acts by right translations on the set
of all such means, so amenability implies that some left-invariant mean is right-
invariant.]

#17. (harder ) Assume H has a fixed point in every metrizable, nonempty,
compact, convex H-space (and H is second countable). Show H is
amenable.
[Hint: To find a fixed point in C, choose some c0 ∈ C. For each mean λ on Cbdd(H)
and each ρ ∈ V∗, define ϕλ(ρ) = λ

(
h , ρ(hc0)

)
, so ϕλ ∈ (V∗)′, the algebraic

dual ofV∗. If λ is a convex combination of evaluations at points of H, it is obvious
there exists cλ ∈ C, such that ϕλ(ρ) = ρ(cλ). Since the map λ, ϕλ is continuous
(with respect to appropriate weak topologies), this implies cλ exists for every λ.
The proof of Proposition 12.3.9 shows that λ may be chosen to be left-invariant,
and then cλ is H-invariant.]

Invariant finitely additive probability measures

#18. Verify that ρ, as defined in the proof of Proposition 12.3.12(⇒), has
the properties specified in the statement of the proposition.

#19. Let ρ and λ be as in the proof of Proposition 12.3.12(⇐).

a) If
m∑
i=1

aiχEi =
n∑
j=1

bj χFj a.e., show
m∑
i=1

ai ρ(Ei) =
n∑
j=1

bjρ(Fj).

b) If
m∑
i=1

aiχEi ≤
n∑
j=1

bj χFj a.e., show
m∑
i=1

ai ρ(Ei) ≤
n∑
j=1

bj ρ(Fj).

c) Show that λ(1H) = 1.
d) Show that if f ≥ 0, then λ(f) ≥ 0.
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e) Show that

λ(f) = sup


n∑
i=1

aiρ(Ei)

∣∣∣∣∣∣ f ≥
n∑
i=1

aiχEi a.e.

 .
f) Show that λ is a mean on +∞(H).

[Hint: (a,b) By passing to a refinement, arrange that {Ei} are pairwise disjoint, {Fj}
are pairwise disjoint, and each Ei is contained in some Fj. ]

#20. Use Proposition 12.3.12 to prove that every subgroup A of a dis-
crete amenable group H is amenable.
[Hint: Let X be a set of representatives of the right cosets of A in H, and let λ
be a left-invariant finitely additive probability measure on H. For E ⊆ A, define
λ(E) = λ(EX).]

#21. Use Proposition 12.3.12 to prove that every closed subgroup A of
an amenable group H is amenable.
[Hint: Let X be a Borel set of representatives of the right cosets of A in H, and
define λ as in the solution of Exercise 20. Fubini’s Theorem implies that if E has
measure 0 in A, then XA has measure 0 in H. You may assume (without proof) the
fact that if f : M → N is a continuous function between manifolds M and N, and E
is a Borel subset of M, such that the restriction of f to E is one-to-one, then f(E)
is a Borel set in N. ]

Almost-invariant vectors

#22. a) For v ∈ +2(H), show that v is invariant under translations if
and only if v is constant (a.e.).

b) Show that H is compact if and only if +2(H) has a nonzero
vector that is invariant under translation.

#23. Show that +2(H) has almost-invariant vectors if and only if +1(H)
has almost-invariant vectors.
[Hint: Note that f 2 − g2 = (f − g)(f + g), so ∥f 2 − g2∥1 ≤ ∥f − g∥2 ∥f + g∥2.
Conversely, for f , g ≥ 0, we have (f − g)2 ≤ |f 2 − g2|, so ∥f − g∥2

2 ≤ ∥f 2 − g2∥1.]

#24. For p ∈ [1,∞), show that +1(H) has almost-invariant vectors if and
only if +p(H) has almost-invariant vectors.
[Hint: If p < q, then almost-invariant vectors in +p(H) yield almost-invariant vec-
tors in +q(H), because |(f − g)|q/p ≤ |fq/p − gq/p|. And almost-invariant vectors
in +p(H) yield almost-invariant vectors in +p/2(H), by the argument of the first
hint in Exercise 23.]

#25. Let
• {Cn} be an increasing sequence of compact subsets of H, such

that
∪
n Cn = H,

• ϵn = 1/n,
• ϕn be an (ϵn, Cn)-invariant unit vector in +1(H),
• λn be the mean on +∞ obtained from ϕn by the construction

in Example 12.3.8, and
• λ be an accumulation point of {λn}.

Show that λ is invariant.
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#26. Assume H is discrete. Let

P = {ϕ ∈ +1(H) | ϕ ≥ 0,∥ϕ∥1 = 1 }.
Suppose {ϕi} is a net in P, such that the corresponding means λi
converge weak∗ to an invariant mean λ on +∞(H).

a) For each h ∈ H, show that the net {h∗ϕi − ϕi} converges
weakly to 0.

b) Take a copy +1(H)h of +1(H) for each h ∈ H, and let

V = ×
h∈H

+1(H)h

with the product of the norm topologies. Show that V is a
Fréchet space.

c) Show that the weak topology on V is the product of the weak
topologies on the factors.

d) Define a linear map T : +1(H)→ V by T(f)h = h∗f − f .
e) Show that the net {T(ϕi}) converges to 0 weakly.
f) Show that 0 is in the strong closure of T(P).
g) Show that +1(H) has almost-invariant vectors.

#27. Show that if H is amenable, then H has the Haagerup property .
By definition, this means there is a unitary representation of H on
a Hilbert space H , such that there are almost-invariant vectors,
and all matrix coefficients decay to 0 at ∞ as in the conclusion of
Theorem 11.2.2. (A group with the Haagerup property is also said
to be a-T-menable.)

Følner sequences

#28. Show that {Fn} is a Følner sequence if and only if, for every compact
subset C of H, we have

lim
n→∞

µ(Fn ∪ cFn)
µ(Fn)

= 1.

#29. Justify Example 12.3.21(1).
[Hint: C ⊆ Br (0), for some r. We have µ

(
Br+ℓ(0)

)
/µ
(
Bℓ(0)

)→ 1.]

#30. Prove Proposition 12.3.22(⇐).
[Hint: Normalizing the characteristic function of Fn yields an almost-invariant unit
vector.]

#31. Show (12.3.20) is equivalent to

lim
n→∞max

c∈C
µ(Fn ∪ cFn)
µ(Fn)

= 1.

#32. Assume H is discrete. Show that a sequence {Fn} of finite subsets
of H is a Følner sequence if and only if, for every finite subset C
of H, we have

lim
n→∞

#(CFn)
#(Fn)

= 1.
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#33. Given a step function f , as in the proof of Proposition 12.3.22(⇒),
let
• a1 > a2 > · · · > an be the finitely many positive values taken

by f ,
• Ai = {h ∈ H | f(h) ≥ ai }, and
• fi be the normalized characteristic function of Ai.

Show
a) A1 ⊆ A2 ⊆ · · · ⊆ An,
b) there exist real numbers α1, . . . , αn > 0, such that

f = α1f1 + · · · +αnfn,
and

c) α1 + · · · +αn = 1.

#34. Prove (34).
[Hint: Note that either Ai ⊆ Aj or Aj ⊆ Ai.]

#35. (harder ) Use Følner sets to prove Remark 12.3.24 (without assuming
H is discrete).
[Hint: Adapt the proof of the discrete case. There are technical difficulties, but
begin by replacing the sum over A\H with an integral over A\H.]

#36. A finitely generated (discrete) group Λ is said to have subexponen-
tial growth if there exists a generating set S for Λ, such that, for
every ϵ > 0,

#(S ∪ S−1)n ≤ eϵn for all large n.

Show that every group of subexponential growth is amenable.

#37. Give an example of an finitely generated, amenable group that does
not have subexponential growth.

§12.4. Some nonamenable groups

Other proofs of the following proposition appear in Exercises 1 and 2.

(12.4.1) Proposition. Nonabelian free groups are not amenable.

Proof. For convenience, we consider only the free group F2 on two gener-
ators a and b. Suppose F2 has a left-invariant finitely additive probability
measure ρ. (This will lead to a contradiction.)

We may write F2 = A∪A−∪B∪B−∪{e}, whereA,A−, B, and B− consist
of the reduced words whose first letter is a, a−1, b, or b−1, respectively.
Assume, without loss of generality, that ρ(A ∪ A−) ≤ ρ(B ∪ B−) and
ρ(A) ≤ ρ(A−). Then

ρ
(
B ∪ B− ∪ {e}) ≥ 1

2
and ρ(A) ≤ 1

4
.
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Then, by left-invariance, we have

ρ
(
a
(
B ∪ B− ∪ {e})) = ρ(B ∪ B− ∪ {e}) ≥ 1

2
> ρ(A).

This contradicts the fact that a
(
B ∪ B− ∪ {e}) ⊆ A. □

Combining this with the fact that subgroups of discrete amenable
groups are amenable (see Proposition 12.2.8), we have the following con-
sequence:

(12.4.2) Corollary. Suppose H is a discrete group. If H contains a non-
abelian, free subgroup, then H is not amenable.

(12.4.3) Remarks.

1) The converse of Corollary 12.4.2 is known as “von Neumann’s Con-
jecture,” but it is false: a nonamenable group with no nonabelian
free subgroups was found by Ol’shanskii in 1980. (The name is
misleading: apparently, the conjecture is due to M. Day, and was
never stated by Von Neumann.)

2) The assumption thatH is discrete cannot be deleted from the state-
ment of Corollary 12.4.2. For example, the orthogonal group SO(3)
is amenable (because it is compact), but the Tits Alternative (4.9.1)
implies that it contains nonabelian free subgroups.

3) The nonamenability of nonabelian free subgroups of SO(3) is the
basis of the famous Banach-Tarski Paradox: A 3-dimensional ball B
can be decomposed into finitely many subsets X1, . . . , Xn, such that
these subsets can be reassembled to form the union of two disjoint
balls of the same radius as B. (More precisely, the union B1 ∪ B2 of
two disjoint balls of the same radius as B can be decomposed into
subsets Y1, . . . , Yn, such that Yi is congruent to Xi, for each i.)

4) If H contains a closed, nonabelian, free subgroup, then H is not
amenable.

Here is an example of a nonamenable connected group:

(12.4.4) Proposition. SL(2,R) is not amenable.

Proof. Let G = SL(2,R). The action of G on R ∪ {∞} ≊ S1 by linear-
fractional transformations is transitive, and the stabilizer of the point 0
is the subgroup P =

[∗ ∗∗], so G/P is compact. However, the Borel Den-
sity Theorem implies there is no G-invariant probability measure on G/P
(see Exercise 4.6#2). (See Exercise 4 for a direct proof that there is no
G-invariant probability measure.) So G is not amenable. □

More generally:
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(12.4.5) Proposition. If a connected, semisimple Lie group G is not com-
pact, then G is not amenable.

Proof. The Jacobson-Morosov Lemma (A5.8) tells us that G contains a
closed subgroup isogenous to SL(2,R). Alternatively, recall that any lat-
tice Γ in Gmust contain a nonabelian free subgroup (see Corollary 4.9.2),
and, being discrete, this is a closed subgroup of G. □

(12.4.6) Remark. Readers familiar with the structure of semisimple Lie
groups will see that the proof of Proposition 12.4.4 generalizes to the
situation of Proposition 12.4.5: Since G is not compact, it has a proper
parabolic subgroup P. Then G/P is compact, but the Borel Density The-
orem implies that G/P has no G-invariant probability measure.

Combining this result with the structure theory of connected Lie
groups yields the following classification of connected, amenable Lie
groups:

(12.4.7) Proposition. A connected Lie group H is amenable if and only if
H contains a connected, closed, solvable normal subgroup N, such that
H/N is compact.

Proof. (⇐) Corollary 12.2.7(2).
(⇒) The structure theory of Lie groups tells us that there is a con-

nected, closed, solvable, normal subgroup R of H, such that H/R is
semisimple. (The subgroup R is called the radical of H.) Since quo-
tients of amenable groups are amenable (see Exercise 12.1#2), we know
that H/R is amenable. So H/R is compact (see Proposition 12.4.5). □

Exercises for §12.4.

#1. a) Find a homeomorphism ϕ of the circle S1, such that the only
ϕ-invariant probability measure is the delta mass at a single
point p.

b) Find two homeomorphisms ϕ1 and ϕ2 of S1, such that the
subgroup ⟨ϕ1,ϕ2⟩ they generate has no invariant probability
measure.

c) Deduce that the free group F2 on 2 generators is not amenable.
[Hint: (a) Identifying S1 with [0,1], let ϕ(x) = x2. For any x ∈ (0,1), we have
ϕ
(
(0, x)

) = (0, x2), so µ
(
(x2, x)

) = 0. Since (0,1) is the union of countably many
such intervals, this implies that µ

(
(0,1)

) = 0.]

#2. Show explicitly that free groups do not have Følner sequences.
More precisely, let F2 be the free group on two generators a and b,
and show that if F is any nonempty, finite subset of F2, then there
exists c ∈ {a,b,a−1, b−1}, such that #(F ∖ cF) ≥ (1/4)#F. This
shows that F2 free groups is not amenable.
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[Hint: Suppose F = A ∪ B ∪ A− ∪ B−, where words in A,B,A−, B− start with
a,b,a−1, b−1, respectively. If #A ≤ #A− and #(A ∪ A−) ≤ #(B ∪ B−), then
#(aF ∖ F) ≥ #(B ∪ B−)− #A.]

#3. Assume that H is discrete, and that H is isomorphic to a (not nec-
essarily discrete) subgroup of SL(ℓ,R). Show:

a) H is amenable if and only if H has no nonabelian, free sub-
groups.

b) H is amenable if and only ifH has a solvable subgroup of finite
index.

[Hint: Tits Alternative (4.9.1).]

#4. LetG = SL(2,R)act onR∪{∞}by linear-fractional transformations,
as usual.

a) For u = [
1 1
0 1

] ∈ G, show that the only u-invariant probability
measure on R∪ {∞} is concentrated on the fixed point of u.

b) Since the fixed point of u is not fixed by all of G, conclude that
there is no G-invariant probability measure on R∪ {∞}.

[Hint: (a) The action of u is conjugate to the homeomorphism ϕ in the hint to
Exercise 1(a), so a similar argument applies.]

#5. Show that if a semisimple Lie group G is not compact, then every
lattice Γ in G is not amenable.

#6. Give an example of a nonamenable Lie group that has a closed, co-
compact, amenable subgroup. (By Proposition 12.4.7, the subgroup
cannot be normal.)

§12.5. Closed subgroups of amenable groups

Before proving that closed subgroups of amenable groups are amenable
(Proposition 12.2.8), we introduce some notation and establish a lemma.
(Proofs for the case of discrete groups have already been given in Re-
marks 12.3.13 and 12.3.24.)

(12.5.1) Notation.

1) We use +∞(H;C) to denote the space of all measurable functions
from the Lie group H to the compact, convex set C, where two
functions are identified if they are equal a.e. (with respect to the
Haar measure on H).

2) If Λ is a closed subgroup of H, and C is a Λ-space, then

+∞
Λ(H;C) =

{
ψ ∈ +∞(H;C)

∣∣∣∣∣ ψ is essentially
Λ-equivariant

}
.

(To say ψ is essentially Λ-equivariant means, for each λ ∈ Λ, that
ψ(λh) = λ ·ψ(h) for a.e. h ∈ H.)
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(12.5.2) Examples.

1) Suppose H is discrete. Then every function on H is measurable, so
+∞(H;C) = CH is the cartesian product of countably many copies
of C. Therefore, in this case, Tychonoff’s Theorem (B5.2) implies
that +∞(H;C) is compact.

2) If C is the closed unit disk in the complex plane (andH is arbitrary),
then +∞(H;C) is the closed unit ball in the Banach space +∞(H),
so the Banach-Alaoglu Theorem (Proposition B7.4) states that it is
compact in the weak∗ topology.

More generally, if we put a technical restriction on C, then there is a
weak topology on +∞(H;C) that makes it into a compact, convexH-space:

(12.5.3) Lemma. Assume

• Λ is a closed subgroup of H,

• C is a nonempty, compact, convex H-space, and

• C is contained in the dual of some separable Banach space B.

Then +∞(H;C) and +∞
Λ(H;C) are nonempty, compact, convex H-spaces.

Proof. Let +∞(H;B∗) be the space of all bounded measurable functions
from H to B∗ (where two functions are identified if they are equal a.e.).
This is the dual of the (separable) Banach space +1(H;B), so it has a
natural weak∗ topology. Since +∞(H;C) is a closed, bounded, convex
subset of +∞(H;B∗), the Banach-Alaoglu Theorem (B7.4) tells us that it
is weak∗ compact. In addition, the action of H by right-translation on
+∞(H;C) is continuous (see Exercise 1).

It is not difficult to see that +∞
Λ(H;C) is a nonempty, closed, convex,

H-invariant subset (see Exercise 3). □

Proof of Proposition 12.2.8. Let Λ be a closed subgroup of an amenable
Lie group H. Given any continuous action of Λ on a compact, metriz-
able space X, it suffices to show there is a Λ-invariant probability mea-
sure on X (see Theorem 12.3.1(3)). From Lemma 12.5.3, we know that
+∞
Λ
(
H; Prob(X)

)
is a nonempty, compact, convex H-space. Therefore, the

amenability of H implies that H has a fixed point ψ in +∞
Λ(H;C). So ψ is

essentially H-invariant. If we fix any λ ∈ Λ, then, for a.e. h ∈ H, we have

λ ·ψ(h) = ψ(λh) (ψ is essentially Λ-equivariant)

= ψ(h) (ψ is essentially H-invariant).
If we assume, for simplicity, that Λ is countable (see Exercise 4), then the
quantifiers can be reversed (because the union of countably many null
sets is a null set), so we conclude that the probability measure ψ(h) is
Λ-invariant. □
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Exercises for §12.5.

#1. Show that the action of H on +∞(H;C) by right translations is con-
tinuous in the weak∗-topology.

#2. Suppose Λ is a closed subgroup of H, and that Λ acts measurably
on a measure space Ω. Show there is a Λ-equivariant, measurable
map ψ : H → Ω.
[Hint: ψ can be defined arbitrarily on a strict fundamental domain for Λ in H.]

#3. Show that +∞
Λ(H;C) is a nonempty, closed, convex,H-invariant sub-

set of +∞(H;C).

#4. Prove Proposition 12.2.8 without assuming Λ is countable.
[Hint: Consider λ in a countable dense subset of Λ.]

§12.6. Equivariant maps from G/P to Prob(X)

We now use amenability to prove a basic result that has important con-
sequences for the theory of arithmetic groups. In particular, it is an
ingredient in two fundamental results of G. A. Margulis: his Superrigidity
Theorem (16.1.6) and his Normal Subgroups Theorem (17.1.1).

(12.6.1) Proposition (Furstenberg’s Lemma). If

• P is a closed, amenable subgroup of G, and

• Γ acts continuously on a compact metric space X,

then there is a Borel measurable map ψ : G/P → Prob(X), such that ψ is
essentially Γ-equivariant.

Proof. Lemma 12.5.3 tells us that +∞
Γ
(
G; Prob(X)

)
is a nonempty, com-

pact, convex G-space. By restriction, it is also a nonempty, compact,
convex P-space, so P has a fixed point ψ0 (under the action by right-
translation). Then ψ0 factors through to an (essentially) well-defined
map ψ : G/P → Prob(X). Because ψ0 is Γ-equivariant, it is immediate
that ψ is Γ-equivariant. □

In applications of Proposition 12.6.1, the subgroup P is usually taken
to be a minimal parabolic subgroup. Here is an example of this:

(12.6.2) Corollary. If

• G = SL(3,R),

• P =
[∗
∗ ∗
∗ ∗ ∗

]
⊂ G, and

• Γ acts continuously on a compact metric space X,

then there is a Borel measurable map ψ : G/P → Prob(X), such that ψ is
essentially Γ-equivariant.
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Proof. P is amenable (see Exercise 12.2#14). □

(12.6.3) Remark. The functionψ that is provided by Furstenberg’s Lemma
(12.6.1) (or Corollary 12.6.2) can be thought of as being a “random” map
from G/P to X; for each z ∈ G/P, the value of ψ(z) is a probability
distribution that defines a random value for the function at the point z.
However, we will see in Section 16.7 that the theory of proximality makes
it possible to show, in certain cases, that ψ(z) is actually a single well-
defined point of X, not a random value that varies over some range.

Exercises for §12.6.

#1. Show that every minimal parabolic subgroup of G is amenable.
[Hint: Langlands decomposition (8.4.6).]

§12.7. More properties of amenable groups (optional)

In this section, we mention (without proof, and without even defining all
of the terminology) a variety of very interesting properties of amenable
groups. For simplicity,

we assume Λ is a discrete group.

§12.7(i). Bounded harmonic functions.

(12.7.1) Definition. Fix a probability measure µ on Λ.

1) A function f : Λ → R is µ-harmonic if f = µ ∗ f . This means, for
every λ ∈ Λ,

f(λ) =
∑
x∈Λ

µ(x)f(xλ).

2) µ is symmetric if µ(A−1) = µ(A) for every A ⊆ Λ.

(12.7.2) Theorem. Λ is amenable if and only if there exists a symmetric
probability measure µ on Λ, such that

1) the support of µ generates Λ, and

2) every bounded, µ-harmonic function on Λ is constant.

Because any harmonic function is the Poisson integral of a function
on the Poisson boundary (and vice-versa), this result can be restated in
the following equivalent form:

(12.7.3) Corollary. Λ is amenable if and only if there exists a symmetric
probability measure µ on Λ, such that

1) the support of µ generates Λ, and

2) the Poisson boundary of Λ (with respect to µ) consists of a single
point.
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§12.7(ii). Norm of a convolution operator.

(12.7.4) Definition. For any probability measure µ on Λ, there is a corre-
sponding convolution operator Cµ on +2(Λ), defined by

(Cµf)(λ) =
∑
x∈Λ

µ(x)f(x−1λ).

(12.7.5) Theorem. Let µ be any probability measure on Λ, such that the
support of µ generates Λ. Then ∥Cµ∥ = 1 if and only if Λ is amenable.

§12.7(iii). Spectral radius. In geometric terms, the following famous
result characterizes amenability in terms of the spectral radius of ran-
dom walks on Cayley graphs.

(12.7.6) Theorem (Kesten). Let µ be a finitely supported, symmetric prob-
ability measure on Λ, such that the support of µ generates Λ. Then µ is
amenable if and only if

lim
n→∞


∑

g1, . . . , g2n ∈ suppµ
g1g2 · · ·g2n = e

µ(g1)µ(g2) · · ·µ(g2n)


1/2n

= 1.

§12.7(iv). Positive-definite functions.

(12.7.7) Definition (cf. Terminology 13.6.4). A C-valued function φ on Λ
is positive-definite if, for all a1, . . . , an ∈ Λ, the matrix

[ai,j]ni,j=1 =
[
φ(a−1

i aj)
]

is Hermitian and has no negative eigenvalues.

(12.7.8) Theorem. Λ is amenable if and only if
∑
g∈Λφ(g) ≥ 0 for every

(finitely supported) positive-definite function φ on Λ.

§12.7(v). Growth.

(12.7.9) Definition. Assume Λ is finitely generated, and fix a symmetric
generating set S for Λ.

1) For each r ∈ Z+, let Br (Λ)be the ball of radius r centered at e, More
precisely,

Br (Λ;S) = {λ ∈ Λ | ∃s1, s2, . . . , sr ∈ S ∪ {e}, λ = s1s2 · · · sr }.
2) We say Λ has subexponential growth if for every ϵ > 0, we have

#Br (Λ;S) < eϵr , for all sufficiently large r ∈ Z+.

(12.7.10) Proposition (see Exercise 1). If Λ has subexponential growth,
then Λ is amenable.
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(12.7.11) Warning. The implication in Proposition 12.7.10 goes only one
direction: there are many groups (including many solvable groups) that
are amenable, but do not have subexponential growth (see Exercise 2).

§12.7(vi). Cogrowth.

(12.7.12) Definition. Assume Λ is finitely generated. Let:

1) S = {s1, s2, . . . , sk} be a finite generating set of Λ.

2) Fk be the free group on k generators x1, . . . , xk.
3) ϕS : Fk → Λ be the homomorphism defined by ϕ(xi) = si.

The cogrowth of Λ (with respect to S) is

lim
r→∞

1
r

log2k−1 #
(
(kerϕS)∩ Br (Fk;x±1

1 , . . . , x
±1
k
)
.

Note that #Br (Fk;x±1
1 , . . . , x

±1
k ) is equal to the number of reduced

words of length r in the symbols x±1
1 , . . . , x

±1
k , which is approximately

(2k − 1)r . Therefore, it is easy to see that that the cogrowth of Λ is
between 0 and 1 (see Exercise 3). The maximum value is obtained if and
only if Λ is amenable:

(12.7.13) Theorem. Λ is amenable if and only if the cogrowth of Λ is 1,
with respect to some (or, equivalently, every) finite generating set S.

§12.7(vii). Unitarizable representations.

(12.7.14) Definition. Let ρ : Λ → B(H ) be a (not necessarily unitary)
representation of Λ on a Hilbert space H .

1) ρ is uniformly bounded if there exists C > 0, such that ∥ρ(λ)∥ < C,
for all λ ∈ Λ.

2) ρ is unitarizable if it is conjugate to a unitary representation. This
means there is an invertible operator T on H , such that the repre-
sentation λ, T−1 ρ(λ)T is unitary.

It is fairly obvious that every unitarizable representation is uniformly
bounded (see Exercise 4). The converse is not true, although it holds for
amenable groups:

(12.7.15) Theorem. If Λ is amenable, then every uniformly bounded rep-
resentation of Λ is unitarizable.

(12.7.16) Remark. The converse of Theorem 12.7.15 is an open question.
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§12.7(viii). Almost representations are near representations.

(12.7.17) Definition. Fix ϵ > 0, and let φ be a function from Λ to the
group U(H ) of unitary operators on a Hilbert space H .

1) φ is ϵ-almost a unitary representation if

∥φ(λ1λ2)−φ(λ1)φ(λ2)∥ < ϵ for all λ1, λ2 ∈ Λ.

2) φ is ϵ-near a unitary representation if there exists a unitary repre-
sentation ρ : Λ : U(H ), such that

∥φ(λ)− ρ(λ)∥ < ϵ for every λ ∈ Λ.

For amenable groups, every almost representation is near a repre-
sentation:

(12.7.18) Theorem. Assume Λ is amenable. Given ϵ > 0, there exists
δ > 0, such that ifφ is δ-almost a unitary representation, thenφ is ϵ-near
a unitary representation.

§12.7(ix). Bounded cohomology. The bounded cohomology groups
of Λ are defined just like the ordinary cohomology groups, except that
all cochains are assumed to be bounded functions.

(12.7.19) Definition. Assume B is a Banach space.

1) B is a Banach Λ-module if Λ acts continuously on B, by linear
isometries.

2) ]1
bdd(Λ;B) = ]1(Λ;B)∩+∞(Λ;B).

3) *1
bdd(Λ;B) = ]1

bdd(Λ;B)/@1(Λ;B).

(12.7.20) Theorem. Λ is amenable if and only if *1
bdd(Λ;B) = 0 for every

Banach Λ-module B.

(12.7.21) Remark. In fact, if Λ is amenable, then *nbdd(Λ;B) = 0 for all n.

§12.7(x). Invariance under quasi-isometry.

(12.7.22) Proposition (see Exercise 6). Assume Λ1 and Λ2 are finitely gen-
erated groups, such that Λ1 is quasi-isometric to Λ2 (see Definition 10.1.3).
Then Λ1 is amenable if and only if Λ2 is amenable.
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§12.7(xi). Ponzi schemes. Assume Λ is finitely generated, and let d
be the word metric on Λ, with respect to some finite, symmetric generat-
ing set S (see Definition 10.1.1).

(12.7.23) Definition. A function f : Λ→ Λ is a Ponzi scheme onΛ if there
is some C > 0, such that, for all λ ∈ Λ, we have:

1) # f−1(λ) ≥ 2, and

2) d
(
f(λ), λ

)
< C.

(12.7.24) Theorem. Λ is amenable if and only if there does not exist a
Ponzi scheme on Λ.

Exercises for §12.7.

#1. Prove Proposition 12.7.10.
[Hint: If no balls are Følner sets, then the group has exponential growth.]

#2. Choose a prime number p, and let

Λ =
{[
pk mpn

0 p−k

] ∣∣∣∣∣ k,m,n ∈ Z
}
⊂ SL(2,Q),

with the discrete topology. Show Λ is an amenable group that does
not have subexponential growth.

#3. In the notation of Definition 12.7.12, show:
a) #Br (Fk;x±1

1 , . . . , x
±1
k ) = 2k(2k− 1)r−1.

b) If cogΛ is the cogrowth of Λ, then 0 ≤ cogΛ ≤ 1.

#4. Show that every unitarizable representation is uniformly bounded.

#5. For every ϵ > 0, show there exists δ > 0, such that if φ is δ-near a
unitary representation, thenφ is ϵ-almost a unitary representation.

#6. Prove Proposition 12.7.22.
[Hint: Show that if Λ is not amenable, then, for every k, it has a finite subset S, such
that #(SF) ≥ k · #F for every finite subset F of Λ.]

#7. Explicitly construct a Ponzi scheme on the free group with two
generators.

#8. Show (without using Theorem 12.7.24) that if Λ is amenable, then
there does not exist a Ponzi scheme on Λ.
[Hint: Følner sets.]
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Notes

The notion of amenability is attributed to J. von Neumann [20], but
he used the German word “messbar” (which can be translated as “mea-
surable”). The term “amenable” was apparently introduced into the lit-
erature by M. Day [4, #507, p. 1054] in the announcement of a talk.

The monographs [16, 17] are standard references on amenability.
Briefer treatments are in [2, App. G], [6], and [22, §4.1]. Quite a differ-
ent approach to amenability appears in [21, Chaps. 10–12] (for discrete
groups only).

The fact that closed subgroups of amenable groups are amenable
(Proposition 12.2.8) is proved in [6, Thm. 2.3.2, pp. 30–32], [17, Prop. 13.3,
p. 118], and [22, Prop. 4.2.20, p. 74].

See [6, p. 67] for a proof of Proposition 12.3.22(⇒) that does not
require H to be discrete.

Remark 12.3.17 is proved in [6, pp. 46–47].
The solution of Exercise 12.3#17 can be found in [17, Thm. 5.4, p. 45].
For a proof of the fact (mentioned in the hint to Exercise 12.3#21) that

the one-to-one continuous image of a Borel set is Borel, see [1, Thm. 3.3.2,
p. 70].

Our proof of Proposition 12.3.22(⇒) is taken from [6, pp. 66-67].
Remark 12.4.3(1), the existence of a nonamenable group with no non-

abelian free subgroup, is due to Olshanskii [15]. (In this example, called
an “Olshanskii Monster” or “Tarski Monster,” every proper subgroup of
the group is a cyclic group of prime order, so there is obviously no free
subgroup.) A much more elementary example has recently been con-
structed by N. Monod [13].

The book of S. Wagon [21] is one of the many places to read about
the Banach-Tarski Paradox (Remark 12.4.3(3)).

Furstenberg’s Lemma (12.6.1) appears in [5, Thm. 15.1]. Another
proof can be found in [22, Prop. 4.3.9, p. 81].

Theorem 12.7.2 is due to Kaimanovich and Vershik [10, Thms. 4.2
and 4.4] and (independently) Rosenblatt [19, Props. 1.2 and 1.9 and
Thm. 1.10].

Theorem 12.7.5 is due to H. Kesten (if µ is symmetric). See [2, G.4.4]
for a proof.

A proof of Proposition 12.7.10 can be found in [17, Props. 12.5
and 12.5].

Theorem 12.7.13 was proved by R. I. Grigorchuk [8] and J. M. Cohen
[3] (independently).

Theorem 12.7.15 was proved by J. Dixmier and M. Day in 1950 (inde-
pendently). See [18] for historical remarks and progress on the converse.
(Another result on the converse is proved in [14].)

Theorem 12.7.18 is due to D. Kazhdan [11].
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Theorem 12.7.20 and Remark 12.7.21 are due to B. E. Johnson [9]. See
[12] (and its many references) for an introduction to bounded cohomol-
ogy.

Theorem 12.7.24 appears in [7, 6.17 and 6.17 1
2 , p. 328].
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Chapter 13

Kazhdan’s Property (T)

Recall that if a Lie group H is not amenable, then +2(H) does not have
almost-invariant vectors (see Theorem 12.3.1(6)). Kazhdan’s property (T)
is the much stronger condition that no unitary representation of H has
almost-invariant vectors (unless it has a vector that is fixed by H). Thus,
in a sense, Kazhdan’s property is the antithesis of amenability.

We already know that Γ is not amenable (unless it is finite) (see Ex-
ercise 12.4#5). In this chapter, we will see that Γ usually has Kazhdan’s
Property (T), and we will look at some of the consequences of this.

§13.1. Definition and basic properties

Part (1) of the following definition is repeated from Definition 12.3.14,
but the second half is new.

(13.1.1) Definition. Let H be a Lie group.

1) An action of H on a normed vector space B has almost-invariant
vectors if, for every compact subset C of H and every ϵ > 0, there
is a unit vector v ∈ B, such that

∥cv − v∥ < ϵ for all c ∈ C. (13.1.2)

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Unitary representations
(Sections 11.1, 11.3, and 11.5).
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(A unit vector satisfying (13.1.2) is said to be (ϵ, C)-invariant.)

2) H has Kazhdan’s property (T) if every unitary representation ofH
that has almost-invariant vectors also has (nonzero) invariant vec-
tors.

We often abbreviate “Kazhdan’s property (T)” to “Kazhdan’s property.”
Also, a group that has Kazhdan’s property is often said to be a Kazhdan
group.

(13.1.3) Warning. By definition, unitary representations are actions on
Hilbert spaces, so Kazhdan’s property says nothing at all about actions
on other types of topological vector spaces. In particular, there are ac-
tions of Kazhdan groups by norm-preserving linear transformations on
some Banach spaces that have almost-invariant vectors, without having
invariant vectors (see Exercise 1). On the other hand, it can be shown
that there are no such examples on +p spaces (with 1 ≤ p <∞).

(13.1.4) Proposition. A Lie group is compact if and only if it is amenable
and has Kazhdan’s property.

Proof. Exercises 2 and 3. □

(13.1.5) Corollary. A discrete group Λ is finite if and only if it is amenable
and has Kazhdan’s property.

(13.1.6) Example. Zn does not have Kazhdan’s property, because it is a
discrete, amenable group that is not finite.

(13.1.7) Proposition. If Λ is a discrete group with Kazhdan’s property,
then:

1) every quotient Λ/N of Λ has Kazhdan’s property,

2) the abelianization Λ/[Λ,Λ] of Λ is finite, and

3) Λ is finitely generated.

Proof. For (1) and (2), see Exercises 4 and 6.
(3) Let {Λn} be the collection of all finitely generated subgroups

of Λ. We have a unitary representation of Λ on each +2(Λ/Λn), given
by (γf)(xΛn) = f(γ−1xΛn). The direct sum of these is a unitary repre-
sentation on

H = +2(Λ/Λ1)⊕+2(Λ/Λ2)⊕ · · · .
Any compact set C ⊆ Λ is finite, so we have C ⊆ Λn, for some n.

Then C fixes the base point p = Λn/Λn in Λ/Λn, so, letting f = δp be a
nonzero function in +2(Λ/Λn) that is supported on {p}, we have γf = f
for all γ ∈ C. Therefore, H has almost-invariant vectors, so there must
be an H-invariant vector in H .

So some +2(Λ/Λn) has an invariant vector. Since Λ is transitive on
Λ/Λn, an invariant function must be constant. So a (nonzero) constant
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function is in +2(Λ/Λn), which means Λ/Λn is finite. Because Λn is
finitely generated, this implies that Λ is finitely generated. □

Since the abelianization of any (nontrivial) free group is infinite, we
have the following example:

(13.1.8) Corollary. Free groups do not have Kazhdan’s property.

(13.1.9) Remark. Proposition 13.1.7 can be generalized to groups that are
not required to be discrete, if we replace the word “finite” with “compact”
(see Exercises 5, 7, and 15). This leads to the following definition:

(13.1.10) Definition. A Lie groupH is compactly generated if there exists
a compact subset that generates H.

(13.1.11) Warning. Although discrete Kazhdan groups are always finitely
generated (see Proposition 13.1.7(3)), they need not be finitely presented.
(In fact, there are uncountably many non-isomorphic discrete groups
with Kazhdan’s property (T), and only countably many of them can be
finitely presented.) However, it can be shown that every discrete Kazhdan
group is a quotient of a finitely presented Kazhdan group.

Exercises for §13.1.

#1. Let C0(H) be the Banach space of continuous functions on H that
tend to 0 at infinity (with the supremum norm). Show:

a) C0(H) has almost-invariant vectors of norm 1, but
b) C0(H) does not have H-invariant vectors other than 0, unless
H is compact.

[Hint: Choose a uniformly continuous function f(h) that tends to +∞ as h leaves
compact sets. For large n, the function h, n/

(
n+ f(h)) is almost invariant.]

#2. Prove Proposition 13.1.4(⇒).
[Hint: If H is compact, then almost-invariant vectors are invariant.]

#3. Prove Proposition 13.1.4(⇐).
[Hint: Amenability plus Kazhdan’s property implies +2(H)has an invariant vector.]

#4. Prove Proposition 13.1.7(1)
[Hint: Any representation of Λ/N is also a representation of Λ.]

#5. Show that if H has Kazhdan’s property, and N is a closed, normal
subgroup of H, then H/N has Kazhdan’s property.

#6. Prove Proposition 13.1.7(2).
[Hint: Λ/[Λ,Λ] is amenable and has Kazhdan’s property.]

#7. Show that if H has Kazhdan’s property, then H/[H,H] is compact.

#8. Show that if N is a closed, normal subgroup of H, such that N and
H/N have Kazhdan’s property, then H has Kazhdan’s property.
[Hint: The space of N-invariant vectors is H-invariant (why?).]
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Warning. The converse is not true: there are examples in which
a normal subgroup of a Kazhdan group is not Kazhdan (see Exer-
cise 13.3#5).

#9. Show that H1×H2 has Kazhdan’s property if and only if H1 and H2

both have Kazhdan’s property.

#10. Let (π,V) be a unitary representation of a Kazhdan groupH. Show
that almost-invariant vectors in V are near invariant vectors. More
precisely, given ϵ > 0, find a compact subset C of H and δ > 0,
such that if v is any (δ,C)-invariant vector in V, then there is an
invariant vector v0 in V, such that ∥v − v0∥ < ϵ.
[Hint: There are no almost-invariant unit vectors in (VH)⊥, the orthogonal comple-
ment of the space of invariant vectors.]

#11. Suppose S is a generating set of a discrete group Λ, and Λ has
Kazhdan’s property. Show there exists ϵ > 0, such that if π is
any unitary representation of Λ that has an (ϵ, S)-invariant vector,
then π has an invariant vector. (The point here is to reverse the
quantifiers: the same ϵ works for every π.) Such an ϵ is called a
Kazhdan constant for Λ.

#12. Recall that we say H has the Haagerup property if it has a unitary
representation, such that there are almost-invariant vectors, and all
matrix coefficients decay to 0 at∞. Show that if H is a noncompact
group with Kazhdan’s property, thenH does not have the Haagerup
property.

#13. Assume:
• φ : H1 → H2 is a homomorphism with dense image, and
• H1 has Kazhdan’s property.

Show H2 has Kazhdan’s property.

#14. Show that a Lie groupH is compactly generated if and only ifH/H◦
is finitely generated.
[Hint: (⇐) Since H◦ is connected, it is generated by any subset with nonempty
interior.]

#15. Show that every Lie group with Kazhdan’s property is compactly
generated.
[Hint: Either adapt the proof of Proposition 13.1.7(3), or use Proposition 13.1.7(3)
together with Exercises 5 and 14.]

#16. Assume Γ has Kazhdan’s property (T), and S is a finite generating
set for Γ . Show there exists ϵ > 0, such that if N is any finite-index
normal subgroup of Γ , and A is any subset of Γ/N, then

#(SA∪A) ≥ min
{
(1+ ϵ) · #A, 1

2 |Γ/N|
}
.
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(In graph-theoretic terminology, this means the Cayley graphs Cay(Γ/Nk;S) form
a family of expander graphs if N1,N2, . . . are finite-index normal subgroups, such
that |Γ/Nk| → ∞.)

§13.2. Semisimple groups with Kazhdan’s property

(13.2.1) Theorem (Kazhdan). SL(3,R) has Kazhdan’s property.

This theorem is an easy consequence of the following lemma, which
will be proved in Section 13.3.

(13.2.2) Lemma. Assume

• π is a unitary representation of the natural semidirect product

SL(2,R)⋉R2 =
[∗ ∗ ∗
∗ ∗ ∗
0 0 1

]
⊂ SL(3,R),

and

• π has almost-invariant vectors.

Then π has a nonzero vector that is invariant under the subgroup R2.

Other terminology. Suppose R is a subgroup of a topological group H.
The pair (H,R) is said to have relative property (T) if every unitary
representation of H that has almost-invariant vectors must also have an
R-invariant vector. In this terminology, Lemma 13.2.2 states that the pair(
SL(2,R)⋉R2,R2

)
has relative property (T).

Proof of Theorem 13.2.1. Let

G = SL(3,R), R =
[

1 0 ∗
0 1 ∗
0 0 1

]
≊ R2, and H = SL(2,R)⋉ R,

and suppose π is a unitary representation of G that has almost-invariant
vectors. Then it is obvious that the restriction of π to H also has almost-
invariant vectors (see Exercise 1), so Lemma 13.2.2 implies there is a
nonzero vector v that is fixed by R. Then the Moore Ergodicity Theo-
rem (11.2.8) implies that v is fixed by all of G. So π has a fixed vector
(namely, v). □

IfG is simple, and rankRG ≥ 2, thenG contains a subgroup isogenous
to SL(2,R)⋉Rn, for somen (cf. Exercise 2), so a modification of the above
argument shows that G has Kazhdan’s property. On the other hand, it is
important to know that not all simple Lie groups have the property:

(13.2.3) Example. SL(2,R) does not have Kazhdan’s property.

Proof. Choose a torsion-free lattice Γ in SL(2,R). Then Γ is either a surface
group or a nonabelian free group. In either case, Γ/[Γ , Γ] is infinite, so Γ
does not have Kazhdan’s property. Therefore, we conclude from Propo-
sition 13.4.1 below that SL(2,R) does not have Kazhdan’s property. □
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Alternate proof. A reader familiar with the unitary representation the-
ory of SL(2,R) can easily construct a sequence of representations in the
principal series whose limit is the trivial representation. The direct sum
of this sequence of representations has almost-invariant vectors. □

We omit the proof of the following precise characterization of the
semisimple groups that have Kazhdan’s property:

(13.2.4) Theorem. Ghas Kazhdan’s property if and only if no simple factor
of G is isogenous to SO(1, n) or SU(1, n).

Exercises for §13.2.

#1. Assumeπ is a unitary representation ofH that has almost-invariant
vectors, and L is a subgroup of H. Show that the restriction of π
to L has almost-invariant vectors.

#2. (Assumes familiarity with real roots) Assume G is simple. Show
rankRG ≥ 2 if and only if some connected subgroup L of G is
isogenous to SL(2,R) and normalizes (but does not centralize) a
nontrivial, unipotent subgroup U of G.
[Hint: (⇒) An entire maximal parabolic subgroup of G normalizes a nontrivial
unipotent subgroup. (⇐) Construct two unipotent subgroups of G that both con-
tain U, but generate a subgroup that is not unipotent.]

#3. SupposeH is a closed, noncompact subgroup of G, and G is simple.
Show that the pair (G,H) has relative property (T) if and only if G
has Kazhdan’s property.

#4. Suppose G has Kazhdan’s property. Show there is a compact sub-
set C of G and some ϵ > 0, such that every unitary representation
of G with (ϵ, C)-invariant vectors has invariant vectors.

§13.3. Proof of relative property (T)

In this section, we prove Lemma 13.2.2, thereby completing the proof
that SL(3,R) has Kazhdan’s property (T). The argument relies on a de-
composition theorem for representations of Rn.

Proof of Lemma 13.2.2. For convenience, let H = SL(2,R)⋉R2. Given a
unitary representation (π,H ) ofH that has almost-invariant vectors, we
wish to show that some nonzero vector inH is fixed by the subgroup R2

of H. In other words, if we let E be the projection-valued measure pro-
vided by Proposition 11.5.2 (for the restriction of π to R2), then we wish
to show E

({0}) is nontrivial.
LettingB(H ) be the algebra of bounded linear operators onH , and

using the fact that π has almost-invariant vectors, Exercise 1 provides a
continuous, linear functional λ : B(H )→ C, such that



13.3. PROOF OF RELATIVE PROPERTY (T) 267

• λ(Id) = 1,

• λ(E) ≥ 0 for every orthogonal projection E, and

• λ is bi-invariant under H. (More precisely, for all h1, h2 ∈ H and
T ∈B(H ) we have λ

(
π(h1) T π(h2)

) = λ(T).)
Now, let µ be the composition of λwith E (that is, let µ(A) = λ(E(A))

forA ⊆ Rn), so µ is a finitely additive probability measure onRn (see Exer-
cise 2). Since R2 ◁ H, there is an action of H on R2 by conjugation. One
can show that the probability measure µ is invariant under this action
(see Exercise 3).

On the other hand, the only SL(2,R)-invariant, finitely additive prob-
ability measure on R2 is the point-mass supported at the origin (see Ex-
ercise 4). Therefore, we must have µ

({0}) = 1 ≠ 0. Hence, E
({0}) is

nonzero, as desired. □

Exercises for §13.3.

#1. Prove the existence of the linear functional λ : B(H ) → C in the
proof of Lemma 13.2.2.
[Hint: For T ∈ B(H ), define λn(T) = ⟨Tvn | vn⟩, where {vn} is a sequence of
unit vectors in H , such that ∥π(h)vn − vn∥ → 0 for every h ∈ H. Let λ be an
accumulation point of {λn} in an appropriate weak topology.]

#2. Let µ be as defined near the end of the proof of Lemma 13.2.2.
Show:

a) µ(R2) = 1.
b) If A1 and A2 are disjoint Borel subsets of R2, then we have
µ(A1 ∪A2) = µ(A1)+ µ(A2).

c) µ(A) ≥ 0 for every Borel set A ⊆ R2.

#3. Show the finitely additive measure µ in the proof of Lemma 13.2.2
is invariant under the action of H on R̂.
[Hint: Since∫

R̂
τ(r)dE(τh) =

∫
R̂
τh

−1
(r)dE(τ) =

∫
R̂
τ(h−1rh)dE(τ) = π(h−1rh)

= π(h−1)π(r)π(h) =
∫
R̂
τ(r)

(
π(h−1)dE(τ)π(h)

)
,

we have E(Ah) = π(h−1) E(A)π(h) for A ⊆ R̂.]

#4. Show that any SL(2,R)-invariant, finitely additive probability mea-
sure µ on R2 is supported on {(0,0)}.
[Hint: Let V = { (x,y) | y > |x| } and h =

[
1 2
0 1

]
. Then hiV is disjoint from hjV

for i ≠ j ∈ Z+, so µ(V) = 0. All of R2 ∖ {(0,0)} is covered by finitely many sets of
the form hV with h ∈ SL(2,R).]

#5. Show that the natural semidirect product SL(3,R) ⋉ R3 has Kazh-
dan’s property.
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[Hint: We know SL(3,R) has Kazhdan’s property, and the proof of Lemma 13.2.2
shows that the pair

(
SL(3,R)⋉R3,R3) has relative property (T).]

#6. Show that the direct product SL(3,R)×R3 does not have Kazhdan’s
property. (Comparing this with Exercise 5 shows that, for group
extensions, Kazhdan’s property may depend not only the groups
involved, but also on the details of the particular extension.)

§13.4. Lattices in groups with Kazhdan’s property

In this section, we will use basic properties of induced representations
to prove the following important result:

(13.4.1) Proposition. If G has Kazhdan’s property, then Γ has Kazhdan’s
property.

Combining this with Theorem 13.2.4, we obtain:

(13.4.2) Corollary. If no simple factor of G is isogenous to SO(1, n) or
SU(1, n), then Γ has Kazhdan’s property.

By Proposition 13.1.7, this has two important consequences:

(13.4.3) Corollary. If no simple factor of G is isogenous to SO(1, n) or
SU(1, n), then

1) Γ is finitely generated, and

2) Γ/[Γ , Γ] is finite.

(13.4.4) Remarks.

1) It was pointed out in Theorem 4.7.10 that (1) remains true without
any assumption on the simple factors of G. In fact, Γ is always
finitely presented, not merely finitely generated.

2) On the other hand, (2) is not always true, because lattices in SO(1, n)
and SU(1, n) can have infinite abelian quotients. (In fact, it is con-
jectured that every lattice in SO(1, n) has a finite-index subgroup
with an infinite abelian quotient, and this is known to be true when
n = 3.) The good news is that the Margulis Normal Subgroup The-
orem implies these are the only examples (modulo multiplying G
by a compact factor) if we make the additional assumption that Γ
is irreducible (see Exercise 16.1#3 or Exercise 17.1#1).

The proof of Proposition 13.4.1 uses some machinery from the theory
of unitary representations.

(13.4.5) Notation. Let (π,H ) and (σ ,K) be unitary representations of
a Lie group H. (In our applications, H will be either G or Γ .)

1) We write σ ≤ π if σ is (isomorphic to) a subrepresentation of π.
This means there exist
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• a closed, H-invariant subspace H ′ of H , and
• a bijective, linear isometry T : K ≊

-→H ′,
such that T

(
σ(h)ϕ

) = π(h)T(ϕ), for all h ∈ H and ϕ ∈K.

2) We write σ ≺ π if σ is weakly contained in π. This means that,
for every compact set C in H, every ϵ > 0, and all unit vectors
ϕ1, . . . ,ϕn ∈ K, there exist unit vectors ψ1, . . . ,ψn ∈ H , such
that, for all h ∈ C and all 1 ≤ i, j ≤ n, we have∣∣⟨σ(h)ϕi | ϕj⟩ − ⟨π(h)ψi | ψj⟩∣∣ < ϵ.

(13.4.6) Remarks.

1) It is obvious that if σ ≤ π, then σ ≺ π.

2) We have:
• π has invariant vectors if and only if 1 ≤ π, and
• π has almost-invariant vectors if and only if 1 ≺ π.

Therefore, Kazhdan’s property asserts the converse to (1) in the
special case where σ = 1: for all π, if 1 ≺ π, then 1 ≤ π.

It is not difficult to show that induction preserves weak containment
(see Exercise 1):

(13.4.7) Lemma. If σ ≺ π, then IndGΓ (σ) ≺ IndGΓ (π).

This (easily) implies the main result of this section:

Proof of Proposition 13.4.1. Suppose a representationπ of Γ has almost-
invariant vectors. Then π ≻ 1, so

IndGΓ (π) ≻ IndGΓ (1) = +2(G/Γ) ≥ 1
(see Exercises 2 and 11.3#5). Because G has Kazhdan’s property, we
conclude that IndGΓ (π) ≥ 1. This implies π ≥ 1 (see Exercise 3), as de-
sired. □

(13.4.8) Remark. If Γ has Kazhdan’s property, and S is any generating set
of Γ , then there is some ϵ > 0, such that every unitary representation of Γ
with an (ϵ, S)-invariant unit vector must have invariant vectors (see Ex-
ercise 13.1#11). Our proof does not provide any estimate on ϵ, but, in
many cases, including Γ = SL(n,Z), an explicit value of ϵ can be obtained
by working directly with the algebraic structure of Γ (rather than using
the fact that Γ is a lattice).

(13.4.9) Remark. For many years, lattices (and some minor modifications
of them) were the only discrete groups known to have Kazhdan’s prop-
erty (T), but other constructions are now known. In particular:

1) Groups can be defined by generators and relations. It can be shown
that if the relations are selected at random (with respect to a certain
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probability distribution), then the resulting group has Kazhdan’s
property (T) with high probability.

2) An algebraic approach that directly proves Kazhdan’s property for
SL(n,Z), without using the fact that it is a lattice, has been gen-
eralized to allow some other rings, such as polynomial rings, in
the place of Z. In particular, SL

(
n,Z[X1, . . . , Xk]

)
has Kazhdan’s

property (T) if n ≥ k+ 3.

(13.4.10) Remark. We saw in Proposition 12.7.22 that amenability is in-
variant under quasi-isometry (see Definition 10.1.3). In contrast, this is
not true for Kazhdan’s property (T). To see this, let

• G be a simple group with Kazhdan’s property (T),

• G̃ be the universal cover of G,

• Γ be a cocompact lattice in G, and

• Γ̃ be the inverse image of Γ in G̃, so Γ̃ is a lattice in G̃.

Then Γ̃ has Kazhdan’s property (T) (because G̃ has the property). How-
ever, if G = Sp(4,R) (or, more generally, if the fundamental group of G
is an infinite cyclic group), then Γ̃ is quasi-isometric to Γ × Z, which ob-
viously does not have Kazhdan’s property (because its abelianization is
infinite).

Here is a brief explanation of why Γ̃ is quasi-isometric to Γ × Z. Note
that Γ̃/Z ≊ Γ yields a 2-cocycle α : Γ × Γ → Z of group cohomology.
Since G/Γ is compact, it turns out that α can be chosen to be uniformly
bounded, as a function on Γ×Γ . This implies that the extension Γ̃ is quasi-
isometric to the extension corresponding to the trivial cocycle. This ex-
tension is Γ × Z.

Exercises for §13.4.

#1. Prove Lemma 13.4.7.

#2. Show 1 ≤ +2(G/Γ).

#3. Show that if π is a unitary representation of Γ , and 1 ≤ IndGΓ (π),
then 1 ≤ π.

#4. Prove the converse of Proposition 13.4.1: Show that if Γ has Kazh-
dan’s property, then G has Kazhdan’s property.
[Hint: Any Γ-invariant vector v can be averaged over G/Γ to obtain a G-invariant
vector. If v is ϵ-invariant for a compact set whose projection to G/Γ has measure
> 1− ϵ, then the average is nonzero.]
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§13.5. Fixed points in Hilbert spaces

We now describe an important geometric interpretation of Kazhdan’s
property.

(13.5.1) Definition. Let H be a Hilbert space. A bijection T : H →H is
an affine isometry of H if there exist a unitary operator U on H , and
b ∈H , such that

T(v) = Uv + b for all v ∈H .
(13.5.2) Example. Let w0 be a nonzero vector in a Hilbert space H . For
t ∈ R, define an affine isometry ϕt of H by ϕt(v) = v + tw0; this yields
an action of R on H by affine isometries. Since ϕ1(v) = v +w0 ≠ v, we
know that the action has no fixed point.

The main theorem of this section shows that the groups that do not
have Kazhdan’s property are characterized by the existence of a fixed-
point-free action as in Example 13.5.2. However, before stating the result,
let us introduce some notation, so that we can also state it in cohomo-
logical terms.

(13.5.3) Definition. Suppose (π,H ) is a unitary representation of a Lie
group H. Define

1) C(H;H ) = { continuous functions f : H →H },
2) ]1(H;π)={f ∈ C(H;H ) | ∀g,h ∈ H, f(gh) = f(g)+π(g)f(h)},
3) @1(H;π) = {f ∈ C(H;H ) | ∃v ∈H , ∀h ∈ H, f(h) = v−π(h)v},
4) *1(H;π) = ]1(H;π)/@1(H;π) (see Exercise 3).

If the representation π on H is clear from the context, we may write
]1(H;H ), @1(H;H ), and *1(H;H ), instead of ]1(H;π), @1(H;π), and
*1(H;π).

(13.5.4) Theorem. For a Lie group H, the following are equivalent:

1) H has Kazhdan’s property.

2) For every Hilbert space H , every continuous action of H by affine
isometries on H has a fixed point.

3) *1(H;π) = 0, for every unitary representation π of H.

Proof of (2) =⇒ (3). Given f ∈ ]1(H;π), define an action of f on H via
affine isometries by defining

hv = π(h)v + f(h) for h ∈ H and v ∈H
(see Exercise 5). By assumption, this action must have a fixed point v0.
For all h ∈ H, we have v0 = hv0 = π(h)v0+f(h), so f(h) = v0−π(h)v0.
Therefore f ∈ @1(H;π). Since f is an arbitrary element of ]1(H;π), this
implies *1(H;π) = 0. □
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Proof of (3) =⇒ (1). We prove the contrapositive: assume H does not
have Kazhdan’s property. This means a unitary representation of H on
some Hilbert space H has almost-invariant vectors, but does not have
invariant vectors. We claim *1(H;π∞) ≠ 0, where π∞ is the obvious
diagonal action of H on the Hilbert space H∞ =H ⊕H ⊕ ·· · .

Choose an increasing chain C1 ⊆ C2 ⊆ · · · of compact subsets of G,
such that G = ∪n Cn. For each n, since H has almost-invariant vectors,
there exists a unit vector vn ∈H , such that

∥cvn − vn∥ < 1
2n

for all c ∈ Cn.

Now, define f : H →H∞ by

f(h)n = n
(
hvn − vn

)
(see Exercise 9), so f ∈ ]1(H;π∞) (see Exercise 10). However, it is
easy to see that f is an unbounded function on H (see Exercise 11), so
f ∉ @1(H;H∞) (see Exercise 4). Therefore f represents a nonzero coho-
mology class in *1(H;π∞). □

Alternate proof of (3) =⇒ (1). Assume the unitary representation π
has no invariant vectors. (We wish to show this implies there are no
almost-invariant vectors.) Define a linear map

F : H → ]1(H;π) by Fv(h) = π(h)v − v.
Assume, for simplicity, that H is compactly generated (see Exercise 14),
so some compact, symmetric set C generates H. By enlarging C, we may
assume C has nonempty interior. Then the supremum norm on C turns
]1(H;π) into a Banach space (see Exercise 12), and the map F is contin-
uous in this topology (see Exercise 13(a)).

Since there are no invariant vectors inH , we know that F is injective
(see Exercise 13(b)). Also, the image of F is obviously @1(H;π). Since
*1(H;π) = 0, this means that F is surjective. Therefore, F is a bijection.
So the Open Mapping Theorem (B7.6(2)) provides a constant ϵ > 0, such
that ∥Fv∥ > ϵ for every unit vector v. This means there is some h ∈ C,
such that ∥π(h)v −v∥ > ϵ, so v is not (C, ϵ)-invariant. Therefore, there
are no almost-invariant vectors. □

Sketch of proof of (1) =⇒ (2). We postpone this proof to Section 13.6,
where functions of positive type are introduced. They yield an embed-
ding of H in the unit sphere of a (larger) Hilbert space Ĥ . This embed-
ding is nonlinear and non-isometric, but there is a unitary representa-
tion π̂ on Ĥ for which the embedding is equivariant. Kazhdan’s property
provides an invariant vector in Ĥ , and this pulls back to a fixed point
in H . See Section 13.6 for more details. □
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(13.5.5) Remark. If H satisfies (2) of Theorem 13.5.4, it is said to have
“property (FH)” (because it has Fixed points on Hilbert spaces).

In Definition 13.5.3, the subspace @1(H;π) may fail to be closed
(see Exercise 16). In this case, the quotient space *1(H;π) does not have
a good topology. Fortunately, it can be shown that Theorem 13.5.4 re-
mains valid even if we replace @1(H;π) with its closure:

(13.5.6) Definition. In the notation of Definition 13.5.3, let:

1) @1(H;π) be the closure of @1(H;π) in ]1(H;π), and

2) *
1(H;π) = ]1(H;π)/@1(H;π). This is called the reduced 1st co-

homology.

The following result requires the technical condition that H is com-
pactly generated (see Definition 13.1.10 and Exercise 17).

(13.5.7) Theorem. A compactly generated Lie group H has Kazhdan’s

property if and only if *
1(H;π) = 0, for every unitary representation π

of H.

Because reduced cohomology behaves well with respect to the direct
integral decomposition of a unitary representation (although the unre-
duced cohomology does not), this theorem implies that it suffices to con-
sider only the irreducible representations of H:

(13.5.8) Corollary. A compactly generated Lie group H has Kazhdan’s

property if and only if *
1(H;π) = 0, for every irreducible unitary repre-

sentation π of H.

(13.5.9) Remark. We have seen that a group with Kazhdan’s property
has bounded orbits whenever it acts isometrically on a Hilbert space.
The same conclusion has been proved for isometric actions on some
other spaces, including real hyperbolic n-space Hn, complex hyperbolic
n-space HnC, and all “median spaces” (including all R-trees). (In many
cases, the existence of a bounded orbit implies the existence of a fixed
point.) See Exercise 19 for an example.

Exercises for §13.5.

#1. Let T : H →H . Show that if T is an affine isometry, then
a) T(v −w) = T(v)− T(w)+ T(0), and
b) ∥T(v)− T(w)∥ = ∥v −w∥,

for all v,w ∈H .

#2. Prove the converse of Exercise 1.

#3. In the notation of Definition 13.5.3, show that @1(H;π) ⊆ ]1(H;π)
(so the quotient ]1(H;π)/@1(H;π) is defined).
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#4. Suppose f ∈ @1(H;π) so f : H →H . Show f is bounded.

#5. Suppose
• (π,H ) is a unitary representation of H, and
• τ : H →H .

For h ∈ H and v ∈ H , let α(h)v = π(h)v + τ(h), so α(h) is an
affine isometry ofH . Show that αdefines a continuous action ofH
on H if and only if τ ∈ ]1(H;π) and τ is continuous.

#6. Suppose H acts continuously by affine isometries on the Hilbert
spaceH . Show there is a unitary representation π of H onH , and
some τ ∈ ]1(H;π), such that hv = π(h)v +τ(h) for every h ∈ H
and v ∈H .

#7. Suppose H acts continuously by affine isometries on the Hilbert
space H . Show the following are equivalent:

a) H has a fixed point in H .
b) The orbit Hv of each vector v inH is a bounded subset ofH .
c) The orbitHv of some vector v inH is a bounded subset ofH .

[Hint: You may use (without proof) the fact that every nonempty, bounded subsetX
of a Hilbert space has a unique circumcenter. By definition, the circumcenter is
a point c, such that, for some r > 0, the set X is contained in the closed ball of
radius r centered at c, but X is not contained in any ball of radius < r (centered at
any point).]

#8. Prove directly that 13.5.4(3) =⇒ 13.5.4(2), without using Kazhdan’s
property.
[Hint: For each h ∈ H, there is a unique unitary operator π(h), such that we
have hv = π(h)v + h(0) for all v ∈ H . Fix v ∈ H and define f ∈ ]1(H;π) by
f(h) = hv − v. If f ∈ @1(H;π), then H has a fixed point.]

#9. In the notation of the proof of 13.5.4(3 ⇒ 1), show f : H →H∞.
[Hint: For each h ∈ H, show the sequence

{∥f(h)n∥} is square-summable.]

#10. In the notation of the proof of 13.5.4(3 ⇒ 1), show f ∈ *1(H;π∞).

#11. In the notation of the proof of 13.5.4(3 ⇒ 1), show f is unbounded.
[Hint: You may use (without proof) the fact that every nonempty, bounded subset
of a Hilbert space has a unique circumcenter, as in Exercise 7.]

#12. Assume C is a compact, symmetric set that generates H, and has
nonempty interior. For each f ∈ ]1(H;H ), let ξ(f) be the re-
striction of f to C. Show that ξ is a bijection from ]1(H;H ) onto
a closed subspace of the Banach space of continuous functions
from C to H .

#13. In the notation of the alternate proof of 13.5.4(3 ⇒ 1), show:
a) F is continuous.
b) F is injective.

[Hint: (b) If Fv = Fw, then what is π(h)(v −w)?]
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#14. Remove the assumption that H is compactly generated from the
alternate proof of (3) =⇒ (1).
[Hint: The topology of uniform convergence on compact sets makes ]1(H;π) into
a Fréchet space.]

#15. Assume
• Γ has Kazhdan’s property T ,
• V is a vector space,
• H is a Hilbert space that is contained in V,
• v ∈ V, and
• σ : Γ → GL(V) is any homomorphism, such that

◦ the restriction σ(γ)|H is unitary, for every γ ∈ Γ , and
◦ H + v is σ(Γ)-invariant.

Show σ(Γ) has a fixed point in H + v.
[Hint: Theorem 13.5.4(2).]

#16. Show that if π has almost-invariant vectors, then @1(H;π) is not
closed in ]1(H;π).
[Hint: See the alternate proof of Theorem 13.5.4(3 =⇒ 1).]

#17. Show the assumption that H is compactly generated cannot be re-
moved from the statement of Theorem 13.5.7.
[Hint: Let H be an infinite, discrete group, such that every finitely generated sub-
group of H is finite.]

#18. Show H has Kazhdan’s property if and only if *1(H;π) = 0, for
every irreducible unitary representation π of H.
[Hint: You may assume Theorem 13.5.7.]

Definition. A tree is a contractible, 1-dimensional simplicial com-
plex.

#19. (Watatani) Suppose
• Λ is a discrete group that has Kazhdan’s property, and
• acts by isometries on a tree T .

Show Λ has a fixed point in T (without assuming Remark 13.5.9).
[Hint: Fix an orientation of T, and fix a vertex v in T. For each λ ∈ Λ, the geodesic
path in T from v to λ(v) can be represented by a {0,±1}-valued function Pλ on the
set E of edges of T. Verify that λ , Pλ is in ]1(Λ; +2(E)

)
, and conclude that the

orbit of v is bounded.]

#20. Show SO(1, n) and SU(1, n) do not have Kazhdan’s property.
[Hint: You may assume the facts stated in Remark 13.5.9.]

#21. It is straightforward to verify that all of the results in this chapter
remain valid if we require H to be a real Hilbert space (instead
of a Hilbert space over C), as in Assumption 13.6.1 below. In this
setting, there is no need to restrict attention to affine isometries
in the statement of Theorem 13.5.4(2), because all isometries are
affine:
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Let H be a real Hilbert space, and let φ : H → H be any
distance-preserving bijection (so ∥φ(v) − φ(w)∥ = ∥v − w∥ for
all v,w ∈H ). Show that φ is an affine isometry.
[Hint: The main problem is to show that if φ(0) = 0, then φ is R-linear. This is
well known (and easy to prove) whenH = R2. The general case follows from this.]

§13.6. Functions on H that are of positive type

This section completes the proof of Theorem 13.5.4, by showing that
affine isometric actions of Kazhdan groups on Hilbert spaces always have
fixed points. For this purpose, we develop some of the basic theory of
functions of positive type.

(13.6.1) Assumption. To simplify some details, Hilbert spaces in this
section are assumed to be real, rather than complex. (That is, the field
of scalars is R, rather than C.)

(13.6.2) Definition.

1) Let A be an n×n real symmetric matrix.
(a) A is of positive type if ⟨Av | v⟩ ≥ 0 for all v ∈ Rn. Equiva-

lently, this means all of the eigenvalues of A are ≥ 0 (see Exer-
cise 1).

(b) A is conditionally of positive type if
(i) ⟨Av | v⟩ ≥ 0 for all v = (v1, . . . , vn) ∈ Rn, such that we

have v1 + · · · + vn = 0, and
(ii) all the diagonal entries of A are 0.

(The word “conditionally” refers to the fact that the inequality
on ⟨Av | v⟩ is only required to be satisfied when a particular
condition is satisfied, namely, when the sum of the coordinates
of v is 0.)

2) A continuous, real-valued function φ on a topological group H is
said to be of positive type (or conditionally of positive type, respec-
tively) if, for all n and all h1, . . . , hn ∈ H, the matrix

(
φ(h−1

i hj)
)

is
a symmetric matrix of the said type.

(13.6.3) Warning. A function that is of positive type is almost never con-
ditionally of positive type. This is because a matrix satisfying (1a) of
Definition 13.6.2 will almost never satisfy (1(b)ii) (see Exercise 2).

(13.6.4) Other terminology. Functions of positive type are often called
positive definite or positive semi-definite.

Such functions arise naturally from actions of H on Hilbert spaces:

(13.6.5) Lemma. Suppose

• H is a topological group,
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• H acts continuously by affine isometries on a Hilbert space H ,

• v ∈H ,

• φ : H → R is defined by φ(h) = −∥hv − v∥2 for h ∈ H, and

• ψ : H → R is defined by ψ(h) = ⟨hv | v⟩ for h ∈ H.

Then:

1) φ is conditionally of positive type, and

2) ψ is of positive type if h(0) = 0 for all h ∈ H.

Proof. Exercises 6 and 7. □

Conversely, the following result shows that all functions of positive
type arise from this construction. (The “GNS” in its name stands for
Gelfand, Naimark, and Segal.)

(13.6.6) Proposition (“GNS construction”). If f : H → R is of positive type,
then there exist

• a continuous action of H by linear isometries on a Hilbert space H
(so h(0) = 0 for all h), and

• v ∈H ,

such that f(h) = ⟨hv | v⟩ for all h ∈ H.

Proof. LetR[H]be the vector space of functions onH with finite support.
Since the set of delta functions {δh | h ∈ H } is a basis, there is a unique
bilinear form on R[H], such that

⟨δh1 | δh2⟩ = f(h−1
1 h2) for all h1, h2.

Since f is of positive type, this form is symmetric and satisfies the in-
equality ⟨w | w⟩ ≥ 0 for all w. Let Z be the radical of the form, which
means

Z = {z ∈ R[H] | ⟨z | z⟩ = 0 },
so ⟨ | ⟩ factors through to a well-defined positive-definite, symmetric bi-
linear form on the quotient R[H]/Z. This makes the quotient into a
pre-Hilbert space; let H be its completion, which is a Hilbert space, and
let v be the image of δe in H .

The group H acts by translation on R[H], and it is easy to verify that
the action is continuous, and preserves the bilinear form (see Exercise 8).
Therefore, the action extends to a unitary representation of H on H .
Furthermore, for any h ∈ H, we have

f(h) = f(e · h) = ⟨δe | δh⟩ = ⟨δe | hδe⟩ = ⟨v | hv⟩ = ⟨hv | v⟩,
as desired. □



278 13. KAZHDAN’S PROPERTY (T)

We will also use the following important relationship between the
two concepts:

(13.6.7) Lemma (Schoenberg’s Lemma). If φ is conditionally of positive
type, then eφ is of positive type.

Proof. A function κ : H × H → R is said to be a kernel of positive type
if the matrix

(
κ(hi, hj)

)
is a symmetric matrix of positive type, for all n

and all h1, . . . , hn ∈ H.
Define κ : H ×H → R by

κ(g,h) =φ(g−1h)−φ(g)−φ(h).
Then:

• κ is a kernel of positive type (see Exercise 9),

• so eκ is a kernel of positive type (see Exercise 11),

• and eφ(g)eφ(h) is a kernel of positive type (see Exercise 12),

• so the product eκ(g,h)
(
eφ(g)eφ(h)

)
is a kernel of positive type (see Ex-

ercise 10).

This product is eφ(g−1h), so eφ is a function of positive type. □

With these tools, it is not difficult to show that affine isometric actions
of Kazhdan groups on Hilbert spaces always have fixed points:

Proof of Theorem 13.5.4 (1 ⇒ 2). Letαbe the given action ofH onH by
affine isometries, and let π be the corresponding unitary representation
(see Exercise 13.5#6). Therefore, we have

α(h)v = π(h)v + τ(h) for h ∈ H and v ∈H ,

where τ ∈ ]1(H;π).
Let Ĥ =H⋊H be the semidirect product of (the additive group of)H

with H, where H acts on H via π. This means the elements of Ĥ are the
ordered pairs (v,h), and, for v1, v2 ∈H and h1, h2 ∈ H, we have

(v1, h1) · (v2, h2) = (v1 +π(h1)v2, h1h2).
This semidirect product is a topological group, so we can apply the above
theory of functions of positive type to it. Define a continuous action α̂
of Ĥ on H by

α̂(v,h)w = α(h)w + v (13.6.8)

(see Exercise 3), and define

φ̂ : Ĥ → R by φ̂(v,h) = −∥α̂(v,h)(0)∥2.

Since α̂(v,h) is an affine isometry for every v and h, we know φ̂ is condi-
tionally of positive type (see Lemma 13.6.5(1)). Therefore eφ̂ is of positive
type (see Lemma 13.6.7). Hence, the GNS construction (13.6.6) provides
a unitary representation π̂ of Ĥ on a Hilbert space Ĥ and some v̂ ∈ Ĥ ,
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such that

⟨π̂(v,h)v̂ | v̂⟩ = eφ̂(v,h) for all v ∈H and h ∈ H. (13.6.9)

We now define
Φ : H → Ĥ by Φ(v) = π̂(v, e)v̂.

We have

Φ
(
α(h)v

) = π̂(0, h)Φ(v) for h ∈ H and v ∈H (13.6.10)

(see Exercise 14), so Φ converts the affine action of H on H to a linear
action on Ĥ . Since the linear span of Φ(H ) contains v̂ and is invariant
under π̂

(
Ĥ
)

(see Exercise 4), there is no harm in assuming that its closure
is all of Ĥ .

It is clear from the definition of φ̂ that φ̂(0, e) = 0, so we know that
v̂ is a unit vector. Therefore

∥π̂(v,h)v̂ − v̂∥2 = ⟨ π̂(v,h)v̂ − v̂, π̂(v,h)v̂ − v̂ ⟩
= 2

(
1− ⟨π̂(v,h)v̂ | v̂⟩) (13.6.11)

= 2
(
1− eφ̂(v,h)).

Since H has Kazhdan’s property, there is a compact subset C of H
and some ϵ > 0, such that every unitary representation of H that has a
(C, ϵ)-invariant vector must have an invariant vector. There is no harm in
multiplying the norm onH by a small positive scalar, so we may assume
φ̂(0, h) is as close to 0 as we like, for allh ∈ C. Then (13.6.11) tells us that
v̂ is (C, ϵ)-invariant, so Ĥ must have a nonzero H-invariant vector v̂0.

Suppose the affine action α does not have any fixed points. (This
will lead to a contradiction.) This implies that every H-orbit on H is
unbounded (see Exercise 13.5#7). Hence, for any fixed v ∈ H , and all
h ∈ H, we have

⟨Φ(v) | v̂0⟩ = ⟨Φ(v) | π̂(0, h−1)v̂0⟩ (v̂0 is H-invariant)

= ⟨π̂(0, h)Φ(v) | v̂0⟩ (π is unitary)

= ⟨Φ(α(h)v) | v̂0⟩ (13.6.10)

→ 0 as ∥α(h)v∥ → ∞ (Exercise 5).

So v̂0 is orthogonal to the linear span of Φ(H ), which is dense in Ĥ .
Therefore v̂0 = 0. This is a contradiction. □

Exercises for §13.6.

#1. Let A be a real symmetric matrix. Show A is of positive type if and
only if all of the eigenvalues of A are ≥ 0.
[Hint: A is diagonalizable by an orthogonal matrix.]

#2. Suppose A is an n×n real symmetric matrix that is of positive type
and is also conditionally of positive type. Show A = 0.
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[Hint: What does 13.6.2(1(b)ii) say about the trace of A?]

#3. In the notation of the proof of Theorem 13.5.4, show

α̂(v1, h1) · α̂(v2, h2) = α̂
(
(v1, h1) · (v2, h2)

)
for all v1, v2 ∈H and h1, h2 ∈ H.

#4. In the notation of the proof of Theorem 13.5.4, show that the linear
span of Φ(H ) is invariant under π̂

(
Ĥ
)
.

[Hint: See (13.6.10).]

#5. In the notation of the proof of Theorem 13.5.4, show that if v ∈H ,
and {wn} is a sequence inH , such that ∥wn∥ → ∞, then Φ(wn)→ 0
weakly.
[Hint: If ŵ ∈ Φ(H ), then (13.6.9) implies

⟨
Φ(wn) | ŵ

⟩→ 0.]

#6. Prove Lemma 13.6.5(1).

[Hint: If
∑
i ti = 0, then

∑
i,j ti tjφ(h−1

i hjv) = 2
∥∥∑

i tihiv
∥∥2.]

#7. Prove Lemma 13.6.5(2).

[Hint:
∑
i,j ti tj ψ(h−1

i hjv) =
∥∥∑

i tihiv
∥∥2.]

#8. Prove that the action of H acts on R[H] by translation is continu-
ous, and preserves the bilinear form defined in the proof of Propo-
sition 13.6.6.

#9. Show that the kernel κ in the proof of Lemma 13.6.7 is of positive
type.
[Hint: For v1, . . . , vn ∈ R and h1, . . . , hn ∈ H, let v0 = −

∑
vi and h0 = e. Then∑

i,j vivjκ(hi, hj) ≥ 0 sinceφ is conditionally of positive type and
∑
vi = 0. How-

ever, the terms with either i = 0 or j = 0 have no net contribution, sinceφ(e) = 0.]

#10. Show that if κ and λ are kernels of positive type, then κλ is a kernel
of positive type.
[Hint: Given h1, . . . , hn ∈ H, show there is a matrix L, such that L2 = (

λ(hi, hj)
)
.

Note that
∑
i,j vi vj κ(hi, hj)λ(hi, hj) =

∑
k
∑
i,j(Li,kvi) (Lk,jvj) κ(hi, hj) ≥ 0.]

#11. If κ is a kernel of positive type, show eκ is a kernel of positive type.
[Hint: Since κn is a kernel of positive type for all n, the same is true of

∑
κn/n!.]

#12. For every φ : H → R, show φ(g)φ(h) is a kernel of positive type.

#13. Supposeφ : H → R. Prove the following converse of Lemma 13.6.7:
If etφ is of positive type for all t > 0, then φ is conditionally of
positive type.
[Hint: Verify that etφ−1 is conditionally of positive type. Then limt→0+(etφ−1)/t
has the same type.]

#14. Verify (13.6.10).
[Hint: Since α̂

(−τ(h),h)(0) = 0, we have
⟨
π̂(e, h)v̂ | π̂(τ(h), e)v̂⟩ = 1. Since they

are of norm 1, the two vectors must be equal.]
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#15. Recall that a Lie group H has the Haagerup property if it has a
unitary representation, such that there are almost-invariant vec-
tors, and all matrix coefficients decay to 0 at ∞. It is known that
H has the Haagerup property if and only if it has a continuous,
proper action by affine isometries on some Hilbert space. Prove
the implication (⇐) of this equivalence.

Notes

The monograph [4] is the standard reference on Kazhdan’s prop-
erty (T). The property was defined by D. Kazhdan in [11], where Propo-
sitions 13.1.7 and 13.4.1 and Theorem 13.2.1 were proved.

See [2] for a discussion of the generalization of Kazhdan’s property to
actions on Banach spaces, including Warning 13.1.3 and Exercise 13.1#1.
See [6] for a discussion of the Haagerup property that is mentioned in Ex-
ercises 13.1#12 and 13.6#15. See [18] for much more information about
expander graphs and their connection with Kazhdan’s property, men-
tioned in Exercise 13.1#16.

Regarding Warning 13.1.11:

• By showing that SL
(
3,Fq[t]

)
is not finitely presentable, H. Behr [3]

provided the first example of a group with Kazhdan’s property that
is not finitely presentable.

• The existence of uncountably many Kazhdan groups was proved
by M. Gromov [9, Cor. 5.5.E, p. 150]. More precisely, any cocompact
lattice in Sp(1, n) has uncountably many different quotients (be-
cause it is a “hyperbolic” group), and all of these quotient groups
have Kazhdan’s property.

• Y. Shalom [20, p. 5] proved that every discrete Kazhdan group is a
quotient of a finitely presented Kazhdan group. The proof can also
be found in [4, Thm. 3.4.5, p. 187].

Our proof of Theorem 13.2.1 is taken from [4, §1.4].
Theorem 13.2.4 appears in [4, Thm. 3.5.4, p. 177]. It combines work

of several people, including Kazhdan [11] and Kostant [14, 15]. See [4,
pp. 5–7] for an overview of the various contributions to this theorem.

A detailed solution of Exercise 13.3#1 can be found in [4, Lem. 1.4.1].
See [4, Thm. 1.7.1, p. 60] for a proof of Proposition 13.4.1 and its

converse (Exercise 13.4#4).
Regarding Remark 13.4.4(2), see [17] (and its references) for a discus-

sion of W. Thurston’s conjecture that lattices in SO(1, n)have finite-index
subgroups with infinite abelian quotients. (For n = 3, the conjecture was
proved by Agol [1].) Lattices in SU(1, n) with an infinite abelian quotient
were found by D. Kazhdan [12].
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Explicit Kazhdan constants for SL(n,Z) (cf. Remark 13.4.8) were first
found by M. Burger [7, Appendix] (or see [4, §4.2]). An approach devel-
oped by Y. Shalom (see [21]) applies to more general groups (such as
SL
(
n,Z[x]

)
) that are not assumed to be lattices.

Remark 13.4.9(1) is a theorem of Zuk [23, Thm. 4]. (Or see [16] for a
more detailed proof.) Remark 13.4.9(2) is explained in [21].

Remark 13.4.10 is due to S. Gersten (unpublished). A proof (based
on the same example, but rather different from our sketch) is in [4,
Thm. 3.6.5, p. 182].

Theorem 13.5.4 is due to Delorme [8, Thm. V.1] (for (1 ⇒ 2)) and
Guichardet [10, Thm. 1] (for (3 ⇒ 1)).

Theorem 13.5.7 was proved for discrete groups by Korevaar and
Schoen [13, Cor. 4.1.3]. The general case is due to Shalom [20, Thm. 6.1].
Corollary 13.5.8 and Exercise 13.5#18 are also due to Shalom [20, proof
of Thm. 0.2].

The part of Remark 13.5.9 dealing with real or complex hyperbolic
spaces is in [4, Cor. 2.7.3]. See [5] for median spaces.

The existence and uniqueness of the circumcenter (mentioned in the
hints to Exercises 13.5#7 and 13.5#11) is proved in [4, Lem. 2.2.7].

Exercise 13.5#19 is due to Watatani [22], and can also be found in [4,
§2.3]. Serre’s book [19] is a very nice exposition of the theory of group
actions on trees, but, unfortunately, does not include this theorem.

See [4, §2.10–§2.12 and §C.4] for the material of Section 13.6.
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Chapter 14

Ergodic Theory

Ergodic Theory is the study of measure-theoretic aspects of group ac-
tions. Topologists and geometers may be more comfortable in the cat-
egory of continuous functions, but important results in Chapters 16
and 17 will be proved by using measurable properties of actions of Γ ,
so we will introduce some of the basic ideas.

§14.1. Terminology

The reader is invited to skim through this section, and refer back as
necessary.

(14.1.1) Assumption.

1) All measures are assumed to be σ-finite. That is, if µ is a measure
on a measure space X, then we always assume that X is the union
of countably many subsets of finite measure.

2) We have no need for abstract measure spaces, so all measures are
assumed to be Borel . That is, when we say µ is a measure on a
measure space X, we are assuming that X is a Borel subset of a
complete, separable, metrizable space, and the implied σ-algebra

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.
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on X consists of the subsets of X that are equal to a Borel set,
modulo a set of measure 0.

(14.1.2) Definitions. Let µ be a measure on a measure space X.

1) We say µ is a finite measure if µ(X) <∞.

2) A subset A of X is:
• null if µ(A) = 0,
• conull if the complement of A is null.

3) We often abbreviate “almost everywhere” to “a.e.”

4) Essentially is a synonym for “almost everywhere.” For example, a
function f is essentially constant iff f is constant (a.e.).

5) Two measures µ and ν on X are in the same measure class if they
have exactly the same null sets:

µ(A) = 0 ⇐⇒ ν(A) = 0.
(This defines an equivalence relation.) Note that if ν = fµ, for some
real-valued, measurable function f , such that f(x) ≠ 0 for a.e.
x ∈ X, then µ and ν are in the same measure class (see Exercise 1).
The Radon-Nikodym Theorem (B6.13) implies that the converse is
true.

(14.1.3) Definitions. Suppose H is a Lie group H that acts continuously
on a metrizable space X, µ is a measure on X, and A is a subset of X.

1) The set A is invariant (or, more precisely, H-invariant ) if hA = A
for all h ∈ H.

2) The measure µ is invariant (or, more precisely, H-invariant ) if
h∗µ = µ for all h ∈ H. (Recall that the push-forward h∗µ is defined
in (B6.7).)

3) The measure µ is quasi-invariant if h∗µ is in the same measure
class as µ, for all h ∈ H.

4) A (measurable) function f on X is essentially H-invariant if, for
every h ∈ H, we have

f(hx) = f(x) for a.e. x ∈ X.

The Lebesgue measure on a manifold is not unique, but it determines
a well-defined measure class, which is invariant under any smooth action:

(14.1.4) Lemma (see Exercise 4). If X is a manifold, and H acts on X by
diffeomorphisms, then Lebesgue measure provides a measure on X that
is quasi-invariant for H.
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Exercises for §14.1.

#1. Suppose µ is a measure on a measure space X, and f is a real-
valued, measurable function on X, such that f ≥ 0 for a.e. x. Show
that fµ is in the measure class of µ iff f(x) ≠ 0 for a.e. x ∈ X.

#2. Suppose a Lie group H acts continuously on a metrizable space X,
and µ is a measure on X. Show that µ is quasi-invariant iff the
collection of null sets is H-invariant. (This means that if A is a null
set, and h ∈ H, then h(A) is a null set.)

#3. Suppose
• A is a null set in Rn (with respect to Lebesgue measure), and
• f is a diffeomorphism of some open subset O of Rn.

Show that f(A∩O ) is a null set.
[Hint: Change of variables.]

#4. Suppose X is a (second countable) smooth, n-dimensional man-
ifold. This means that X can be covered by coordinate patches
(Xi,φi) (where φi : Xi → Rn, and the overlap maps are smooth).

a) Show there exists a partition X = ∪∞i=1 X̂i into measurable sub-
sets, such that X̂i ⊆ Xi for each i.

b) Define a measure µ on X by µ(X) = λ(φi(A ∩ X̂i)), where λ
is the Lebesgue measure on Rn. This measure may depend on
the choice of Xi, φi, and X̂i, but show that the measure class
of µ is independent of these choices.

[Hint: Exercise 3.]

§14.2. Ergodicity

SupposeH acts on a topological spaceX. IfH has a dense orbit onX, then
it is easy to see that every continuous, H-invariant function is constant
(see Exercise 2). Ergodicity is the much stronger condition that every
measurable H-invariant function is constant (a.e.):

(14.2.1) Definition. Suppose H acts on X with a quasi-invariant mea-
sure µ. We say the action ofH is ergodic (or that µ is an ergodic measure
for H) if every H-invariant, real valued, measurable function on X is es-
sentially constant.

It is easy to see that transitive actions are ergodic (see Exercise 3).
But non-transitive actions can also be ergodic:

(14.2.2) Example (Irrational rotation of the circle). For anyα ∈ R, we may
define a homeomorphism Tα of the circle T = R/Z by

Tα(x) = x +α (mod Z).
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By considering Fourier series, it is not difficult to show that if α is irra-
tional, then every Tα-invariant function in +2(T) is essentially constant
(see Exercise 6). This implies that the Z-action generated by Tα is ergodic
(see Exercise 7).

Example 14.2.2 is a special case of the following general result:

(14.2.3) Proposition. If H is any dense subgroup of a Lie group L, then
the natural action of H on L by left translation is ergodic (with respect to
the Haar measure on L).

Proof. For any measurable f : L → R, its essential stabilizer in L is de-
fined to be:

StabL(f ) = {g ∈ L | f(gx) = f(x) for a.e. x ∈ L}.
It is not difficult to show that StabL(f ) is closed (see Exercise 1). (It is
also a subgroup of L, but we do not need this fact.) Hence, if StabL(f )
contains a dense subgroup H, then it must be all of L. This implies that
f is constant (a.e.) (see Exercise 4). □

It was mentioned above that transitive actions are ergodic; therefore,
G is ergodic on G/Γ . What is not obvious, and leads to important applica-
tions for arithmetic groups, is that most subgroups of G are also ergodic
on G/Γ :

(14.2.4) Theorem (Moore Ergodicity Theorem, see Exercise 11.2#11). If

• H is any noncompact, closed subgroup of G, and

• Γ is irreducible,

then H is ergodic on G/Γ .

If H is ergodic on G/Γ , then Γ is ergodic on G/H (see Exercise 12).
Hence:

(14.2.5) Corollary. If H and Γ are as in Theorem 14.2.4, then Γ is ergodic
on G/H.

Exercises for §14.2.

#1. Show StabL(f ) is closed, for every Lie group L and measurable
f : L→ R.
[Hint: If f is bounded, then, for any φ ∈ Cc(L) and {gn} ⊆ StabL(f ), we have∫
L
gf ·φdµ =

∫
L f · g

−1φdµ = lim
∫
L f · g

−1
n φdµ = lim

∫
L
gnf ·φdµ =

∫
L f ·φdµ.]

#2. Suppose H acts on a topological space X, and has a dense orbit.
Show that every real-valued, continuous,H-invariant function on X
is constant.

#3. Show thatH is ergodic onH/H1, for every closed subgroupH1 ofH.
[Hint: Every H-invariant function is constant, not merely essentially constant.]
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#4. Suppose H is ergodic on X, and f : X → R is measurable and essen-
tially H-invariant. Show that f is essentially constant.

#5. Our definition of ergodicity is not the usual one, but it is equivalent:
show thatH is ergodic onX iff everyH-invariant measurable subset
of X is either null or conull.
[Hint: The characteristic function of an invariant set is an invariant function. Con-
versely, the sub-level sets of an invariant function are invariant sets.]

#6. In the notation of Example 14.2.2, show (without using Proposi-
tion 14.2.3):

a) If α is irrational, then every Tα-invariant function in +2(T) is
essentially constant.

b) If α is rational, then there exist Tα-invariant functions in +2(T)
that are not essentially constant.

[Hint: Any f ∈ +2(T) can be written as a unique Fourier series: f =∑∞n=−∞ aneinθ.
If f is invariant and α is irrational, then uniqueness implies an = 0 for n ≠ 0.]

#7. Suppose µ is anH-invariant, finite measure on X. For all p ∈ [1,∞],
show that H is ergodic iff every H-invariant element of +p(X, µ) is
essentially constant.

#8. Let H = Z act on X = R by translation, and let µ be Lebesgue
measure. Show:

a) H is not ergodic on X, and
b) for every p ∈ [1,∞), every H-invariant element of +p(X, µ) is

essentially constant.
Why is this not a counterexample to Exercise 7?

#9. LetH be a dense subgroup of L. Show that if L is ergodic on X, then
H is also ergodic on X.
[Hint: Exercise 1.]

#10. Show that if H acts continuously on X, and µ is a quasi-invariant
measure on X, then the support of µ is an H-invariant subset of X.

#11. Ergodicity implies that a.e. orbit is dense in the support of µ. More
precisely, show that if H is ergodic on X, and the support of µ is all
of X (in other words, no open subset of X has measure 0), then a.e.
H-orbit in X is dense. (That is, for a.e. x ∈ X, the orbit Hx of x is
dense in X.
[Hint: The characteristic function of the closure of any orbit is invariant.]

#12. Suppose H is a closed subgroup of G. Show that H is ergodic on
G/Γ iff Γ is ergodic on G/H.
[Hint: H × Γ acts on G (by letting H act on the left and Γ act on the right). Show H
is ergodic on G/Γ iff H × Γ is ergodic on G iff Γ is ergodic on G/H.]
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#13. The Moore Ergodicity Theorem has a converse: Assume G is not
compact, and show that if H is any compact subgroup of G, then
H is not ergodic on G/Γ .
[Hint: Γ acts properly discontinuously on G/H, so the orbits are not dense.]

#14. Show that if n ≥ 2, then
a) the natural action of SL(n,Z) on Rn is ergodic, and
b) the SL(n,Z)-orbit of a.e. vector in Rn is dense in Rn.

[Hint: Identify Rn with a homogeneous space of G = SL(n,R) (a.e.), by noting that
G is transitive on the nonzero vectors of Rn.]

#15. Let
• G = SL(3,R),
• Γ be a lattice in G, and

• P =
[∗
∗ ∗
∗ ∗ ∗

]
⊂ G.

Show:
a) The natural action of Γ on the homogeneous space G/P is er-

godic.
b) The diagonal action of Γ on (G/P)2 = (G/P)×(G/P) is ergodic.
c) The diagonal action of Γ on (G/P)3 = (G/P) × (G/P) × (G/P)

is not ergodic.
[Hint: G is transitive on a conull subset of (G/P)k, for k ≤ 3. What is the stabilizer
of a generic point in each of these spaces?]

#16. Assume Γ is irreducible, and let H be a closed, noncompact sub-
group of G. Show, for a.e. x ∈ G/Γ , that Hx is dense in G/Γ .

#17. Suppose H acts ergodically on X, with invariant measure µ. Show
that if µ(X) < ∞ and H ≊ R, then some cyclic subgroup of H is
ergodic on X.
[Hint: For each t ∈ R, choose a nonzero, ht-invariant function ft ∈ L2(X), such
that ft ⊥ 1. The projection of fr to the space of hs-invariant functions is invariant
under both hr and hs. Therefore, if r and s are linearly independent over Q, then
fr ⊥ fs. This is impossible, because +2(X, µ) is separable.]

§14.3. Consequences of a finite invariant measure

Measure-theoretic techniques are especially powerful when the action
has an invariant measure that is finite. One example of this is the
Poincaré Recurrence Theorem (4.6.1). Here is another.

We know that almost every orbit of an ergodic action is dense (see Ex-
ercise 14.2#11). For the case of a Z-action with a finite, invariant measure,
the orbits are not only dense, but uniformly distributed:

(14.3.1) Definition. Let

• µ be a finite measure on a topological space X, and

• T be a homeomorphism of X.
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The ⟨T⟩-orbit of a point x in X is uniformly distributed with respect to µ
if

lim
n→∞

1
n

n∑
k=1

f
(
T k(x)

) = 1
µ(X)

∫
X
f dµ,

for every bounded, continuous function f on X.

(14.3.2) Theorem (Pointwise Ergodic Theorem). Suppose

• µ is a finite measure on a second countable, metrizable space X, and

• T is an ergodic, measure-preserving homeomorphism of X.

Then a.e. ⟨T ⟩-orbit in X is uniformly distributed (with respect to µ).

It is tricky to show that limn→∞
1
n
∑n
k=1 f

(
T k(x)

)
converges pointwise

(see Exercise 5). Convergence in norm is much easier (see Exercise 3).

(14.3.3) Remark. Although the Pointwise Ergodic Theorem was stated
only for actions of a cyclic group, it generalizes very nicely to the ergodic
actions of any amenable group. (The values of f are averaged over an
appropriate Følner set in the amenable group.) See Exercise 8 for actions
of R.

Exercises for §14.3.

#1. Suppose the ⟨T ⟩-orbit of x is uniformly distributed with respect to
a finite measure µ on X. Show that if the support of µ is all of X,
then the ⟨T⟩-orbit of x is dense in X.

#2. Suppose
• U is a unitary operator on a Hilbert space H ,
• v ∈H , and
• ⟨v | w⟩ = 0, for every vector w that is fixed by U.

Show 1
n
∑n
k=1Ukv → 0 as n→∞.

[Hint: Apply the Spectral Theorem to diagonalize the unitary operator U.]

#3. (Mean Ergodic Theorem) Assume the setting of the Pointwise Er-
godic Theorem (14.3.2). Show that if f ∈ +2(X, µ), then

1
n

n∑
k=1

f
(
T k(x)

)→ 1
µ(X)

∫
X
f dµ in +2.

That is, show

lim
n→∞

∥∥∥∥∥∥ 1
n

n∑
k=1

f
(
T k(x)

) − 1
µ(X)

∫
X
f dµ

∥∥∥∥∥∥
2

= 0.

Do not assume Theorem 14.3.2.
[Hint: Exercise 2.]
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#4. Assume X, µ, and T are as in Theorem 14.3.2, and that µ(X) = 1.
For f ∈ L1(X, µ), define

Sn(x) = f(x)+ f
(
T(x)

)+ · · · + f (Tn−1(x)
)
.

Prove the Maximal Ergodic Theorem: for every α ∈ R, if we let

Eα =
{
x ∈ X

∣∣∣∣∣ sup
n

Sn(x)
n

> α
}
,

then
∫
E f dµ ≥ αµ(E).

[Hint: Assume α = 0. Let S+n (x) = max0≤k≤n Sk(x), and En = {x | S+n > 0 }, so
E = ∪nEn. For x ∈ En, we have f(x) ≥ S+n (x)− S+n

(
T(x)

)
, so

∫
En f dµ ≥ 0.]

#5. Prove the Pointwise Ergodic Theorem (14.3.2).
[Hint: Either {x | lim supSn(x)/n > α } or its complement must have measure 0.
If it is the complement, then Exercise 4 implies

∫
X f dµ ≥ α.]

#6. Assume the setting of the Pointwise Ergodic Theorem (14.3.2). For
every bounded φ ∈ +1(X, µ), show, for a.e. x ∈ X, that

lim
n→∞

1
n

n∑
k=1

φ
(
T k(x)

) = 1
µ(X)

∫
X
φdµ.

[Hint: You may assume the Pointwise Ergodic Theorem. Use Lusin’s Theorem (B6.6)
to approximate φ by a continuous function.]

#7. (harder ) Remove the assumption that φ is bounded in Exercise 6.

#8. Suppose
• {at} is a (continuous) 1-parameter group of homeomorphisms

of a topological space X, and
• µ is an ergodic, at-invariant, finite measure on X.

For every bounded, continuous function f on X, show that

lim
T→∞

1
T

∫ t
0
f(atx)dt = 1

µ(X)

∫
X
f dµ for a.e. x ∈ X.

[Hint: Apply Theorem 14.3.2 to f(x) =
∫ 1
0 f(atx)dt if a1 is ergodic (cf. Exer-

cise 14.2#17).]

§14.4. Ergodic decomposition

In this section, we briefly explain that every group action (with a quasi-
invariant measure) can be decomposed into ergodic actions.

(14.4.1) Example (Irrational rotation of the plane). For any irrational
α ∈ R, define a homeomorphism Tα of C by Tα(z) = e2πiαx. Then
|Tα(z)| = |z|, so each circle centered at the origin is invariant under Tα.
The restriction of Tα to any such circle is an irrational rotation of the
circle, so it is ergodic (see Example 14.2.2). Thus, the entire action can
be decomposed as a union of ergodic actions.
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A similar decomposition is always possible, as long as we work with
nice spaces:

(14.4.2) Definition. A topological space X is Polish if it is homeomorphic
to a complete, separable metric space.

(14.4.3) Theorem (Ergodic decomposition). Suppose a Lie group H acts
continuously on a Polish spaceX, and µ is a quasi-invariant, finite measure
on X. Then there exist

• a measurable function ζ : X → [0,1], and

• a finite measure µz on ζ−1(z), for each z ∈ [0,1],
such that µ =

∫
[0,1] µz dν(z), where ν = ζ∗µ. For f ∈ Cc(X), this means∫

X
f dµ =

∫
Z

∫
ζ−1(z)

f dµz dν(z).

Furthermore, for a.e. z ∈ [0,1],
1) ζ−1(z) is H-invariant, and

2) µz is quasi-invariant and ergodic for the action of H.

(14.4.4) Remark. The ergodic decomposition is unique (a.e.). More pre-
cisely, if ζ′ and µ′z also satisfy the conclusions, then there is a measurable
bijection π : [0,1]→ [0,1], such that

1) ζ′ = π ◦ ζ a.e., and

2) µ′π(z) = µz for a.e. z.

(14.4.5) Definition. In the notation of Theorem 14.4.3, each set ζ−1(z) is
called an ergodic component of the action.

The remainder of this section sketches two different proofs of The-
orem 14.4.3.

§14.4(i). First proof. The main problem is to find the function ζ,
because the following general Fubini-like theorem will then provide the
required decomposition of µ into an integral of measures µz on the fibers
of ζ. (In Probability Theory, each µz is called a conditional measure of µ.)

(14.4.6) Proposition. Suppose

• X and Z are Polish spaces,

• ζ : X → Z is a Borel measurable function, and

• µ is a probability measure on X.

Then there is a Borel map λ : Z → Prob(X), such that

1) µ =
∫
Z λz dν(z), where ν = ζ∗µ, and

2) λz
(
ζ−1(z)

) = 1, for all z ∈ Z.

Furthermore, λ is unique (a.e.).
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The map ζ is a bit difficult to pin down, since it is not completely
well-defined — it can be changed on an arbitrary set of measure zero. We
circumvent this difficulty by looking not at the value of ζ on individual
points (which is not entirely well-defined), but at its effect on an algebra
of functions (which is completely well defined).

(14.4.7) Definitions. Assume µ is a finite measure on a Polish space X.

1) Let B(X) be the collection of all Borel subsets of X, where two sets
are identified if they differ by a set of measure 0. This is aσ-algebra.

2) B(X) is a complete, separable metric space, with respect to the
metric d(A,B) = µ(A△ B), where A△ B = (A∖ B)∪ (B ∖A) is the
symmetric difference of A and B.

3) If a Lie group H acts continuously on X, we let B(X)H be the set of
H-invariant elements of B(X). This is a sub-σ-algebra of B(X).

The map ζ is constructed by the following result:

(14.4.8) Lemma. Suppose

• µ is a finite measure on a Polish space X, and

• B is a sub-σ-algebra of B(X).
Then there is a Borel map ζ : X → [0,1], such that

B= {ζ−1(E) | E is a Borel subset of [0,1]}.
Idea of proof. Let

• {En} be a countable, dense subset of B,

• χn be the characteristic function of En, for each n, and

• ζ(x) =
∞∑
n=1

χn(x)
3n

.

It is clear from the definition of ζ that if I is any open interval in [0,1],
then ζ−1(I) is a Boolean combination of elements of {En}; therefore, it
belongs to B. Since B is a σ-algebra, this implies that ζ−1(E) ∈ B for
every Borel subset E of [0,1].

Conversely, it is clear from the definition of ζ that each En is the
inverse image of a (one-point) Borel subset of [0,1]. Since {En} generates
B as a σ-algebra (see Exercise 2), this implies that every element of B is
the inverse image of a Borel subset of [0,1]. □

We will use the following very useful fact:

(14.4.9) Theorem (von Neumann Selection Theorem). Let

• X and Y be Polish spaces,

• µ be a finite measure on X,

• F be a Borel subset of X × Y , and
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• XF be the projection of F to X.

Then there is a Borel function Φ : X → Y , such that
(
x,Φ(x)

) ∈ F, for a.e.
x ∈ XF.

The first proof of Theorem 14.4.3. We wish to show that µz is er-
godic (a.e.). If not, then there is a set E of positive measure in [0,1],
such that, for each z ∈ E, the action of H on

(
ζ−1(z), µz

)
is not ergodic.

This means there exists an H-invariant, measurable, {0,1}-valued func-
tion φz ∈ +∞(ζ−1(z), µz

)
that is not constant (a.e.). There are technical

problems that we will ignore, but, roughly speaking, the von Neumann
Selection Theorem (14.4.9) implies that the selection of φz can be done
measurably, so we have a Borel subset A of X, defined by

A = {x ∈ X | ζ(x) ∈ E andφz(x) = 1}.
Since φz is not constant on the fiber ζ−1(z), we know that A is not

of the form ζ−1(E), for any Borel subset E of [0,1]. On the other hand,
we have A ∈ B(X)H (since each φz is H-invariant). This contradicts the
choice of the function ζ. □

§14.4(ii). Second proof. We now describe a different approach. In-
stead of obtaining the decomposition of µ from the map ζ, we reverse
the argument, and obtain the map ζ from a direct-integral decomposi-
tion of µ. For simplicity, however, we assume that the space we are acting
on is compact. We consider only invariant measures, instead of quasi-
invariant measures, so we do not have to keep track of Radon-Nikodym
derivatives.

(14.4.10) Definitions. Suppose C is a convex subset of a vector space V.

1) A point c ∈ C is an extreme point of C if there do not exist
c0, c1 ∈ C ∖ {c} and t ∈ (0,1), such that c = tc0 + (1− t)c1.

2) Let extC be the set of extreme points of C.

(14.4.11) Example. SupposeH acts continuously on a compact, separable
metric space X, and let

Prob(X)H = {µ ∈ Prob(X) | µ isH-invariant }.
This is a closed, convex subset of Prob(X), so Prob(X)H is a compact,
convex subset of C(X)∗ (with the weak∗ topology). The extreme points
of this set are precisely the H-invariant probability measures that are
ergodic (see Exercise 3).

The well-known Krein-Milman Theorem states that every compact,
convex set C is the closure of the convex hull of the set of extreme points
of C. (So, in particular, if C is nonempty, then there exists an extreme
point.) We will use the following strengthening of this fact:
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(14.4.12) Theorem (Choquet’s Theorem). Suppose

• V is a locally convex topological vector space over R,

• C is a metrizable, compact, convex subset of V , and

• c0 ∈ C.

Then there is a probability measure ν on extC, such that

c0 =
∫

extC
xdν(x).

We will also need a corresponding uniqueness result.

(14.4.13) Definitions (Choquet). SupposeV and C are as in the statement
of Theorem 14.4.12.

1) Let ΣC = { tc | t ∈ [0,∞), c ∈ C } ⊆ V .

2) Define a partial order ≤ on ΣC by a ≤ b iff b − a ∈ ΣC.

3) Two elements a1, a2 ∈ ΣC have a least upper bound if there exists
b ∈ ΣC, such that
• ai ≤ b for i = 1,2, and
• for all c ∈ ΣC, such that ai ≤ c for i = 1,2, we have b ≤ c.

(14.4.14) Example. Any two elements of ΣProb(X) have a least upper
bound (see Exercise 4), so the same is true for Prob(X)H.

(14.4.15) Theorem (Choquet). Suppose V , C, and c0 are as in the state-
ment of Theorem 14.4.12. If every two elements of ΣC have a least upper
bound, then the measure ν provided by Theorem 14.4.12 is unique.

The second proof of Theorem 14.4.3. Assume, for simplicity, that µ
is H-invariant, and that X is compact. By normalizing, we may assume
µ(X) = 1, so µ ∈ Prob(X). Then Choquet’s Theorem (14.4.12) provides a
probability measure ν, such that

µ =
∫

ext Prob(X)H
σ dν(σ).

By identifying ext Prob(X) with a Borel subset of [0,1], we may rewrite
this as:

µ =
∫
[0,1]

µz dν(z),

where ν is a probability measure on [0,1]. Furthermore, Exercise 3 tells
us that each σ ∈ ext Prob(X)H is ergodic, so µz is an ergodic H-invariant
measure for a.e. z.

All that remains is to define a map ζ : X → [0,1], such that µz is
concentrated on ζ−1(z). For each Borel subset E of ext Prob(X)H, let
µE =

∫
E σ dν(σ). Then µE is absolutely continuous with respect to µ, so

we may write µE = fEµ, for some measurable fE : X → [0,∞). Then

ψ(E) = {x ∈ X | fE(x) ≠ 0 }
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is a well-defined element of B(X). Therefore, we have defined a map
ψ : B([0,1])→ B(X), and it can be verified that this is a homomorphism
of σ-algebras. Hence, there is a measurable function ζ : X → [0,1], such
that ψ(E) = ζ−1(E), for all E (see Exercise 5). By using the uniqueness
of ν, it can be shown that µz

(
ζ−1(z)

) = 1 for a.e. z. □

Exercises for §14.4.

#1. Let B be a (nonempty) subset of B(X) that is closed under comple-
ments and finite unions. Show that B is closed under countable
unions (so B is a sub-σ-algebra of B(X)) if and only if B is a closed
set with respect to the topology determined by the metric on B(X).
[Hint: (⇐) If E = ∪∞i=1 Ei, then

∪n
i=1 Ei → E in the topology on B(X).

(⇒) If d(Ei, E) < 2−i, then E = ∩∞n=1
∪∞
i=n Ei (up to a set of measure 0.]

#2. Show that if E is dense in a sub-σ-algebra B of B(X), then E is not
contained in any proper sub-σ-algebra of B.
[Hint: If En → E, then

∪∞
n=1(En ∩ E) = E (up to a set of measure 0).]

#3. Prove that a measure µ ∈ Prob(X)H is ergodic iff it is an extreme
point.
[Hint: If E is anH-invariant set, then µ is a convex combination of the restrictions to
E and its complement. Conversely, if µ = t µ1+(1−t) µ2, then the Radon-Nikodym
Theorem implies µ1 = f µ for some (H-invariant) function f .]

#4. Show that any two elements of ΣProb(X)or ΣProb(X)∗ have a least
upper bound.
[Hint: Write ν = f µ+νs (uniquely), where νs is concentrated on a set of measure 0.]

#5. Supposeψ : B(Z)→ B(X) is a function that respects complements
and countable unions (and ψ(∅) = ∅). Show there is a Borel func-
tion ζ : X → Z, such that ψ(E) = ζ−1(E), for every Borel subset E
of Z.
[Hint: Assume, for simplicity, that Z = {∑

ak3−k | ak ∈ {0,1} } ⊂ [0,1]. Then
ζ =∑χEk3−k for an appropriate collection {Ek} of Borel subsets of X.]

§14.5. Mixing

It is sometimes important to know that a product of group actions is
ergodic. To discuss this issue (and related matters), let us fix some no-
tation.

(14.5.1) Notation. Throughout this section, we assume:

1) Xi is a Polish space, for every i,
2) H is a Lie group that acts continuously on Xi, for each i, and

3) µi is an H-invariant probability measure on Xi, for each i.
Furthermore, we use X and µ as abbreviations for X0 and µ0, respectively.
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(14.5.2) Definitions.

1) The product action of H on X1 × X2 is the H-action defined by
h(x1, x2) = (hx1, hx2). The product measure µ1×µ2 is an invariant
measure for this action.

2) The action on X is said to be weak mixing (or weakly mixing) if
the product action on X ×X is ergodic.

We have the following very useful characterizations of weakly mixing
actions:

(14.5.3) Theorem. The action of H on X is weak mixing if and only if
the (one-dimensional) space of constant functions is the only nontrivial,
finite-dimensional, H-invariant subspace of +2(X, µ).

Proof. We prove the contrapositive of each direction.
(⇒) Suppose V is a nontrivial, finite-dimensional, H-invariant sub-

space of +2(X). If the functions in V are not all constant (a.e.), then we
may assume (by passing to a subspace) that V ⊥ 1. Choose an orthonor-
mal basis {φ1, . . . ,φr} of V, and define φ : X ×X → C by

φ(x,y) =
r∑
i=1

φi(x)φi(y). (14.5.4)

Then φ is an H-invariant function that is not constant (see Exercise 2),
so H is not ergodic on X ×X.

(⇐) Suppose φ is a nonconstant, H-invariant, bounded function on
X × X. We may assume φ(x,y) = φ(y,x) by replacing φ with either
φ(x,y) + φ(y,x) or

√−1
(
φ(x,y) − φ(y,x)). Therefore, we have a

compact, self-adjoint operator on +2(X, µ), defined by

(Tψ)(x) =
∫
X
φ(x,y)ψ(y)dµ(y).

The Spectral Theorem (B7.14) implies T has an eigenspace V that is finite-
dimensional (and contains a nonconstant function). This eigenspace is
H-invariant, since T commutes with H (because φ is H-invariant). □

We often have the following stronger condition:

(14.5.5) Definition. The action ofH on X is said to be mixing (or, alterna-
tively, strongly mixing) if H is noncompact, and, for all φ,ψ ∈ +2(X, µ),
such that φ ⊥ 1, we have

lim
h→∞

⟨hφ | ψ⟩ = 0.

(We are using 1 to denote the constant function of value 1, and, as usual,
(hφ)(x) =φ(h−1x) (see Example 11.1.3).)

(14.5.6) Proposition (see Exercise 3). If H is not compact, then the follow-
ing are equivalent:
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1) The action of H on X is mixing.

2) For all φ,ψ ∈ +2(X, µ), we have

lim
h→∞

⟨hφ | ψ⟩ = ⟨φ | 1⟩ ⟨1 | ψ⟩.
3) For all Borel subsets A and B of X, we have

lim
h→∞

µ(hA∩ B) = µ(A)µ(B).

(14.5.7) Remark. Condition (3) is the motivation for the choice of the
term “mixing:” as h → ∞, the space X is getting so stirred up (or well-
mixed) that hA is becoming uniformly distributed throughout the entire
space.

When G is simple, decay of matrix coefficients (11.2.2) implies that
every action of G (with finite invariant measure) is mixing. In fact, we can
say more.

(14.5.8) Definition. Generalizing Definition 14.5.5, we say that the action
of H on X is mixing of order r if H is not compact, and, for all Borel
subsets A1, . . . , Ar of X, we have

lim
h−1
i hj→∞

µ

 r∩
i=1

hiAi

 = µ(A1)µ(A2) · · · µ(Ar ).

In particular,

• every action of H is mixing of order 1 (if H is not compact), and

• “mixing” is the same as “mixing of order 2.”

(14.5.9) Warning. Some authors use a different numbering, for which this
is “mixing of order r − 1,” instead of “mixing of order r .”

Ledrappier constructed an action of Z2 that is mixing of order 2, but
not of order 3. However, there are no such examples for semisimple
groups:

(14.5.10) Theorem. Every mixing action of G (with finite invariant mea-
sure) is mixing of all orders.

In the special case where H = Z, we mention the following addi-
tional characterizations, some of which are weaker versions of Proposi-
tion 14.5.6(3):

(14.5.11) Theorem. If H = ⟨T⟩ is an infinite cyclic group, then the follow-
ing are equivalent:

1) H is weak mixing on X.

2) Every eigenfunction of T in +2(X, µ) is constant (a.e.). That is, if
f ∈ +2(X, µ), and there is some λ ∈ C, such that f(Tx) = λf(x)
a.e., then f is constant (a.e.).
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3) The spectral measure of T has no atoms other than 1, and the
eigenvalue 1 is simple (that is, the corresponding eigenspace is 1-
dimensional).

4) The action ofH on X×X1 is ergodic, whenever the action ofH on X1

is ergodic.

5) For all Borel subsets A and B of X,

lim
n→∞

1
n

n∑
k=1

∣∣µ(T kA∩ B)− µ(A)µ(B)∣∣ = 0.

6) There is a subset N of full density in Z+, such that, for all Borel
subsets A and B of X, we have

µ(T kA∩ B) -→ µ(A)µ(B) as k→∞ with k ∈N .
To say N has full density means

lim
n→∞

#
(N ∩ {1,2,3, . . . , n})

n
= 1.

7) If A0, A1, . . . , Ar are any Borel subsets of X, then there is a subsetN
of full density in Z+, such that

lim
k→∞
k∈N

µ
(
A0∩T kA1∩T 2kA2∩· · ·∩T rkAr

) = µ(A0)µ(A1) · · ·µ(Ar ).

Sketch of proof. (1 a 2) By Theorem 14.5.3, it suffices to observe
that every finite-dimensional representation contains an irreducible sub-
representation, and that the irreducible representations of Z (or, more
generally, of any abelian group) are one-dimensional.

(2 a 3) These are two different ways of saying the same thing.
(3 ⇒ 4) Since +2(X × X1) ≊ +2(X) ⊗ +2(X1), the spectral measure ν

of +2(X × X1) is the product ν1 × ν2 of the spectral measures of +2(X)
and +2(X1). Therefore, any point mass in ν is obtained by pairing a point
mass in ν1 with a point mass in ν2.

(4 ⇒ 1) Take X1 = X.
(1 ⇒ 5) For simplicity, let a = µ(A) and b = µ(B). By Exercise 14.3#3

(the Mean Ergodic Theorem), ergodicity on X implies

1
n

n∑
k=1

µ(T kA∩ B) n→∞-→ ab.

For the same reason, ergodicity on X ×X implies
n∑
k=1

(µ × µ)(T kA× T kA)∩ (B × B)) n→∞-→ (µ × µ)(A×A) · (µ × µ)(B × B).

By simplifying both sides, we see that

1
n

n∑
k=1

µ(T kA∩ B)2 n→∞-→ a2b2.



14.5. MIXING 301

Therefore, simple algebra yields

1
n

n∑
k=1

∣∣µ(T kA∩ B)− µ(A)µ(B)∣∣2 n→∞
-→ a2 b2 − 2(ab)(ab)+ (ab)2 = 0.

Exercise 4 implies that we have the same limit without squaring the ab-
solute value.

(5 ⇒ 2) Approximating by linear combinations of characteristic func-
tions implies

lim
n→∞

1
n

n∑
k=1

∣∣⟨T kφ | φ⟩
∣∣ = 0 for allφ ⊥ 1.

However, ifφ is an eigenfunction for an eigenvalue ≠ 1, then it is easy to
see that the limit is nonzero (either directly, or by applying Exercise 4).

(5 a 6) Exercise 4 implies that the two assertions are equivalent, up
to reversing the order of the quantifiers in (6). To reverse the quantifiers,
note that a variant of Cantor diagonalization provides a set N of full
density that works for all A and B in a countable dense subset of B(X).

(7 ⇒ 6) Take r = 1.
(6 ⇒ 7) The proof proceeds by induction on r (with (6) as the starting

point), and is nontrivial. We have no need for this result, so we omit the
proof. □

Exercises for §14.5.

#1. Show (directly from the definitions) that if the action of H on X is
weak mixing, then it is ergodic.

#2. Let φ : X ×X → C be as in (14.5.4) of the proof of Theorem 14.5.3.
a) Show φ is H-invariant (a.e.).
b) Show φ is not constant (a.e.).

[Hint: (a) Write hφi =
∑
i,j hi,jφj, and observe that [hi,j] is a unitary matrix.

(b) φ(x,x) > 0, but
∫
φ(x,y)dµ(y) = 0.]

#3. Prove Proposition 14.5.6.
[Hint: (1 ⇒ 2) For c = ⟨φ | 1⟩, we have ⟨(φ − c) | 1⟩ = 0. Now calculate
limh→∞⟨h(φ − c) | ψ⟩ in two ways.
(2 ⇒ 3) Let φ and ψ be the characteristic functions of A and B.
(3 ⇒ 2) Approximate φ and ψ by linear combinations of characteristic functions.]

#4. For every bounded sequence {ak} ⊂ [0,∞), show

lim
n→∞

1
n

n∑
k=1

ak = 0 a ak → 0 as k→∞ in some set of full density.

[Hint: (⇒) For each m > 0, the set Am = {k | ak > 1/m } has density 0, so there
exists Nm > Nm−1, such that, for all n ≥ Nm, we have

Nm−1 + #
(
Am ∩ {1,2, . . . , n}

)
< n/m.

Let N be the complement of
∪
m
(
Am ∩ [Nm,Nm+1)

)
.]
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Notes

The focus of classical Ergodic Theory is on actions of Z and R (or
other abelian groups). A few of the many introductory books on this
subject are [1, 4, 5, 12]. They include proofs of the Poincaré Recurrence
Theorem (4.6.1) and the Pointwise Ergodic Theorem (14.3.2).

Some basic results on the Ergodic Theory of noncommutative groups
can be found in [13, §2.1].

The Moore Ergodicity Theorem (14.2.4) is due to C. C. Moore [8].
See [7] for a very nice version of the Pointwise Ergodic Theorem that

applies to all amenable groups (Remark 14.3.3).
See [3, Thm. 1.1 (and Thm. 5.2)] for a proof of the ergodic decompo-

sition (14.4.3), using Choquet’s Theorem as in Subsection 14.4(ii). Propo-
sition 14.4.6 can be found in [10, §3]. See [11, §5.5] for a proof of Theo-
rem 14.4.9.

See [8, Prop. 1, pp. 157–158] for a proof of Proposition 14.5.6.
The standard texts on ergodic theory only prove Proposition 14.5.6

for the special case H = Z, but the same arguments apply in general.
Theorem 14.5.10 is due to S. Mozes [9]. Ledrappier’s counterexample

for Z2 is in [6].
Theorem 14.5.11 is in the standard texts on ergodic theory, except

for Part (7), which is a “multiple recurrence theorem” that plays a key role
in Furstenberg’s proof of Szemeredi’s theorem that there are arbitrarily
long arithmetic progressions in every set of positive density in Z+. For a
proof of (6 ⇒ 7), see [1, Prop. 7.13, p. 191] or [2, Thm. 4.10].

A proof of Exercise 14.5#4 is in [1, Lem. 2.41, p. 54].
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Chapter 15

Mostow Rigidity Theorem

§15.1. Statement of the theorem

In its simplest form, the Mostow Rigidity Theorem says that a single
group Γ cannot be a lattice in two different semisimple groups G1 and G2

(except for minor modifications involving compact factors, the center,
and passing to a finite-index subgroup):

(15.1.1) Theorem (Weak version of the Mostow Rigidity Theorem). As-
sume

• G1 andG2 are connected, with trivial center and no compact factors,
and

• Γi is a lattice in Gi, for i = 1,2.

If Γ1 ≊ Γ2, then G1 ≊ G2.

In other words, if there is an isomorphism from Γ1 to Γ2, then there
is also an isomorphism from G1 to G2. In fact, it is usually the case that
something much stronger is true:

(15.1.2) Mostow Rigidity Theorem. Assume

• G1 andG2 are connected, with trivial center and no compact factors,

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Quasi-isometries (Chapter 10).
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• Γi is a lattice in Gi, for i = 1,2, and

• there does not exist a simple factor N of G1, such that N ≊ PSL(2,R)
and N ∩ Γ1 is a lattice in N.

Then any isomorphism from Γ1 to Γ2 extends to a continuous isomorphism
from G1 to G2.

(15.1.3) Remarks.

1) Assume G is connected, and has no simple factors that are either
compact or isogenous to SL(2,R). Then the Mostow Rigidity The-
orem implies that lattices in G have no nontrivial deformations.
More precisely, if Γt is a continuous family of lattices in G, then Γt
is conjugate to Γ0, for every t (see Exercise 7).

This is not always true whenG is isogenous to SL(2,R) (see Sec-
tion 15.3), which explains why the statement of the Mostow Rigidity
Theorem must forbid factors that are isogenous to SL(2,R).

2) In geometric terms, the Mostow Rigidity Theorem tells us that the
topological structure of any irreducible finite-volume locally sym-
metric space of noncompact type completely determines its geo-
metric structure as a Riemannian manifold (up to multiplying the
metric by a scalar on each irreducible factor of the universal cover),
if the manifold is not 2-dimensional (cf. Exercise 8).

3) Assume Γ is cocompact in G. Then, as a strengthening of Theo-
rem 15.1.1, it can be shown that if Γ is a cocompact lattice in some
Lie groupH (not assumed to be semisimple), thenHmust be either
G or Γ (modulo the usual minor modifications involving compact
groups). In fact, this remains true even if we allow H to be any
locally compact group, not necessarily a Lie group.

Exercises for §15.1.

#1. Suppose
• G has trivial center and no compact factors,
• G ̸≊ PSL(2,R), and
• Γ is irreducible.

Show that every automorphism of Γ extends to a continuous auto-
morphism of G.

#2. Show that Theorem 15.1.1 is a corollary of Theorem 15.1.2.
[Hint: This is obvious when no simple factor of G1 is isomorphic to PSL(2,R). The
problem can be reduced to the case where G1 and G2 are irreducible.]

#3. Assume G1 and G2 are isogenous. Show that if K is any compact
group, then some lattice in G1 is isomorphic to a lattice in G2 × K
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(even thoughG1 may not be isomorphic toG2×K). This is why The-
orem 15.1.1 assumes G1 and G2 are connected, with trivial center
and no compact factors
[Hint: Any torsion-free lattice in G◦1 is isomorphic to a lattice in G2 ×K.]

#4. For i = 1,2, suppose
• Γi is a lattice in Gi, and
• Gi is connected and has no compact factors.

Show that if Γ1 is isomorphic to Γ2, then G1 is isogenous to G2.

#5. Let Γi be a lattice in Gi for i = 1,2. Show that if Γ1 ≊ Γ2, then there
is a compact, normal subgroup Ki of G◦i , for i = 1,2, such that
G◦1/K1 ≊ G◦2/K2.

#6. Let G = PSL(2,R). Find an automorphism φ of some lattice Γ in G,
such that φ does not extend to an automorphism of G.

Why is this not a counterexample to Theorem 15.1.2?

#7. Assume there is a continuous function ρ : Γ × [0,1]→ G, such that,
if we let ρt(γ) = ρ(γ, t), then:
• ρt is a homomorphism, for all t,
• ρt(Γ) is a lattice in G, for all t, and
• ρ0(γ) = γ, for all γ ∈ Γ .

Show that if G is as in the first sentence of Remark 15.1.3(1), then
Γt is conjugate to Γ , for every t.
[Hint: Reduce to the case where G has trivial center. You may use, without proof,
the fact that the identity component of the automorphism group of G consists of
inner automorphisms (see Remark A6.4).]

#8. (Requires some familiarity with locally symmetric spaces) Assume,
for i = 1,2:
• Gi is connected and simple, with trivial center,
• Ki is a maximal compact subgroup of Gi,
• Γi is a torsion-free, irreducible lattice in Gi,
• Xi = Ki\Gi/Γi is the corresponding locally symmetric space of

finite volume,
• the metric on Xi is normalized so that vol(X1) = 1, and
• dimX1 ≥ 3.

Show that any homotopy equivalence from X1 to X2 is homotopic
to an isometry.
[Hint: Since the universal cover Ki\Gi is contractible, a homotopy equivalence is
determined, up to homotopy, by its effect on the fundamental group.]

§15.2. Sketch of the proof for SO(1, n) (optional)

In most cases, the conclusion of the Mostow Rigidity Theorem (15.1.2) is
an easy consequence of the Margulis Superrigidity Theorem, which will
be discussed in Chapter 16. More precisely, if we assume, for simplicity,
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that the lattices Γ1 and Γ2 are irreducible (see Exercise 1), then the Margulis
Superrigidity Theorem applies unless G1 and G2 are isogenous to either
SO(1, n) or SU(1, n) (see Exercise 16.2#1). To illustrate the main ideas
involved in completing the proof, we discuss a special case:

Proof of Mostow Rigidity Theorem for cocompact lattices in SO(1, n).
Assume, for i = 1,2:

• Gi ≊ PSO(1, ni), for some ni ≥ 3,

• Γi is cocompact in Gi, and

• ρ : Γ1 → Γ2 is an isomorphism.

In order to show that ρ extends to a continuous homomorphism from
G1 to G2, we take a geometric approach that uses the action of Gi on
its associated symmetric space, which is the hyperbolic space Hni. This
assumes some understanding of hyperbolic space (and other matters)
that is not required elsewhere in this book.

Claim. We haven1 = n2. By passing to subgroups of finite index, we may
assume Γ1 and Γ2 are torsion free, so Γi acts freely on Hni. The action is
also properly discontinuous, so, since hyperbolic space is contractible,
this implies that Xi = Γi\Hni is a K(Γi,1)-space. Since Xi is a compact
manifold of dimension ni, we conclude that the cohomological dimen-
sion of Γi is ni. However, the groups Γ1 and Γ2 are isomorphic, so they
must have the same cohomological dimension. This completes the proof
of the claim. □

Therefore, Γ1 and Γ2 are two lattices in the same group G = PSO(1, n).
To simplify matters, let us assume n = 3.

Since Γi is cocompact in Gi (so Γi is quasi-isometric to H3), it is not
difficult to construct a quasi-isometry φ : H3 → H3, such that

φ(γx) = ρ(γ) ·φ(x) for all γ ∈ Γ1 and x ∈ H3 (15.2.1)

(see Exercise 2).
Consider the ball model of H3, whose boundary ∂H3 is the round

2-sphere S2. It is easy to see that any isometry ϕ of H3 induces a well-
defined homeomorphism ϕ of ∂H3. Furthermore, it is well known that
this boundary map is conformal (i.e., it is angle-preserving). This implies
that if C is a very small circle in ∂H3, then ϕ(C) is very close to being a
circle; more precisely, if we let Sr (p) be the sphere of radius r around
the point p, then

lim sup
r→0+

supx∈Sr (p) d
(
ϕ(x),ϕ(p)

)
infy∈Sr (p) d

(
ϕ(y),ϕ(p)

) = 1.

With this background in mind, it should not be difficult to believe (and
it is not terribly difficult to prove) that the quasi-isometry φ induces a
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well-defined homeomorphism φ of ∂H3, such that

φ(γp) = ρ(γ) ·φ(p) for all γ ∈ Γ1 and p ∈ ∂H3. (15.2.2)

Furthermore, this boundary map is quasi-conformal , which means that
if C is a very small circle in ∂H3, thenφ(C) is approximated by an ellipse
of bounded eccentricity; more precisely, there is some constant κ > 0,
such that, for all p ∈ ∂H3, we have

lim sup
r→0+

supx∈Sr (p) d
(
φ(x),φ(p)

)
infy∈Sr (p) d

(
φ(y),φ(p)

) < κ.
It is a fundamental, but highly nontrivial, fact that quasi-conformal

maps are differentiable almost everywhere. Therefore, if Cp is a circle
(centered at the origin) in the tangent plane at almost any point p ∈ ∂H3,
thenφ(Cp) is an ellipse in the tangent plane atφ(p). Furthermore, since
multiplying all the vectors in a tangent plane by a scalar does not change
the eccentricity of any ellipse in the plane, we see that the eccentricity
ep of this ellipse is independent of the choice of the circle Cp. So ep is a
well-defined, measurable function on (almost all of) ∂H3.

Case 1. Assume ep = 1 for almost all p ∈ ∂H3. This implies that the
quasi-conformal map φ is actually conformal. So there is an isometry α
of H3, such that α = ϕ. Then, for γ ∈ Γ1 and p ∈ ∂H3, we have

α(γp) =φ(γp) = ρ(γ) ·φ(p) = ρ(γ) ·α(p).
On the other hand, since G is the identity component of Isom(H3), it is
normalized by α, so there is an automorphism α̂ of G, such that, for all
g ∈ G and p ∈ ∂H3, we have

α(gp) = α̂(g) ·α(p).
By comparing the displayed equations (and letting g = γ), we see that
α̂(γ) = ρ(γ) for all γ ∈ Γ1. Therefore, α̂ is the desired extension of ρ to
an isomorphism defined on all of G.

Case 2. Assume ep is not almost always equal to 1. Since ρ(γ) is conformal
(because ρ(γ) is an isometry), we see from (15.2.2) that eγp = ep for
all γ ∈ Γ1 and (almost) all p ∈ ∂H3. However, since G is transitive on
∂H3 with noncompact point-stabilizers, the Moore Ergodicity Theorem
(14.2.5) implies that Γ1 is ergodic on ∂H3, so we conclude that the function
ep is constant (a.e).

Thus, the assumption of this case implies that, for almost every p,
the ellipse φ(Cp) is not a circle, and therefore has a well-defined major
axis ℓp, which is a line through the origin in the tangent plane at φ(p).
Hence, {ℓp} is a (measurable) section of a certain bundle PH3, namely,
the RP1-bundle over H3 whose fiber at each point is the projectivization
of the tangent space. Furthermore, since Γ2 = ρ(Γ1) is conformal, we see
from (15.2.2) that this section is Γ2-invariant. In fact, if we rotate {ℓp}
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by any angle θ, then the resulting section {ℓθp} is also invariant (since Γ2
is conformal). Then

∪
0≤θ≤π/2{ℓθp} is a measurable, Γ2-invariant subset of

PH3. However, the Moore Ergodicity Theorem (14.2.5) implies there are
no such (nontrivial) subsets, sinceG is transitive on PH3 with noncompact
point-stabilizers. This contradiction completes the proof, by showing
that this case does not occur. □

(15.2.3) Remarks.

1) The above proof makes the simplifying assumption that n = 3.
Essentially the same proof works for larger values of n, but φ(Cp)
will be an ellipsoid, rather than an ellipse, so the space ℓp of major
directions may be a higher-dimensional subspace of the tangent
space, instead of just being a line.

2) Mostow was able to modify the proof to deal with SU(1, n), instead
of SO(1, n), by developing a theory of maps that are quasiconfor-
mal overC. (In fact, replacingCwith the quaternions and octonions
yields proofs for lattices in the other simple groups of real rank one,
namely, Sp(1, n) and F4,1. However, this is not necessary, because
the Margulis Superrigidity Theorem applies to these groups.)

3) For lattices in SO(1, n) that are not cocompact, it is not at all ob-
vious that an isomorphism Γ1 ≊ Γ2 should yield a quasi-isometry
Hn → Hn. This was proved by G. Prasad, by using the “Siegel set”
description of a coarse fundamental domain for the action of Γi on
Hn (cf. Chapter 19). The same method also works for noncocom-
pact lattices in SU(1, n), or, more generally, whenever rankQ Γ1 = 1.

Exercises for §15.2.

#1. Show that the proof of Theorem 15.1.2 can be reduced to the special
case where the lattices Γ1 and Γ2 are irreducible inG1 andG2, respec-
tively. In other words, assume the conclusion of Theorem 15.1.2
holds whenever Γi is irreducible in Gi, for i = 1,2, and show that
this additional hypothesis can be eliminated.

#2. Construct a quasi-isometry φ : H3 → H3 that satisfies (15.2.1).
[Hint: Let F be a precompact strict fundamental domain for the action of Γ1 on H3,
and choose some x0 ∈H3. For x ∈H3, let φ(x) = ρ(γ)x0, where x ∈ γ · F.]

§15.3. Moduli space of lattices in SL(2,R)

Suppose Γ is a torsion-free, cocompact lattice in SL(2,R). In contrast to
the Mostow Rigidity Theorem (15.1.2), we will see that an isomorphism
Γ ≊ Γ ′ need not extend to an automorphism of SL(2,R). In fact, there



15.3. MODULI SPACE OF LATTICES IN SL(2,R) 313

are uncountably many different embeddings of Γ in SL(2,R) that are not
conjugate to each other.

To see this, we take a geometric approach. Since SL(2,R) acts tran-
sitively on the hyperbolic plane H2 (by isometries), the quotient Γ\H2 is
a compact surface M. We will show there are uncountably many differ-
ent possibilities for M (up to isometry). The proof is based on the fact
that the hyperbolic plane has uncountably many different right-angled
hexagons.

(15.3.1) Lemma. The hyperbolic planeH2 has uncountably many different
right-angled hexagons (no two congruent to each other ).

Proof. Fix a basepoint p ∈ H2, and a starting direction −⇀v . For −⇀s ∈ (R+)6,
construct the piecewise-linear path L = L(−⇀s ) in H2 determined by:

e1

e2

e3
e4

e5

e6p

• The path starts at the point p.

• The path consists of 6 geodesic
segments (or “edges”) e1, . . . , e6,
of lengths s1, . . . , s6, respectively.

• The first edge e1 starts at p and
heads in the direction −⇀v .

• For i ≥ 2, edge ei makes a
(clockwise) right angle with ei−1.

The variables s1, . . . , s6 provide 6 degrees of freedom in the construction
of L. Requiring that L be a closed path (i.e., that the terminal endpoint
of L is equal to p) takes away two degrees of freedom (because H2 is
2-dimensional). Then, requiring the angle between e6 and e1 to be right
angle takes away one more degree of freedom. Hence (from the Implicit
Function Theorem), we see that there are 3 degrees of freedom in the
construction of a right-angled hexagon in H2. □

(15.3.2) Remark. In fact, calculations using the trigonometry of triangles
in H2 yields the much more precise fact that, for any s2, s4, s6 ∈ R+, there
exists a unique right-angled hexagon, with edges e1, . . . , e6, such that the
length of edge e2i is exactly s2i, for i = 1,2,3. (That is, the lengths of
the three edges e2, e4, and e6 can be chosen completely arbitrarily, and
they uniquely determine the lengths of the other three edges in the right-
angled hexagon.)

(15.3.3) Definition. A hyperbolic surface is a compact Riemannian mani-
fold (without boundary) whose universal cover is the hyperbolic planeH2.

(15.3.4) Corollary. There are uncountably many non-isometric hyperbolic
surfaces of any given genus g ≥ 2.
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Proof. Choose a right-angled hexagon P in H2. Call its edges e1, . . . , e6,
and let si be the length of ei. Make a copy P ′ of P, and form a surface P
by gluing e2i to the corresponding edge e′2i of P ′, for i = 1,2,3. (Topo-
logically, this surface P is a disk with two holes, and is usually called a
“pair of pants.”)

e′6
e′5

e′4
e′3

e′2

e′1

e6
e5

e4
e3

e2

e1

Since P is right-angled, the three boundary curves of P are geodesics.
Their lengths are 2s1, 2s3, and 2s5.

A surface of genus 2 can be
made from two pairs of pants.

Construct a closed surface M of
genus 2 from two copies of P, by glu-
ing corresponding boundary compo-
nents to each other. (For a discussion
of higher genus, see Remark 15.3.5.)
Since the only curves that have been
glued together are geodesics, it is easy
to see that each point inM has a neigh-
borhood that is isometric to an open
subset of H2. Therefore, the universal
cover ofM is H2 (sinceM is complete).
So M is a hyperbolic surface.

Furthermore, from the construction, we see that M has a closed geo-
desic of length 2s1. (In fact, there is a geodesic of length 2si, for 1 ≤ i ≤ 6.)
Since a single closed surface has closed geodesics of only countably many
different lengths, but Lemma 15.3.1 implies that there are uncountably
many possible values of s1, this implies there must be uncountably many
different isometry classes of surfaces. □

(15.3.5) Remark. A hyperbolic surface M of any genus g ≥ 2 can be con-
structed by gluing together 2g − 2 pairs of pants:

The lengths of the three boundary curves of each pair of pants can be
varied independently (cf. Remark 15.3.2), except that curves that will be
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glued together need to have the same length. The surface can also be
modified by rotating any boundary curve through an arbitrary angle θ
before it is glued to its mate. This yields 6g−6 degrees of freedom in the
construction of M. It can be shown that this is precisely the dimension
of the space of hyperbolic surfaces of genus g. In other words, 6g − 6 is
the dimension of the moduli space of hyperbolic surfaces of genus g.

(15.3.6) Corollary. If Γ is any lattice in SL(2,R), then there are uncount-
ably many nonconjugate embeddings of Γ as a lattice in SL(2,R).

Proof. Let us assume SL(2,R)/Γ is compact. (Otherwise, Γ is a free group,
so it is easy to find embeddings.) Let us also assume, for simplicity, that
Γ is torsion free, so it is the fundamental group of the hyperbolic surface
Γ\H2, which has some genus g. Then Γ is isomorphic to the fundamental
group Γ ′ of any hyperbolic surface Γ ′\H2 of genus g. However, if Γ\H2

is not isometric to Γ ′\H2, then Γ cannot be conjugate to Γ ′ in the isome-
try group of H2. Therefore, Corollary 15.3.4 implies that there must be
uncountably many different conjugacy classes of subgroups Γ ′ that are
isomorphic to Γ . □

§15.4. Quasi-isometric rigidity

The Mostow Rigidity Theorem’s weak form (15.1.1) tells us (under mild
hypotheses) that lattices in two different semisimple Lie groups cannot
be isomorphic. In fact, they cannot even be quasi-isometric (see Defini-
tion 10.1.3):

(15.4.1) Theorem. Assume

• G1 andG2 are connected, with trivial center and no compact factors,
and

• Γi is an irreducible lattice in Gi, for i = 1,2.

If Γ1
QI∼ Γ2, then G1 ≊ G2.

Although nothing more than Theorem 15.4.1 can be said about quasi-
isometric lattices that are cocompact (see Corollary 10.1.9), there is a
much stronger conclusion for noncocompact lattices. Namely, not only
are the Lie groups G1 and G2 isomorphic, but the isomorphism can be
chosen to make the lattices commensurable (unlessG1 = G2 = PSL(2,R)):

(15.4.2) Theorem. Assume

• G1 andG2 are connected, with trivial center and no compact factors,
and

• Γi is an irreducible lattice in Gi, for i = 1,2.

Then Γ1
QI∼ Γ2 if and only if G1 ≊ G2 and either

1) both G1/Γ1 and G2/Γ2 are compact, or
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2) there is an isomorphism ϕ : G1 → G2, such that ϕ(Γ1) is commensu-
rable to Γ2, or

3) G1 and G2 are isomorphic to PSL(2,R), and neither G1/Γ1 nor G2/Γ2
is compact.

One of the key ingredients in the proof of this theorem is the fact that
any group quasi-isometric to a lattice is isomorphic to a lattice, modulo
finite groups:

(15.4.3) Theorem. If Λ is a finitely generated group that is quasi-isometric
to an irreducible lattice Γ in G, then there are

• a finite-index subgroup Λ′ of Λ, and

• a finite, normal subgroup N of Λ′,
such that Λ′/N is isomorphic to a lattice in G.

Sketch of proof of a special case. Assume G = SO(1,3) and Γ is co-
compact. The group Λ acts on itself by translation. Since Λ QI∼ Γ QI∼ H3,
this provides an action of Λ by quasi-isometries on H3. Let Λ be the
corresponding group of quasiconformal maps on ∂H3. Note that the
quasiconformality constant κ is uniformly bounded on Λ.

Let (∂H3)3◦ be the space of ordered triples of distinct points in ∂H3,
and define p : (∂H3)3◦ → H3 by letting p(a,b, c) be the point on the geo-
desic ab that is closest to c. It is not difficult to see that p is compact-
to-one. Since the action of Λ is cocompact on H3, this implies that the
action of Λ is cocompact on (∂H3)3◦.

The above information allows us to apply a theorem of Tukia to con-
clude that Λ is quasiconformally conjugate to a subgroup of SO(1, n).
Hence, after conjugating the action of Λ by a quasi-isometry, we may
assume Λ ⊆ SO(1, n). Furthermore, if we fix a basepoint x0, then the
map λ , λx0 is a quasi-isometry from Λ to H3. This implies that Λ is a
cocompact lattice in SO(1, n). □

Many additional ideas are needed to prove Theorem 15.4.2, but this
suffices for the weaker version:

Proof of Theorem 15.4.1. Theorem 15.4.3 tells us that Γ2 is isomorphic
to a lattice in G1 (if we ignore some finite groups). So Γ2 is a lattice in
both G1 and G2. Therefore, the Mostow Rigidity Theorem (15.1.1) implies
G1 ≊ G2, as desired. □

From the Mostow Rigidity Theorem, we know that every automor-
phism of Γ extends to an automorphism of G (if G is not isogenous to
SL(2,R) and we ignore compact factors and the center). The following
analogue of this result for quasi-isometries is another key ingredient in
the proof of Theorem 15.4.2.
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(15.4.4) Theorem. Assume

• Γ is irreducible, and not cocompact,

• G has trivial center and no compact factors,

• G is not isogenous to SL(2,R), and

• f : Γ → Γ .
Then f is a quasi-isometry if and only if it is at bounded distance from
some automorphism of G.

Exercises for §15.4.

#1. Assume the hypotheses of Theorem 15.1.2, and also assume G1/Γ1
is not compact. Show that the conclusion of Theorem 15.1.2 can
be obtained by combining Theorem 15.4.2 with Theorem 15.4.4.

Notes

The Mostow Rigidity Theorem (15.1.2) is a combination of (overlap-
ping) special cases proved by three authors:

• Mostow: Γ is cocompact (case where G = SO(1, n) [4], general case
[5]),

• Prasad: rankQ Γ = 1 (which includes the case where Γ is not cocom-
pact and rankRG = 1) [6],

• Margulis: rankRG ≥ 2 (and Γ is irreducible) (see Subsection 16.2(i)).

In recognition of this, many authors call Theorem 15.1.2 the Mostow-
Prasad Rigidity Theorem, or the Mostow-Prasad-Margulis Rigidity Theo-
rem.

The results described in Remark 15.1.3(3) are due to A. Furman [3].
See the exposition in [7, §5.9, pp. 106–112] for more details of the

proof in Section 15.2. A different proof of this special case was found
by Gromov, and is described in [7, §6.3, pp. 129–130]. Yet another nice
proof (which applies to cocompact lattices in any groups of real rank one)
appears in [1, §5.2].

Regarding Remark 15.2.3(2), see [5, §21, esp. (21,18)] for a discussion
of the notion of maps that are quasiconformal over C (or H, or O).

Regarding Remark 15.2.3(3), see [6] for Prasad’s proof of Mostow
rigidity for lattices of Q-rank one.

Regarding Section 15.3, see [7, Thm. 5.3.5] for a more complete dis-
cussion of “pairs of pants” and the dimension of the space of hyper-
bolic metrics on a surface of genus g. (The calculations to justify Re-
mark 15.3.2 can be found in [7, §2.6].)

The results on quasi-isometric rigidity in Section 15.4 include work
of A. Eskin, B. Farb, B. Kleiner, B. Leeb, P. Pansu, R. Schwarz, and others.
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See the survey [2] for references, discussion of the proofs, and other
information.
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Chapter 16

Margulis Superrigidity
Theorem

Roughly speaking, the Margulis Superrigidity Theorem tells us that ho-
momorphisms defined on Γ can be extended to be defined on all of G
(unless G is either SO(1, n) or SU(1, n)). In cases where it applies, this
fundamental theorem is much stronger than the Mostow Rigidity Theo-
rem (15.1.2). It also implies the Margulis Arithmeticity Theorem (5.2.1
or 16.3.1).

§16.1. Statement of the theorem

It is not difficult to see that every group homomorphism from Zk to Rn

can be extended to a continuous homomorphism from Rk to Rn (see Ex-
ercise 1). Noting that Zk is a lattice in Rk, it is natural to hope that,
analogously, homomorphisms defined on Γ can be extended to be de-
fined on all of G. The Margulis Superrigidity Theorem shows this is true
if G has no simple factors isomorphic to SO(1,m) or SU(1,m), except
that the conclusion may only be true modulo finite groups and up to a

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none, except that the proof of the
main theorem requires real rank (Chapter 8), amenability (Furstenberg’s
Lemma (12.6.1)), and the Moore Ergodicity Theorem (Section 11.2).
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bounded error. Here is an illustrative special case that is easy to state,
because the bounded error does not arise.

(16.1.1) Theorem (Margulis). Assume

• G = SL(k,R), with k ≥ 3,

• G/Γ is not compact, and

• φ : Γ → GL(n,R) is any homomorphism.

Then there exist:

• a continuous homomorphism φ̂ : G → GL(n,R), and

• a finite-index subgroup Γ ′ of Γ ,
such that φ̂(γ) =φ(γ) for all γ ∈ Γ ′.
Proof. See Exercise 16.4#2. □

Here is a much more general version of the theorem that has a slightly
weaker conclusion. To simplify the statement, we preface it with a defi-
nition.

(16.1.2) Definition. G is algebraically simply connected if (for every ℓ )
every Lie algebra homomorphism g→ sl(ℓ,R) is the derivative of a well-
defined Lie group homomorphism G → SL(ℓ,R).

(16.1.3) Remark. Every simply connected Lie group is algebraically sim-
ply connected, but the converse is not true (see Exercise 2). In general, if
G is connected, then some finite cover of G is algebraically simply con-
nected. Therefore, assuming that G is algebraically simply connected is
just a minor technical assumption that avoids the need to pass to a finite
cover.

(16.1.4) Theorem (Margulis Superrigidity Theorem). Assume

i) G is connected, and algebraically simply connected,

ii) G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

iii) Γ is irreducible, and

iv) φ : Γ → GL(n,R) is a homomorphism.

Then there exist:

1) a continuous homomorphism φ̂ : G → GL(n,R),
2) a compact subgroup C of GL(n,R) that centralizes φ̂(G), and

3) a finite-index subgroup Γ ′ of Γ ,
such that φ(γ) ∈ φ̂(γ)C, for all γ ∈ Γ ′.
Proof. See Section 16.5. □
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(16.1.5) Remarks.

1) Since φ(γ) ∈ φ̂(γ)C, we have φ̂(γ)−1φ(γ) ∈ C for all γ. There-
fore, although φ̂(γ)might not be exactly equal to φ(γ), the error
is an element of C, which is a bounded set (because C is compact).
Hence, the size of the error is uniformly bounded on all of Γ ′.

2) Assumption (ii) cannot be removed. For example, if G = PSL(2,R),
then the lattice Γ can be a free group (see Remark 6.1.6). In this case,
there exist many, many homomorphisms from Γ into any group G′,
and many of them will not extend to G (see Exercise 5).

If we make an appropriate assumption on the range of φ, then there
is no need for the compact error term C or the finite-index subgroup Γ ′:

(16.1.6) Corollary. Assume

i) G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

ii) Γ is irreducible, and

iii) G and G′ are connected, with trivial center, and no compact factors.

If φ : Γ → G′ is any homomorphism, such that φ(Γ) is Zariski dense in G′,
then φ extends to a continuous homomorphism φ̂ : G → G′.
Proof. See Exercise 6. □

Because of our standing assumption (4.0.0) that G′ is semisimple,

Corollary 16.1.6 implicitly assumes that the Zariski closure φ(Γ) = G′ is
semisimple. In fact, that is automatically the case:

(16.1.7) Corollary. Assume

i) G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

ii) Γ is irreducible, and

iii) φ : Γ → GL(n,R) is a homomorphism.

Then φ(Γ) is semisimple.

Proof. See Exercise 9. □

Exercises for §16.1.

#1. Supposeφ is a homomorphism from Zk toRn. Show thatφ extends
to a continuous homomorphism from Rk to Rn.

[Hint: Let φ̂ : Rk → Rn be a linear transformation, such that φ̂(εi) = φ(εi), where
{ε1, . . . , εk} is the standard basis of Rk.]
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#2. Show that SL(n,R) is algebraically simply connected. (On the other
hand, SL(n,R) is not simply connected, because its fundamental
group is nontrivial.)
[Hint: By tensoring with C, any homomorphism sl(n,R) → sl(ℓ,R) extends to a
homomorphism sl(n,C)→ sl(ℓ,C), and SL(n,C) is simply connected.]

#3. Assume
• G is not isogenous to SO(1, n) or SU(1, n), for any n,
• Γ is irreducible, and
• G has no compact factors.

Use the Margulis Superrigidity Theorem to show that the abelian-
ization Γ/[Γ , Γ] of Γ is finite. (When G is simple, this was already
proved from Kazhdan’s property (T) in Corollary 13.4.3(2). We will
see yet another proof in Exercise 17.1#1.)

#4. Assume G, Γ , φ, φ̂, C, and Γ ′ are as in Theorem 16.1.4. Show there
is a homomorphism ϵ : Γ ′ → C, such that φ(γ) = φ̂(γ) · ϵ(γ), for
all γ ∈ Γ ′.

#5. Suppose G = PSL(2,R) and Γ is a free group. Construct a homo-
morphism φ : Γ → GL(n,R) (for some n), such that, for every con-
tinuous homomorphism φ̂ : G → GL(n,R), and every finite-index
subgroup Γ ′ of Γ , the set { φ̂(γ)−1φ(γ) | γ ∈ Γ ′ } is not precom-
pact.
[Hint: φmay have an infinite kernel.]

#6. Prove Corollary 16.1.6 from Theorem 16.1.4.

#7. Show that the extension φ̂ in Corollary 16.1.6 is unique.
[Hint: Borel Density Theorem.]

#8. In each case, find
• a lattice Γ in G and
• a homomorphism φ : Γ → G′,

such that
• φ(Γ) is Zariski dense in G′, and
• φ does not extend to a continuous homomorphism φ̂ : G → G′.

Also explain why they are not counterexamples to Corollary 16.1.6.
a) G = G′ = PSL(2,R)× PSL(2,R).
b) G = PSL(4,R) and G′ = SL(4,R).
c) G = SO(2,3) and G′ = SO(2,3)× SO(5).

#9. Prove Corollary 16.1.7 from Theorem 16.1.4.

#10. Derive Theorem 16.1.4 from the combination of Corollary 16.1.6
and Corollary 16.1.7. (This is a converse to Exercises 6 and 9.)
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§16.2. Applications

We briefly describe a few important consequences of the Margulis Super-
rigidity Theorem.

§16.2(i). Mostow Rigidity Theorem. The special case of the Mar-
gulis Superrigidity Theorem (16.1.6) in which the homomorphism φ is
assumed to be an isomorphism onto a lattice Γ ′ in G′ is very important:

(16.2.1) Theorem (Mostow Rigidity Theorem, cf. (15.1.2)). Assume

• G1 andG2 are connected, with trivial center and no compact factors,

• G1 ̸≊ PSL(2,R),
• Γi is an irreducible lattice in Gi, for i = 1,2, and

• φ : Γ1 → Γ2 is a group isomorphism.

Then φ extends to a continuous isomorphism from G1 to G2.

This theorem has already been discussed in Chapter 15. In most
cases, it follows easily from the Margulis Superrigidity Theorem (see Ex-
ercise 1). However, since the superrigidity theorem does not apply when
G1 is either SO(1,m) or SU(1,m), a different argument is needed for
those cases; see Section 15.2 for a sketch of the proof.

§16.2(ii). Triviality of flat vector bundles over G/Γ .

(16.2.2) Definition. For any homomorphism φ : Γ → GL(n,R), there is a
diagonal action of Γ on G ×Rn, defined by

(x,v) · γ = (xγ,φ(γ−1)v
)
.

Let Eφ = (G × Rn)/Γ be the space of orbits of this action. Then there is
a well-defined map

π : Eφ → G/Γ , defined by π
(
[x,v]

) = xΓ ,
and this makes Eφ into a vector bundle over G/Γ (with fiber Rn) (see Ex-
ercise 3). A vector bundle defined from a homomorphism in this way is
said to be a flat vector bundle.

The Margulis Superrigidity Theorem implies (in some cases) that ev-
ery flat vector bundle over G/Γ is nearly trivial. Here is an example:

(16.2.3) Proposition. Let G = SL(n,R) and Γ = SL(n,Z). If Eφ is any flat
vector bundle over G/Γ , then there is a finite-index subgroup Γ ′ of Γ , such
that the lift of Eφ to the finite cover G/Γ ′ is trivial.

In other words, if we letφ′ be the restriction ofφ to Γ ′, then the vector
bundle Eφ′ is isomorphic to the trivial vector bundle (G/Γ ′)×Rn.
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Proof. From Theorem 16.1.1, we may choose Γ ′ so that the restrictionφ′

extends to a homomorphism φ̂ : G → GL(n,R). Define a continuous
function T : G ×Rn → G ×Rn by

T(g,v) = (g, φ̂(g)v).
Then, for any γ ∈ Γ ′, a straightforward calculation shows

T
(
(g, v) · γ ) = T(g,v)∗ γ, where (g, v)∗ γ = (gγ,v) (16.2.4)

(see Exercise 4). Therefore T factors through to a well-defined bundle
isomorphism Eφ′

≊→ (G/Γ ′)×Rn. □

§16.2(iii). Embeddings of locally symmetric spaces from embed-
dings of lattices. Let M = Γ\G/K and M′ = Γ ′\G′/K′. Roughly speaking,
the Mostow Rigidity Theorem (15.1.2) tells us that if Γ is isomorphic to Γ ′,
then M is isometric to M′. More generally, superrigidity implies that if Γ
is isomorphic to a subgroup of Γ ′, then M is isometric to a submanifold
of M′ (modulo finite covers).

(16.2.5) Proposition. Suppose

• M = Γ\G/K and M′ = Γ ′\G′/K′ are irreducible locally symmetric
spaces with no compact factors,

• Γ is isomorphic to a subgroup of Γ ′, and

• the universal cover of M is neither the real hyperbolic space Hn nor
the complex hyperbolic space CHn.

Then some finite cover of Γ\G/K embeds as a totally geodesic submanifold
of a finite cover of Γ ′\G′/K′.
Idea of proof. There is no harm in assuming that G and G′ have trivial
center and no compact factors. After passing to a finite-index subgroup
of Γ (and ignoring a compact group C), the Margulis Superrigidity Theo-
rem tells us that the embedding Γ ↩ Γ ′ extends to a continuous embed-
ding φ : G ↩ G′. Conjugate φ by an element of G′, so that φ(K) ⊆ K′,
and φ(G) is invariant under the Cartan involution of G′ corresponding
to the maximal compact subgroup K′. Then φ induces an embedding
Γ\G/K → Γ ′\G′/K′ whose image is a totally geodesic submanifold. □

Exercises for §16.2.

#1. Prove the Mostow Rigidity Theorem (16.2.1) under the additional
assumption that G1 is neither PSO(1, n) nor PSU(1, n).

#2. The statement of the Mostow Rigidity Theorem in Theorem 15.1.2
is slightly different from Theorem 16.2.1. Show that these two the-
orems are corollaries of each other.
[Hint: Exercise 15.2#1.]



16.3. WHY SUPERRIGIDITY IMPLIES ARITHMETICITY 325

#3. In the notation of Definition 16.2.2:
a) Show the map π is well defined.
b) Show Eφ is a vector bundle over G/Γ with fiber Rn.

#4. Verify (16.2.4) for all γ ∈ Γ ′.

§16.3. Why superrigidity implies arithmeticity

Recall the following major theorem that was stated without proof in The-
orem 5.2.1:

(16.3.1) Margulis Arithmeticity Theorem. Every irreducible lattice in G
is arithmetic, except, perhaps, when G is isogenous to SO(1,m) × K or
SU(1,m)×K, for some compact group K.

This important fact is a consequence of the Margulis Superrigidity
Theorem, but the implication is not at all obvious. In this section, we will
explain the main ideas that are involved.

In addition to our usual assumption that G ⊆ SL(ℓ,R), let us also
assume, for simplicity:

• G ≊ SL(3,R) (or, more generally, G is algebraically simply con-
nected; see Definition 16.1.2), and

• G/Γ is not compact.

We wish to show that Γ is arithmetic. It suffices to show Γ ⊆ GZ, that is,
that every matrix entry of every element of Γ is an integer, for then Γ is
commensurable to GZ (see Exercise 4.1#10).

Here is a loose description of the 4 steps of the proof:

1) The Margulis Superrigidity Theorem (16.1.1) implies that every ma-
trix entry of every element of Γ is an algebraic number.

2) By restriction of scalars, we may assume that these algebraic num-
bers are rational; that is, Γ ⊆ GQ.

3) For every prime p, a “p-adic” version of the Margulis Superrigidity
Theorem provides a natural number Np, such that no element of Γ
has a matrix entry whose denominator is divisible by pNp.

4) This implies that some finite-index subgroup Γ ′ of Γ is contained
in GZ.

Step 1. Every matrix entry of every element of Γ is an algebraic number.
Suppose some γi,j is transcendental. Then, for any transcendental num-
ber α, there is a field automorphismϕ of Cwithϕ(γi,j) = α. Applyingϕ
to all the entries of a matrix induces an automorphism ϕ̃ of SL(ℓ,C). Let

φ be the restriction of ϕ̃ to Γ ,
so φ is a homomorphism from Γ to SL(ℓ,C). The Margulis Superrigidity
Theorem implies there is a continuous homomorphism φ̂ : G → SL(ℓ,C),
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such that φ̂ =φ on a finite-index subgroup of Γ (see Exercise 16.4#2). By
passing to this finite-index subgroup, we may assume φ̂ =φ on all of Γ .

Since there are uncountably many transcendental numbers α, there
are uncountably many different choices of ϕ, so there must be uncount-
ably many different n-dimensional representations φ̂ of G. However,
it is well known from the the theory of “roots and weights” that G (or,
more generally, any connected, simple Lie group) has only finitely many
non-isomorphic representations of any given dimension, so this is a con-
tradiction.3

Step 2. We have Γ ⊆ SL(ℓ,Q). Let F be the subfield of C generated by
the matrix entries of the elements of Γ , so Γ ⊆ SL(ℓ, F). From Step 1, we
know that this is an algebraic extension of Q. Furthermore, because Γ is
finitely generated (see Theorem 4.7.10), we see that this field extension
is finitely generated. Therefore, F is finite-degree field extension of Q
(in other words, F is an algebraic number field). This means that F is
almost the same as Q, so it is only a slight exaggeration to say that we
have proved Γ ⊆ SL(ℓ,Q).

Indeed, restriction of scalars (5.5.8) provides a way to change F
into Q: there is a representation ρ : G → SL(r ,C), for some r , such that
ρ
(
G ∩ SL(ℓ, F)

) ⊆ SL(r ,Q) (see Exercise 1). Therefore, after replacing G
with ρ(G), we have the desired conclusion (without any exaggeration).

Step 3. For every prime p, there is a natural number Np, such that no
element of Γ has a matrix entry whose denominator is divisible bypNp. The
fields R and C are complete (that is, every Cauchy sequence converges),
and they obviously contain Q. For any prime p, the p-adic numbers Qp
are another field that has these same properties.

As we have stated it, the Margulis Superrigidity Theorem deals with
homomorphisms into SL(ℓ,F), where F = R, but Margulis also proved
a version of the theorem that applies when F is a p-adic field (see The-
orem 16.3.2). Now G is connected, but p-adic fields are totally discon-
nected, so every continuous homomorphism from G to SL(ℓ,Qp) is triv-
ial. Therefore, superrigidity tells us that φ is trivial, after we mod out a
compact group (cf. Theorem 16.1.4). In other words, the closure of φ(Γ)
is compact in SL(ℓ,Qp).

This conclusion can be rephrased in more elementary terms, without
any mention of p-adic numbers. Namely, it says that there is a bound on

3Actually, this is not quite a contradiction, because it is possible that two different
choices ofφ yield the same representation of Γ, up to isomorphism; that is, after a change
of basis. The trace of a matrix is independent of the basis, so the preceding argument
really shows that the trace of φ(γ)must be algebraic, for every γ ∈ Γ. Then one can use
some algebraic methods to construct some other matrix representation φ′ of Γ, such that
the matrix entries of φ′(γ) are algebraic, for every γ ∈ Γ.
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the highest power of p that divides the denominator of any matrix entry
of any element of Γ . This is what we wanted.

Step 4. Some finite-index subgroup Γ ′ of Γ is contained in SL(ℓ,Z). Let
D ⊆ N be the set consisting of the denominators of the matrix entries of
the elements of φ(Γ).

We claim there exists N ∈ N, such that every element of D is less
than N. Since Γ is known to be finitely generated, some finite set of
primes {p1, . . . , pr} contains all the prime factors of every element of D.
(If p is in the denominator of some matrix entry of γ1γ2, then it must
appear in a denominator somewhere in either γ1 or γ2.) Therefore, every
element ofD is of the form pm1

1 · · ·pmr
r , for somem1, . . . ,mr ∈ N. From

Step 3, we know mi < Npi, for every i. Thus, every element of D is less

than p
Np1
1 · · ·pNprr . This establishes the claim.

From the preceding paragraph, we see that Γ ⊆ 1
N! Matℓ×ℓ(Z). Note

that if N = 1, then Γ ⊆ SL(ℓ,Z). In general, N is a finite distance from 1,
so it should not be hard to believe (and it can indeed be shown) that some
finite-index subgroup of Γ must be contained in SL(ℓ,Z) (see Exercise 2).
Therefore, a finite-index subgroup of Γ is contained in GZ, as desired. □

For ease of reference, we officially record the key fact used in Step 3:

(16.3.2) Theorem (Margulis superrigidity over p-adic fields). Assume

i) G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

ii) Γ is irreducible,

iii) Qp is the field of p-adic numbers, for some prime p, and

iv) φ : Γ → GL(n,Qp) is a homomorphism.

Then φ(Γ) is compact.
In other words, there is some N ∈ Z, such that every matrix entry of

every element of φ(Γ) is in pN Zp, where Zp is the ring of p-adic integers.

The Margulis Arithmeticity Theorem (16.3.1) does not apply to lat-
tices in SO(1, n) or SU(1, n), but, for those groups, Margulis proved the
following characterization of the lattices that are arithmetic:

(16.3.3) Commensurability Criterion for Arithmeticity (Margulis). As-
sume

• G is connected, with no compact factors, and

• Γ is irreducible.

Then Γ is arithmetic if and only if the commensurator CommG(Γ) of Γ is
dense in G.

As was already mentioned in Remark 5.2.5(1), the direction (⇒) fol-
lows from the simple observation that CommG(GZ) contains GQ.
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The proof of (⇐) is more difficult. It is the same as the proof of the
Margulis Arithmeticity Theorem, but replacing the Margulis Superrigidity
Theorem (16.1.6) with the following superrigidity theorem (and also re-
placing the p-adic superrigidity theorem with a suitable commensurator
analogue):

(16.3.4) Theorem (Commensurator Superrigidity). Assume

i) Γ is irreducible,

ii) CommG(Γ) is dense in G, and

iii) G and G′ are connected, with trivial center, and no compact factors.

If φ : CommG(Γ) → G′ is any homomorphism whose image is Zariski
dense in G′, then φ extends to a continuous homomorphism φ̂ : G → G′.

Exercises for §16.3.

#1. Suppose
• G ⊆ SL(ℓ,C),
• Γ ⊆ SL(ℓ, F), for some algebraic number field F, and
• G has no compact factors.

Show there is a continuous homomorphism ρ : G → SL(r ,C), for
some r , such that ρ

(
G ∩ SL(ℓ, F)

) ⊆ SL(r ,Q).
[Hint: Apply restriction of scalars (§5.5) after noting that the Borel Density Theorem
(§4.5) implies G is defined over F.]

#2. Show that if Λ is a subgroup of SL(ℓ,Q), and Λ ⊆ 1
N Matℓ×ℓ(Z), for

some N ∈ N, then SL(ℓ,Z) contains a finite-index subgroup of Λ.
[Hint: The additive group of Qℓ contains a Λ-invariant subgroup V, such that we
have Zℓ ⊆ V ⊆ 1

N Z
ℓ. Choose g ∈ GL(ℓ,Q), such that g(V) = Zℓ. Then g commen-

surates SL(ℓ,Z) and we have gΛg−1 ⊆ SL(ℓ,Z).]

#3. Assume, as usual, that
• G is not isogenous to any group that is of the form SO(1,m)×K

or SU(1,m)×K, where K is compact, and
• Γ is irreducible.

Use the proof of the Margulis Arithmeticity Theorem to show that
ifφ : Γ → SL(n,C) is any homomorphism, then every eigenvalue of
every element of φ(Γ) is an algebraic integer.

§16.4. Homomorphisms into compact groups

The Margulis Superrigidity Theorem (16.1.4) does not say anything about
homomorphisms whose image is contained in a compact subgroup of
GL(n,R). (This is because all ofφ(Γ) can be put into the error term C, so
the homomorphism α̂ can be taken to be trivial.) Fortunately, there is a
different version that completely eliminates the error term (and applies
very generally). Namely, from the Margulis Arithmeticity Theorem (5.2.1),
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we know that the lattice Γ must be arithmetic (if no simple factors of G
are SO(1,m) or SU(1,m)). This means that if we add some compact
factors to G, then we can assume that Γ is commensurable to GZ. In this
situation, there is no need for the error term C:

(16.4.1) Corollary. Assume

• G is connected, algebraically simply connected, and defined over Q,

• G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

• Γ is irreducible, and

• φ : Γ → GL(n,R) is a homomorphism.

If Γ is commensurable to GZ, then there exist:

1) a continuous homomorphism φ̂ : G → GL(n,R), and

2) a finite-index subgroup Γ ′ of Γ ,
such that φ(γ) = φ̂(γ), for all γ ∈ Γ ′.

Here is a less precise version of Corollary 16.4.1 that may be easier
to apply in situations where the lattice Γ is not explicitly given as the
Z-points of G. However, it only applies to the homomorphism into each
simple component of α(Γ), not to the entire homomorphism all at once.

(16.4.2) Corollary. Assume

• G is connected, and algebraically simply connected,

• G is not isogenous to any group that is of the form SO(1,m)×K or
SU(1,m)×K, where K is compact,

• Γ is irreducible,

• φ : Γ → GL(n,C) is a homomorphism, and

• φ(Γ) is simple.

Then there exist:

1) a continuous homomorphism φ̂ : G → GL(n,C),
2) a finite-index subgroup Γ ′ of Γ , and

3) a Galois automorphism σ of C,

such that φ(γ) = σ(φ̂(γ)), for all γ ∈ Γ ′.
Proof. We may assume φ(Γ) is compact, for otherwise Corollary 16.1.6
applies (after modding out the centers of G and α(Γ)). Then every ele-
ment of φ(Γ) is semisimple.

Choose some h ∈ φ(Γ), such that h has infinite order (see Exer-
cise 4.8#12). Then the conclusion of the preceding paragraph implies
that some eigenvalue λ of h is not a root of unity. On the other hand, if
λ is algebraic, then p-adic superrigidity (16.3.2) implies that λ is an alge-
braic integer (see Exercise 16.3#3). So there is a Galois automorphism σ



330 16. MARGULIS SUPERRIGIDITY THEOREM

of C, such that |σ(λ)| ≠ 1 (see Exercise 4). Then {σ(λ)k | k ∈ Z } is
an unbounded subset of C, so

⟨
σ(h)

⟩
is not contained in any compact

subgroup of GL(n,C).
Now, let

• φ′ be the composition σ ◦φ, and

• G′ be the Zariski closure of φ′(Γ).
ThenG′ is simple, and the conclusion of the preceding paragraph implies
that G′ is not compact (since σ(h) ∈ G′). After passing to a finite-index
subgroup (so G′ is connected), Corollary 16.1.6 provides a continuous
homomorphism φ̃ : G → G′, such that φ′(γ) = φ̂(γ), for all γ in some
finite-index subgroup of Γ . □

(16.4.3) Warning. Assume Γ is irreducible, and G is not isogenous to
any group of the form SO(1,m) × K or SU(1,m) × K. Corollary 16.4.2
implies that if there exists a homomorphism φ from Γ to a compact Lie
group (and φ(Γ) is infinite), then G/Γ must be compact (see Exercise 1).
However, the converse is not true. Namely, Corollary 16.4.1 tells us that
if Γ is commensurable to GZ, where G is defined over Q, and GR has no
compact factors, then Γ does not have any homomorphisms to compact
groups (with infinite image). It does not matter whether G/Γ is compact
or not.

Exercises for §16.4.

#1. Assume, as usual, that the lattice Γ is irreducible, thatG is not isoge-
nous to any group of the form SO(1,m)× K or SU(1,m)× K, and
that φ : Γ → GL(n,R) is a homomorphism. If G/Γ is not compact,

show the semisimple group φ(Γ) has no compact factors.
[Hint: Godement’s Criterion (5.3.1).]

#2. Assume
• G is algebraically simply connected,
• G is not isogenous to any group that is of the form SO(1,m)×K

or SU(1,m)×K, where K is compact,
• Γ is irreducible,
• G/Γ is not compact, and
• φ : Γ → SL(n,R) is a homomorphism.

Show there is a continuous homomorphism φ̂ : G → SL(n,R), such
that φ(γ) = φ̂(γ) for all γ in some finite-index subgroup of Γ .
[Hint: Theorem 16.1.4, Corollary 16.1.7, and Exercise 1.]

#3. Assume Γ is irreducible, andGhas no factors isogenous to SO(1,m)
or SU(1,m). Show that if N is an infinite normal subgroup of Γ ,
such that Γ/N is linear (i.e., isomorphic to a subgroup of GL(ℓ,C),
for some ℓ), then Γ/N is finite.
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#4. (Kronecker’s Theorem) Assume λ is an algebraic integer. Show that
if |σ(λ)| = 1 for every Galois automorphism σ of C, then λ is a root
of unity.
[Hint: The powers of λ form a set that (by restriction of scalars) is discrete in×σ∈S∞ F×σ . Alternate proof: there are only finitely many polynomials of degree n
with integer coefficients that are all ≤ C in absolute value.]

§16.5. Proof of the Margulis Superrigidity Theorem

In order to establish Corollary 16.1.6, it suffices to prove the following
special case (see Exercise 1):

(16.5.1) Theorem. Suppose

• G is connected, and it is not isogenous to any group that is of the
form SO(1,m)×K or SU(1,m)×K, where K is compact,

• the lattice Γ is irreducible in G,

• H is a connected, noncompact, simple subgroup of SL(n,R), for
some n (and H has trivial center),

• φ : Γ → H is a homomorphism, and

• φ(Γ) is Zariski dense in H.

Then φ extends to a continuous homomorphism φ̂ : G → H.

Although it does result in some loss of generality, we assume:

(16.5.2) Assumption. rankRG ≥ 2.

The case where rankRG = 1 requires quite different methods — see
Section 16.8 for a very brief discussion.

§16.5(i). Geometric reformulation. To set up the proof of Theo-
rem 16.5.1, let us translate the problem into a geometric setting, by re-
placing the homomorphism φ with the corresponding flat vector bun-
dle Eφ over G/Γ (see Definition 16.2.2).

(16.5.3) Remark. The sections of the vector bundle Eφ are in natural one-
to-one correspondence with the right Γ-equivariant maps from G to Rn

(see Exercise 2).

(16.5.4) Lemma. φ extends to a homomorphism φ̃ : G → GL(n,R) if and
only if there exists a G-invariant subspace V ⊆ Sect(Eφ), such that the
evaluation map V → V[e] is bijective.

Proof. (⇐) Since V is G-invariant, we have a representation of G on V;
let us say π : G → GL(V). Therefore, the isomorphism V → V[e] = Rn

yields a representation π̂ of G on Rn. It is not difficult to verify that π̂
extends φ (see Exercise 3).



332 16. MARGULIS SUPERRIGIDITY THEOREM

(⇒) For v ∈ Rn and g ∈ G, let

ξv(g) = φ̃(g−1)v.
It is easy to verify that ξv : G → Rn is right Γ-equivariant (see Exercise 4),
so we may think of ξv as a section of Eφ (see Remark 16.5.3). Let

V = {ξv | v ∈ Rn } ⊆ Sect(Eφ).
Now the map v , ξv is linear and G-equivariant (see Exercise 5), so V is
a G-invariant subspace of Sect(Eφ). Since

ξv
(
[e]

) = φ̃(e)v = v,
it is obvious that the evaluation map is bijective. □

In fact, if we assume the representationφ is irreducible, then it is not
necessary to have the evaluation map V → V[e] be bijective. Namely, in
order to show that φ extends, it suffices to have V be finite dimensional
(and nonzero):

(16.5.5) Lemma (see Exercise 6). Assume that the representationφ is irre-
ducible. If there exists a (nontrivial) G-invariant subspace V of Sect(Eφ)
that is finite dimensional, then φ extends to a continuous homomorphism
φ̃ : G → GL(n,R).

§16.5(ii). The need for higher real rank. We now explain how As-
sumption 16.5.2 comes into play.

(16.5.6) Notation. Let A be a maximal R-split torus of G. For example, if
G = SL(3,R), we let

A =
[∗ 0 0

0 ∗ 0
0 0 ∗

]
.

By definition, the assumption that rankRG ≥ 2 means dimA ≥ 2.

It is the following result that relies on our assumption rankRG ≥ 2.
It is easy to prove if G has more than one noncompact simple factor
(see Exercise 7), and is not difficult to verify for the case G = SL(ℓ,R) (cf.
Exercise 8). Readers familiar with the structure of semisimple groups
(including the theory of real roots) should have little difficulty in gener-
alizing to any semisimple group of real rank ≥ 2 (see Exercise 9).

(16.5.7) Lemma. If rankRG ≥ 2, then, for some r ∈ N, there exist closed
subgroups L1, L2, . . . , Lr of G, such that

1) G = LrLr−1 · · ·L1, and

2) both Hi and H⊥i are noncompact, where
• Hi = Li ∩A, and
• H⊥i = CA(Li) (so Li centralizes H⊥i ).
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§16.5(iii). Outline of the proof. The idea for proving Theorem 16.5.1
is quite simple. We begin by finding a (nonzero)A-invariant section of Eφ;
this section spans a (1-dimensional) subspace V0 of Eφ that is invariant
under A. Since (by definition) the subgroup H1 of Lemma 16.5.7 is con-
tained in A, we know that V0 is invariant under H1, so Lemma 16.5.8
below provides a subspace of Sect(Eφ) that is invariant under a larger
subgroup ofG, but is still finite dimensional. Applying the lemma repeat-
edly yields finite-dimensional subspaces that are invariant under more
and more of G. Eventually, the lemma yields a finite-dimensional sub-
space that is invariant under all of G. Then Lemma 16.5.5 implies thatφ
extends to a homomorphism that is defined on G, as desired.

(16.5.8) Lemma. If

• H is a closed, noncompact subgroup of A, and

• V is an H-invariant subspace of Sect(Eφ) that is finite dimensional,

then ⟨CG(H) · V⟩ is finite dimensional.

Idea of proof. To illustrate the idea of the proof, let us assume that
V = Rσ is the span of an H-invariant section (see Exercise 13). Since H is
noncompact, the Moore Ergodicity Theorem (14.2.4) tells us that H has
a dense orbit on G/Γ (see Exercise 14.2#16). (In fact, almost every orbit
is dense.) This implies that any continuous H-invariant section of Eφ is
determined by its value at a single point (see Exercise 10), so the space
of H-invariant sections is finite-dimensional (see Exercise 11). Since this
space contains ⟨CG(H) · V⟩ (see Exercise 12), the desired conclusion is
immediate. □

Here is a more detailed outline:

Idea of the proof of Theorem 16.5.1. Assume there exists a nonzero
A-invariant section σ of Eφ. Let

H0 = A and V0 = ⟨σ⟩.
Thus, V0 is a 1-dimensional subspace of Sect(Eφ) that is H0-invariant.

Now, for i = 1, . . . , r , let

Vi = ⟨Li ·A · Li−1 ·A · · ·L1 ·A · V0⟩.
Since LrLr−1 · · ·L1 = G, it is clear that Vr is G-invariant. Therefore, it
will suffice to show (by induction on i) that each Vi is finite dimensional.

Since Hi−1 ⊆ Li−1, it is clear that Vi−1 is Hi−1-invariant. Therefore,
since A centralizes Hi−1, Lemma 16.5.8 implies that ⟨A · Vi−1⟩ is finite
dimensional. Now, sinceH⊥i ⊆ A, we know that ⟨A·Vi−1⟩ isH⊥i -invariant.
Then, since Li centralizes H⊥i , Lemma 16.5.8 implies that the subspace
Vi = ⟨Li ·A · Vi−1⟩ is finite dimensional. □



334 16. MARGULIS SUPERRIGIDITY THEOREM

Therefore, the key to proving Theorem 16.5.1 is finding a nonzero
A-invariant section σ of Eφ. Unfortunately, the situation is a bit more
complicated than the above would indicate, because we will not find
a continuous A-invariant section, but only a measurable one (see Key
Fact 16.6.1). Then the proof appeals to Lemma 16.5.10 below, instead of
Lemma 16.5.8. We leave the details to the reader (see Exercise 16).

(16.5.9) Definition. Let Sectmeas(Eφ) be the vector space of measurable
sections of Eφ, where two sections are identified if they agree almost
everywhere.

(16.5.10) Lemma (see Exercises 14 and 15). If

• H is a closed, noncompact subgroup of A, and

• V is a finite-dimensional, H-invariant subspace of Sectmeas(Eφ),
then ⟨CG(H) · V⟩ is finite dimensional.

Exercises for §16.5.

#1. Derive Corollary 16.1.6 as a corollary of Theorem 16.5.1.

#2. Suppose ξ : G → Rn. Show that ξ : G/Γ → Eφ, defined by

ξ(gΓ) = [(g, ξ(g))],
is a well-defined section of Eφ if and only if ξ is right Γ-equivariant;
i.e., ξ(gγ) =φ(γ−1) ξ(g).

#3. In the notation of the proof of Lemma 16.5.4(⇐), show π̂(γ) =φ(γ)
for every γ ∈ Γ .

#4. In the notation of the proof of Lemma 16.5.4(⇒), show that we have
ξv(gh) = φ̃(h−1) ξv(g). Since φ̃(γ−1) = φ(γ−1) for all γ ∈ Γ , this
implies that ξv is right Γ-equivariant.

#5. In the notation of the proof of Lemma 16.5.4(⇒), show that we have
ξφ̃(g)v = g · ξv, where the action of G on Sect(Eφ) is defined by
(g · ξv)(x) = ξv(g−1x), as usual.

#6. Prove Lemma 16.5.5.
[Hint: By choosing V of minimal dimension, we may assume it is an irreducible
G-module, so the evaluation map is either 0 or injective. It cannot be 0, and then it
must also be surjective, since φ is irreducible.]

#7. Prove Lemma 16.5.7 under that additional assumption that we have
G = G1 ×G2, where G1 and G2 are noncompact (and semisimple).
[Hint: Let Li = Gi for i = 1,2.]

#8. Prove the conclusion of Lemma 16.5.7 for G = SL(3,R).
[Hint: A unipotent elementary matrix is a matrix with 1’s on the diagonal and only
one nonzero off-diagonal entry. Every element of SL(3,R) is a product of ≤ 10
unipotent elementary matrices, and any such matrix is contained in a subgroup
isogenous to SL(2,R) that has a 1-dimensional intersection with A.]
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#9. Prove Lemma 16.5.7.

#10. Let H be a subgroup of G. Show that if σ1 and σ2 are H-invariant,
continuous sections of Eφ, and there is some x ∈ G/Γ , such that
• Hx is dense in G/Γ and
• σ1(x) = σ2(x),

then σ1 = σ2.

#11. Let H be a subgroup of G, and assume H has a dense orbit in G/Γ .
Show the space ofH-invariant, continuous sections of Eφ has finite
dimension.

#12. Let H be a subgroup of G. Show that if σ is an H-invariant section
of Eφ, and c is an element of G that centralizes H, then σ ·c is also
H-invariant.

#13. Prove Lemma 16.5.8 without assuming that V is 1-dimensional.
[Hint: Fix x ∈ G. For c ∈ CG(H) and σ ∈ V, define T : V → Rn by T(ξ) = ξ(x), and
note that (cσ)(hx) = T(h−1 · σ) for all h ∈ H. If HxΓ is dense, this implies that
cσ is determined by σ and T. So dim

(
CG(H) · V) ≤ (dimV) · (dim Hom(V ,Rn)

)
.]

#14. Prove Lemma 16.5.10 in the special case where V = Rσ is the span
of an H-invariant measurable section.
[Hint: This is similar to Lemma 16.5.8, but use the fact that H is ergodic on G/Γ.]

#15. Prove Lemma 16.5.10 (without assuming dimV = 1).
[Hint: This is similar to Exercise 13.]

#16. Prove Theorem 16.5.1.

§16.6. An A-invariant section

This section sketches the proof of the following result, which completes
the proof of Theorem 16.5.1 (under the assumption that rankRG ≥ 2).

(16.6.1) Key Fact. For some n, there is an embedding of H in SL(n,R),
such that

1) the associated representation φ : Γ → H ⊆ SL(n,R) is irreducible,
and

2) there exists a nonzero A-invariant σ ∈ Sectmeas(Eφ).

Remark 16.5.3 allows us to restate this as follows:

(16.6.1′) Key Fact. For some embedding of H in SL(n,R),
1) H acts irreducibly on Rn, and

2) there exists a Γ-equivariant, measurable function ξ : G/A→ Rn (and
ξ is nonzero).
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In this form, the result is closely related to the following consequence
of amenability (from Chapter 12). For simplicity, it is stated only for the
case G = SL(3,R).

(12.6.2′) Proposition (Furstenberg). If

• G = SL(3,R),

• P =
[∗ ∗ ∗

∗ ∗
∗

]
⊂ G, and

• Γ acts continuously on a compact metric space X,

then there is a Borel measurable map ψ : G/P → Prob(X), such that ψ is
essentially Γ-equivariant.

For convenience, let W = Rn. There are 3 steps in the proof of Key
Fact 16.6.1′:

1) (amenability) Letting X be the projective space P(W), which is com-
pact, Proposition 12.6.2′ provides a Γ-equivariant, measurable map
ξ̂ : G/P → Prob

(
P(W)

)
.

2) (proximality) The representation of Γ onW induces a representation
of Γ on any exterior power

∧kW . By replacing W with an appropri-
ate subspace of such an exterior power, we may assume there is
some γ ∈ Γ , such that γ has a unique eigenvalue of maximal ab-
solute value (see Exercise 1). Therefore, the action of γ on P(W)
is “proximal” (see Lemma 16.7.3). The theory of proximality (dis-
cussed in Section 16.7) now tells us that the Γ-equivariant random
map ξ̂ must actually be a well-defined map into P(W) (see Corol-
lary 16.7.10).

3) (algebra trick) We have a Γ-equivariant map ξ̂ : G/P → P(W). By the
same argument, there is a Γ-equivariant map ξ̂∗ : G/P → P(W∗),
where W∗ is the dual of W . Combining these yields a Γ-equivariant
map

ξ : G/P ×G/P → P(W ⊗W∗) ≊ P(End(W)
)
.

We can lift ξ to a well-defined map

ξ : G/P ×G/P → End(W),
by specifying that trace

(
ξ(x)

) = 1 (see Exercise 2). Since the action
of Γ on End(W) is by conjugation (see Exercise 3) and the trace of
conjugate matrices are equal, we see that ξ is Γ-equivariant (see Ex-
ercise 4).

Finally, note that there is a G-orbit in G/P×G/P whose comple-
ment is a set of measure 0, and the stabilizer of a point is (conjugate
to) the group A of diagonal matrices (see Exercises 5 and 6). There-
fore, after discarding a set of measure 0, we may identifyG/P×G/P
with G/A, so ξ : G/A→ End(W).
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Exercises for §16.6.

#1. Let
• γ be a semisimple element of Γ , such that some eigenvalue of γ

is not of absolute value 1.
• λ1, . . . , λk be the eigenvalues of γ (with multiplicity) that have

maximal absolute value.
• W ′ = ∧kW .

Show that, in the representation of Γ on W ′, the element γ has a
unique eigenvalue of maximal absolute value.

#2. Let ξ̃ : G/P → W and ξ̃∗ : G/P → W∗ be well-defined, measurable
lifts of ξ̂ and ξ̂∗.

a) Show, for a.e. x,y ∈ G/P, that ξ̃(x) is not in the kernel of the
linear functional ξ̃∗(y).

b) Show, for a.e. x,y ∈ G/P, that, under the natural identification
of W ⊗W∗ with End(W), we have

trace
(
ξ̃(x)⊗ ξ̃∗(y)) ≠ 0.

c) Show ξ can be lifted to a well-defined measurable function
ξ : G/P × G/P → End(W), such that trace

(
ξ(x,y)

) = 1, for
a.e. x,y ∈ G/P.

[Hint: Γ acts irreducibly on W, and ergodically on G/P ×G/P.]

#3. Show that the action of Γ on End(W) ≊ W ⊗W∗ is given by conju-
gation: φ(γ)T =φ(γ)T φ(γ)−1.

#4. Show that ξ is Γ-equivariant.

#5. Recall that a flag in R3 is a pair (ℓ,Π), where
• ℓ is a line through the origin (in other words, a 1-dimensional

linear subspace), and
• Π is a plane through the origin (in other words, a 2-dimensional

linear subspace), such that
• ℓ ⊂ Π.

Show:
a) SL(3,R) acts transitively on the set of all flags in R3, and
b) the stabilizer of any flag is conjugate to the subgroup P of

Proposition 12.6.2′.
Therefore, the set of flags can be identified with G/P.

#6. Two flags (ℓ1,Π1) and (ℓ2,Π2) are in general position if

ℓ1 ∉ Π2, and ℓ2 ∉ Π1 .
Letting G be the subset of G/P ×G/P corresponding to the pairs of
flags that are in general position, show:

a) SL(3,R) is transitive on G,
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b) the stabilizer of any point in G is conjugate to the group of
diagonal matrices, and

c) the complement of G has measure zero in G/P ×G/P.
[Hint: For (a) and (b), identify G with the set of triples (ℓ1, ℓ2, ℓ3) of lines that are
in general position, by letting ℓ3 = Π1 ∩Π2.]

§16.7. A quick look at proximality

(16.7.1) Assumption. Assume

1) Γ ⊂ SL(ℓ,R),
2) every finite-index subgroup of Γ is irreducible on Rℓ, and

3) there exists a semisimple element γ ∈ Γ , such that γ has a unique
eigenvalue λ of maximal absolute value (and the eigenvalue is sim-
ple, which means the corresponding eigenspace is 1-dimensional).

(16.7.2) Notation.

1) Let v be an eigenvector associated to the eigenvalue λ.
2) For convenience, let W = Rℓ.

(16.7.3) Lemma (Proximality). The action of Γ on P(W) is proximal . This
means that, for every [w1], [w2] ∈ P(W), there exists a sequence {γn}
in Γ , such that d

(
[γn(w1)], [γn(w2)]

)→ 0 as n→∞.

Proof. Assume, to simplify the notation, that all of the eigenspaces of γ
are orthogonal to each other. Then, for any w ∈ W ∖ v⊥, we have
γn[w]→ [v], as n→∞ (see Exercise 1). Since the finite-index subgroups
of Γ act irreducibly, there is some γ ∈ Γ , such that γ(w1), γ(w2) ∉ v⊥

(see Exercise 2). Therefore,

d
(
γnγ([w1]), γnγ([w2])

)→ d([v], [v]) = 0,
as desired. □

In the above proof, it is easy to see that the convergence γn[w]→ [v]
is uniform on compact subsets of W ∖ v⊥ (see Exercise 3). This leads to
the following stronger assertion (see Exercise 4):

(16.7.4) Proposition (Measure proximality). Let µ be any probability mea-
sure on P(W). Then there is a sequence {γn} in Γ , such that (γn)∗µ con-
verges to a delta-mass supported at a single point of P(W).

It is obvious from Proposition 16.7.4 that there is no Γ-invariant prob-
ability measure on P(W). However, it is easy to see that there does exist a
probability measure that is invariant “on average,” in the following sense
(see Exercise 5):
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(16.7.5) Definition.

1) Fix a finite generating set S of Γ , such that S−1 = S. A probability
measure µ on P(W) is stationary for S if

1
#S

∑
γ∈S
γ∗µ = µ.

2) More generally, let ν be a probability measure on Γ . A probability
measure µ on P(W) is ν-stationary if ν ∗ µ = µ. More concretely,
this means ∑

γ∈Γ
ν(γ)γ∗µ = µ.

(Some authors call µ “harmonic,” rather than “stationary.”)

(16.7.6) Remark. A random walk on P(W) can be defined as follows:
Choose a sequence γ1, γ2, . . . of elements of Γ , independently and with
distribution ν. Also choose a random x0 ∈ P(W), with respect to some
probability distribution µ on P(W). Then xn ∈ P(W) is defined by

xn = γ1γ2 · · ·γn(x0),
so {xn} is a random walk on P(W). A stationary measure represents
a “stationary state” (or equilibrium distribution) for this random walk.
Hence the terminology.

If the initial distribution µ is stationary, then a basic result of proba-
bility (the “Martingale Convergence Theorem”) implies, for almost every
sequence {γn}, that the resulting random walk {xn} has a limiting dis-
tribution; that is,

for a.e. {γn}, (γ1γ2 · · ·γn)∗µ converges in Prob
(
P(W)

)
.

This theorem applies to stationary measures on any space, with no need
for Assumption 16.7.1. By using measure proximality, we will now show
that the limiting distribution is almost always a point mass.

(16.7.7) Definition. A closed, nonempty, Γ-invariant subset of P(W) is
minimal if it does not have any nonempty, proper, closed, Γ-invariant
subsets. (Since P(W) is compact, the finite-intersection property implies
that every nonempty, closed, Γ-invariant subset of P(W) contains a min-
imal set.)

(16.7.8) Theorem (Mean proximality). Assume

• ν is a probability measure on Γ , such that ν(γ) > 0 for all γ ∈ Γ ,
• C is a minimal closed, Γ-invariant subset of P(W), and

• µ is a ν-stationary probability measure on C.

Then, for a.e. {γn} ∈ Γ∞, there exists c ∈ P(W), such that

(γ1γ2 · · ·γn)∗(µ)→ δc as n→∞.
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Proof. It was mentioned above that the Martingale Convergence Theorem
implies (γ1γ2 · · ·γn)∗(µ) has a limit (almost surely), so it suffices to
show there is (almost surely) a subsequence that converges to a measure
of the form δc.

Proposition 16.7.4 provides a sequence {gk} of elements of Γ , such
that (gk)∗µ → δc0, for some c0 ∈ C. To extend this conclusion to a.e.
sequence {γn}, we use equicontinuity: we may write Γ is the union of
finitely many sets E1, . . . , Er , such that each Ei is equicontinuous on some
nonempty open subset Ui of C (see Exercise 6).

The minimality of C implies ΓUi = C for every i. Then, by compact-
ness, there is a finite subset F = {f1, . . . , fs} of Γ , such that FUi = C
for each i. Since ν(γ) > 0 for every γ ∈ Γ , there is (almost surely) a
subsequence {γnk} of {γn}, such that, for every k, we have

γnk+1γnk+2 · · ·γnk+j = f−1
j gk for 1 ≤ j ≤ s.

By passing to a subsequence, we may assume there is some i, such that

γ1γ2 · · ·γnk ∈ Ei, for all k.
To simplify the notation, let us assume i = 1.

Since FU1 = C, we may write c0 = fju, for some fj ∈ F and u ∈ U1.
Then

(γnk+1γnk+2 · · ·γnk+j)∗ν = (f−1
j gk)∗ν → (f−1

j )∗δc0 = δf−1
j c0

= δu.
By passing to a subsequence, we may assume (γ1γ2 · · ·γnk)u converges
to some c ∈ C. Then, since γ1γ2 · · ·γnk ∈ E1, and E1 is equicontinuous
on U1, this implies

(γ1γ2 · · ·γnk+j)∗ν = (γ1γ2 · · ·γnk)∗
(
(γnk+1 · · ·γnk+j)∗ν

)→ δc . □
In order to apply this theorem, we need a technical result, whose

proof we omit:

(16.7.9) Lemma. There exist:

• a probability measure ν on Γ , and

• a ν-stationary probability measure µ on G/P,

such that

1) the support of ν generates Γ , and

2) µ is in the class of Lebesgue measure. (That is, µ has exactly the
same sets of measure 0 as Lebesgue measure does.)

Also note that if C is any nonempty, closed, Γ-invariant subset of
P(W), then Prob(C) is a nonempty, compact, convex Γ-space, so Fursten-
berg’s Lemma (12.6.1) provides a Γ-equivariant map ξ : G/P → Prob(C).
This observation allows us to replace P(W) with a minimal subset.

We can now fill in the missing part of the proof of Key Fact 16.6.1′:



16.7. A QUICK LOOK AT PROXIMALITY 341

(16.7.10) Corollary. Suppose

• C is a minimal closed, Γ-invariant subset of P(W), and

• ξ : G/P → Prob(C) is Γ-equivariant.

Then ξ(x) is a point mass, for a.e. x ∈ G/P.
Hence, there exists ξ̂ : G/P → P(W), such that ξ(x) = δξ̂(x), for a.e.

x ∈ G/P.

Proof. Let

• δP(W) = {δx | x ∈ P(W) }be the set of all point masses in the space
Prob

(
P(W)

)
, and

• µ be a ν-stationary probability measure on G/P that is in the class
of Lebesgue measure (see Lemma 16.7.9).

We wish to show ξ(x) ∈ δP(W), for a.e. x ∈ G/P. In other words, we wish
to show that ξ∗(µ) is supported on δP(W).

Note that:

• δP(W) is a closed, Γ-invariant subset of Prob
(
P(W)

)
, and

• because ξ is Γ-equivariant, we know that ξ∗(µ) is a ν-stationary
probability measure on Prob

(
P(W)

)
.

Roughly speaking, the idea of the proof is that almost every trajec-
tory of the random walk on Prob

(
P(W)

)
converges to a point in δP(W)

(see 16.7.8). On the other hand, being stationary, ξ∗(µ) is invariant un-
der the random walk. Therefore, we conclude that ξ∗(µ) is supported
on δP(W), as desired.

We now make this rigorous. Let

µP(W) =
∫
G/P
ξ(x)dµ(x),

so µP(W) is a stationary probability measure on P(W). By mean proximal-
ity (16.7.8), we know, for a.e. (γ1, γ2, . . .) ∈ Γ∞, that

d
(
(γ1γ2 · · ·γn)∗(µP(W)), δP(W)

) n→∞
-→ 0.

For any ϵ > 0, this implies, by using the definition of µP(W), that

µ
({
x ∈ G/P

∣∣∣ d(γ1γ2 · · ·γn
(
ξ(x)

)
, δP(W)

)
> ϵ

})
n→∞
-→ 0.

Since ξ is Γ-equivariant, we may

replace γ1γ2 · · ·γn
(
ξ(x)

)
with ξ(γ1γ2 · · ·γnx).

Then, since the measure µ onG/P is stationary, we can delete γ1γ2 · · ·γn,
and conclude that

µ
{
x ∈ G/P

∣∣∣ d(ξ(x), δP(W)) > ϵ} n→∞
-→ 0 (16.7.11)

(see Exercise 7). Since the left-hand side does not depend on n, but tends
to 0 as n → ∞, it must be 0. Since ϵ > 0 is arbitrary, we conclude that
ξ(x) ∈ δP(W) for a.e. x, as desired. □



342 16. MARGULIS SUPERRIGIDITY THEOREM

Exercises for §16.7.

#1. In the notation of Lemma 16.7.3, show, for every w ∈ W ∖v⊥, that
γn[w]→ [v], as n→∞.

#2. Show, for any nonzero w1,w2 ∈ W , that there exists γ ∈ Γ , such
that neither γw1 nor γw2 is orthogonal to v.
[Hint: Let H be the Zariski closure of Γ in SL(ℓ,R), and assume, by passing to a
finite-index subgroup, that H is connected. Then Wi = {h ∈ H | hwi ∈ v⊥ } is
a proper, Zariski-closed subset. Since Γ is Zariski dense in H, it must intersection
the complement of W1 ∪W2.]

#3. Show that the convergence in Exercise 1 is uniform on compact
subsets of W ∖ v⊥.

#4. Prove Proposition 16.7.4.
[Hint: Show maxw∈P(W)ν∈Γµ ν(w) = 1.]

#5. Show there exists a stationary probability measure on P(W).
[Hint: Kakutani-Markov Fixed-Point Theorem (cf. 12.2.1).]

#6. Let C be a subset of P(Rn), and assume that C is not contained
in any (n− 1)-dimensional hyperplane. Prove that GL(n,R) is the
union of finitely many sets E1, . . . , Er , such that each Ei is equicon-
tinuous on some nonempty open subset Ui of C.
[Hint: Each matrix T ∈ Matn×n(R) induces a well-defined, continuous function
T :

(
P(Rn) ∖ P(kerT)

) → P(Rn). If BT is a small ball around T in P
(
Matn×n(R)

)
,

then BT is equicontinuous on an open set. A compact set can be covered by finitely
many balls.]

#7. Establish (16.7.11).
[Hint: Since µ is stationary, the map

Γ∞ ×G/P → G/P :
(
(γ1, γ2, . . .), x

)
, γ1γ2 · · ·γnx

is measure preserving.]

#8. Show that if P(W) is minimal, then the Γ-equivariant measurable
map ξ : G/P → P(W) is unique (a.e.).
[Hint: If ψ is another Γ-equivariant map, then define ξ : G/P → Prob

(
P(W)

)
by

ξ(x) = 1
2 (δξ(x) + δψ(x)).]

§16.8. Groups of real rank one

The Margulis Superrigidity Theorem (16.1.4) was proved for groups of
real rank at least two in Section 16.5. Suppose, now, that rankRG = 1
(and G has no compact factors). The classification of simple Lie groups
tells us that G is isogenous to the isometry group of either:

• real hyperbolic space Hn,

• complex hyperbolic space CHn,

• quaternionic hyperbolic space HHn, or



NOTES 343

• the Cayley hyperbolic plane OH2 (where O is the ring of “Cayley
numbers” or “octonions”)

(cf. Theorem 8.3.1). Assumption 16.1.4(ii) rules out Hn and CHn, so,
from the connection of superrigidity with totally geodesic embeddings
(cf. Subsection 16.2(iii)), the following result completes the proof:

(16.8.1) Theorem. Assume

• X = HHn or OH2,

• Γ is a torsion-free, discrete group of isometries of X, such that Γ\X
has finite volume,

• X′ is an irreducible symmetric space of noncompact type, and

• φ : Γ → Isom(X′)◦ is a homomorphism whose image is Zariski dense.

Then there is a map f : X → X′, such that

1) f(X) is totally geodesic, and

2) f is φ-equivariant, which means f(γx) =φ(γ) · f(x).
Brief outline of proof. Choose a (nice) fundamental domain F for the
action of Γ on X. For any φ-equivariant map f : X → X′, define the en-
ergy of f to be the L2-norm of the derivative of f over F. Since f is
φ-equivariant, and the groups Γ and φ(Γ) act by isometries, this is inde-
pendent of the choice of the fundamental domain F.

It can be shown that this energy functional attains its minimum at
some function f . The minimality implies that f is harmonic. Then, by
using the geometry of X and the negative curvature of X′, it can be shown
that f must be totally geodesic. □

Notes

This chapter is largely based on [6, Chaps. 6 and 7]. (However, we usu-
ally replace the assumption that rankRG ≥ 2 with the weaker assumption
that G is not SO(1,m) × K or SU(1,m) × K. (See [10, Thm. 5.1.2, p. 86]
for a different exposition that proves version (16.1.6) for rankRG ≥ 2.)
In particular:

• For rankRG ≥ 2, our statement of the Margulis Superrigidity The-
orem (16.1.6) is a special case of [6, Thm. 7.5.6, p. 228].

• For rankRG ≥ 2, Corollary 16.1.7 is stated in [6, Thm. 9.6.15(i)(a),
p. 332].

• For rankRG ≥ 2, Theorem 15.1.2 is stated in [6, Thm. 7.7.5, p. 254].
(See [8, Thm. B] for the general case, which does not follow from
superrigidity.)

• Lemma 16.5.5 is a version of [6, Prop. 4.6, p. 222]

• Lemma 16.5.7 is a version of [6, Lem. 7.5.5, p. 227].
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• Lemma 16.5.10 is [6, Prop. 7.3.6, p. 219].

• Key Fact 16.6.1′ is adapted from [6, Thm. 6.4.3(b)2, p. 209].

• Theorem 16.7.8 is based on [6, Prop. 6.2.13, pp. 202–203].

• Lemma 16.7.9 is taken from [6, Prop. 6.4.2, p. 209].

• Corollary 16.7.10 is based on [6, Prop. 6.2.9, p. 200].

• Exercise 16.7#6 is [6, Lem. 6.3.2, p. 203].

Long before the general theorem of Margulis for groups of real rank
≥ 2, it was proved by Bass, Milnor, and Serre [2, Thm. 61.2] that the
Congruence Subgroup Property implies SL(n,Z) is superrigid in SL(n,R).

“Geometric superrigidity” is the study of differential geometric ver-
sions of the Margulis Superrigidity Theorem, such as Proposition 16.2.5.
(See, for example, [7].)

Details of the derivation of arithmeticity from superrigidity (Sec-
tion 16.3) appear in [6, Chap. 9] and [10, §6.1].

Proofs of the Commensurability Criterion (16.3.3) and Commensura-
tor Superrigidity (16.3.4) can be found in [1], [6, §9.2.11, pp. 305ff, and
Thm. 7.5.4, pp. 226–227], and [10, §6.2].

Much of the material in Section 16.7 is due to Furstenberg [4].
The superrigidity of lattices in the isometry groups of HHn andOH2

(see Section 16.8) was proved by Corlette [3]. The p-adic version (16.3.2)
for these groups was proved by Gromov and Schoen [5].
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Chapter 17

Normal Subgroups of Γ

This chapter presents a contrast between the lattices in groups of real
rank 1 and those of higher real rank:

• If rankRG = 1, then Γ has many, many normal subgroups, so Γ is
very far from being simple.

• If rankRG > 1 (and Γ is irreducible), then Γ is simple modulo finite
groups. More precisely, if N is any normal subgroup of Γ , then
either N is finite, or Γ/N is finite.

§17.1. Normal subgroups in lattices of real rank ≥ 2

(17.1.1) Theorem (Margulis Normal Subgroups Theorem). Assume

• rankRG ≥ 2,

• Γ is an irreducible lattice in G, and

• N is a normal subgroup of Γ .
Then either N is finite, or Γ/N is finite.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: amenability (Furstenberg’s Lemma
(12.6.1)) and Kazhdan’s Property (T) (Chapter 13). Also used: the
σ-algebra of Borel sets modulo sets of measure 0 (Section 14.4) and
manifolds of negative curvature.
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(17.1.2) Example. Every lattice in SL(3,R) is simple, modulo finite groups.
In particular, this is true of SL(3,Z).

(17.1.3) Remarks.

1) The hypotheses on G and Γ are essential:
(a) If rankRG = 1, then every lattice in G has an infinite normal

subgroup of infinite index (see Theorem 17.2.1).
(b) If Γ is reducible (and G has no compact factors), then Γ has an

infinite normal subgroup of infinite index (see Exercise 2).

2) The finite normal subgroups of Γ are easy to understand (if Γ is
irreducible): the Borel Density Theorem implies that they are the
subgroups of the finite abelian group Γ ∩Z(G) (see Corollary 4.5.4).

3) If Γ is infinite, then Γ has infinitely many normal subgroups of finite
index (see Exercise 5), so Γ is not simple.

4) In most cases, the subgroups of finite index are described by the
“Congruence Subgroup Property.” For example, if Γ = SL(3,Z), then
the principal congruence subgroups are obvious subgroups of fi-
nite index (see Exercise 4.8#3). More generally, any subgroup of Γ
that contains a principal congruence subgroup obviously has finite
index. The Congruence Subgroup Property is the assertion that ev-
ery finite-index subgroup is one of these obvious ones. It is true
for SL(n,Z), whenever n ≥ 3, and a similar (but slightly weaker)
statement is conjectured to be true whenever rankRG ≥ 2 and Γ is
irreducible.

The remainder of this section presents the main ideas in the proof
of Theorem 17.1.1. In a nutshell, we will show that if N is an infinite,
normal subgroup of Γ , then

1) Γ/N has Kazhdan’s property (T), and

2) Γ/N is amenable.

This implies that Γ/N is finite (see Corollary 13.1.5).
In most cases, it is easy to see that Γ/N has Kazhdan’s property (be-

cause Γ has the property), so the main problem is to show that Γ/N is
amenable. This amenability follows easily from an ergodic-theoretic re-
sult that we will now describe.

(17.1.4) Assumption. To minimize the amount of Lie theory needed, let
us assume

G = SL(3,R).

(17.1.5) Notation. Let

P =

∗∗ ∗
∗ ∗ ∗

 ⊂ SL(3,R) = G.
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Hence, P is a (minimal) parabolic subgroup of G.

Note that if Q is any closed subgroup of G that contains P, then the
natural map G/P → G/Q is G-equivariant, so we may say that G/Q is a
G-equivariant quotient of G/P. Conversely, it is easy to see that spaces
of the form G/Q are the only G-equivariant quotients of G/P. In fact,
these are the only quotients even if we only assume that quotient map is
equivariant almost everywhere (see Exercise 6).

Furthermore, since Γ is a subgroup of G, it is obvious that every G-
equivariant map is Γ-equivariant. Conversely, the following surprising
result shows that every Γ-equivariant quotient of G/P is G-equivariant
(up to a set of measure 0):

(17.1.6) Theorem (Margulis). Suppose

• rankRG ≥ 2,

• P is a minimal parabolic subgroup of G,

• Γ is irreducible,

• Γ acts by homeomorphisms on a compact, metrizable space Z, and

• ψ : G/P → Z is essentially Γ-equivariant (and measurable).

Then the action of Γ on Z is measurably isomorphic to the natural action
of Γ on G/Q (a.e.), for some closed subgroup Q of G that contains P.

(17.1.7) Remark.

1) Perhaps we should clarify the choice of measures in the statement
of Theorem 17.1.6. (A measure class on G/P is implicit in the as-
sumption that ψ is essentially Γ-equivariant. Measure classes on Z
and G/Q are implicit in the “(a.e.)” in the conclusion of the theo-
rem.)
(a) Because G/P and G/Q are C∞ manifolds, Lebesgue measure

supplies a measure class on each of these spaces. The Lebesgue
class is invariant under all diffeomorphisms, so, in particular,
it is G-invariant.

(b) There is a unique measure class on Z for which ψ is measure-
class preserving (see Exercise 7).

2) The proof of Theorem 17.1.6 will be presented in Section 17.3. It
may be skipped on a first reading.

Proof of Theorem 17.1.1. Let N be a normal subgroup of Γ , and as-
sume N is infinite. We wish to show Γ/N is finite. Let us assume, for
simplicity, that Γ has Kazhdan’s Property (T). (For example, this is true
if G = SL(3,R), or, more generally, if G is simple (see Corollary 13.4.2).)
Then Γ/N also has Kazhdan’s Property (T) (see Proposition 13.1.7), so it
suffices to show that Γ/N is amenable (see Corollary 13.1.5).
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Suppose Γ/N acts by homeomorphisms on a compact, metrizable
space X. In order to show that Γ/N is amenable, it suffices to find an
invariant probability measure on X (see Theorem 12.3.1(3)). In other
words, we wish to show that Γ has a fixed point in Prob(X).

• Because P is amenable, there is an (essentially) Γ-equivariant mea-
surable map ψ : G/P → Prob(X) (see Corollary 12.6.2).

• From Theorem 17.1.6, we know there is a closed subgroup Q of G,
such that the action of Γ on Prob(X) is measurably isomorphic (a.e.)
to the natural action of Γ on G/Q.

Since N acts trivially on X, we know it acts trivially on Prob(X) ≊ G/Q.
Hence, the kernel of the G-action on G/Q is infinite (see Exercise 10).
However, G is simple (modulo its finite center), so this implies that the
action of G on G/Q is trivial (see Exercise 11). (It follows that G/Q is a
single point, so Q = G, but we do not need quite such a strong conclu-
sion.) Since Γ ⊆ G, then the action of Γ on G/Q is trivial. In other words,
every point in G/Q is fixed by Γ . Since G/Q ≊ Prob(X) (a.e.), we conclude
that almost every point in Prob(X) is fixed by Γ ; therefore, Γ has a fixed
point in Prob(X), as desired. □

(17.1.8) Remark. The proof of Theorem 17.1.1 concludes that “almost ev-
ery point in Prob(X) is fixed by Γ ,” so it may seem that the proof provides
not just a single Γ-invariant measure, but many of them. This is not the
case: The proof implies that ψ is essentially constant (see Exercise 12).
This means that the Γ-invariant measure class [ψ∗µ] is supported on a
single point of Prob(X), so “a.e.” means only one point.

Exercises for §17.1.

#1. Assume
• G is not isogenous to SO(1, n) or SU(1, n), for any n,
• Γ is irreducible, and
• G has no compact factors.

In many cases, Kazhdan’s property (T) implies that the abelian-
ization Γ/[Γ , Γ] of Γ is finite (see Corollary 13.4.3(2)). Use Theo-
rem 17.1.1 to prove this in the remaining cases. (We saw a different
proof of this in Exercise 16.1#3.)

#2. Verify Remark 17.1.3(1b).
[Hint: Proposition 4.3.3.]

#3. Suppose Γ is a lattice in SL(3,R). Show that Γ has no nontrivial,
finite, normal subgroups.

#4. Suppose Γ is an irreducible lattice inG. Show that Γ has only finitely
many finite, normal subgroups.
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#5. Show that if Γ is infinite, then it has infinitely many normal sub-
groups of finite index.
[Hint: Exercise 4.8#9.]

#6. Suppose
• H is a closed subgroup of G,
• G acts continuously on a metrizable space Z, and
• ψ : G/H → Z is essentially G-equivariant (and measurable).

Show the action of G on Z is measurably isomorphic to the action
ofGonG/Q (a.e.), for some closed subgroupQofG that containsH.
More precisely, show there is a measurableϕ : Z → G/Q, such that:

a) ϕ is measure-class preserving (i.e., a subset A of G/Q has mea-
sure 0 if and only if its inverse image ϕ−1(A) has measure 0),

b) ϕ is one-to-one (a.e.) (i.e., ϕ is one-to-one on a conull subset
of Z), and

c) ϕ is essentially G-equivariant.
[Hint: See Remark 17.1.7(1) for an explanation of the measure classes to be used on
G/H, G/Q, and Z. For each g ∈ G, the set {x ∈ G/H | ψ(gx) = g ·ψ(x) } is conull.
By Fubini’s Theorem, there is some x0 ∈ G/H, such that ψ(gx0) = g ·ψ(x0) for
a.e. g. Show the G-orbit of ψ(x0) is conull in Z, and let Q = StabG

(
ψ(x0)

)
.]

#7. Suppose
• ψ : Y → Z is measurable, and
• µ1 and µ2 are measures on Y that are in the same measure

class.
Show:

a) The measures ψ∗(µ1) and ψ∗(µ2) on Z are in the same mea-
sure class.

b) For any measure class on Y , there is a unique measure class
on Z for which ψ is measure-class preserving.

#8. In the setting of Theorem 17.1.6, show that ψ is essentially onto.
That is, the image ψ(G/P) is a conull subset of Z.
[Hint: By choice of the measure class on Z, we know that ψ is measure-class pre-
serving.]

#9. Let G = SL(3,R) and Γ = SL(3,Z). Show that the natural action of Γ
on R3/Z3 = T3 is a Γ-equivariant quotient of the action on R3, but
is not a G-equivariant quotient.

#10. In the proof of Theorem 17.1.1, we know that Prob(X) ≊ G/Q (a.e.),
so each element of N fixes a.e. point in G/Q. Show that N acts
trivially on G/Q (everywhere, not only a.e.).
[Hint: The action of N is continuous.]

#11. In the notation of the proof of Theorem 17.1.1, show that the action
of G on G/Q is trivial.
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[Hint: Show that the kernel of the action of G on G/Q is closed. You may assume,
without proof, that G is an almost simple Lie group. This means that every proper,
closed, normal subgroup of G is finite.]

#12. In the setting of the proof of Theorem 17.1.1, show that ψ is con-
stant (a.e.).
[Hint: The proof shows that a.e. point in the image of ψ is fixed by G. Because ψ is
G-equivariant, and G is transitive on G/P, this implies that ψ is constant (a.e.).]

§17.2. Normal subgroups in lattices of rank one

Theorem 17.1.1 assumes rankRG ≥ 2. The following result shows that
this condition is necessary:

(17.2.1) Theorem. If rankRG = 1, then Γ has a normal subgroup N, such
that neither N nor Γ/N is finite.

Proof (assumes familiarity with manifolds of negative curvature). For
simplicity, assume:

• Γ is torsion free, so it is the fundamental group of the locally sym-
metric spaceM = Γ\G/K (where K is a maximal compact subgroup
of G).

• M is compact.

• The locally symmetric metric on M has been normalized to have
sectional curvature ≤ −1.

• The injectivity radius of M is ≥ 2.

• There are closed geodesics γ and λ in M, such that length(λ) > 2π
and dist(γ, λ) > 2.

The geodesics γ and λ represent (conjugacy classes of) nontrivial ele-
ments γ̂ and λ̂ of the fundamental group Γ of M. Let N be the smallest
normal subgroup of Γ that contains λ̂.

It suffices to show that γ̂n is nontrivial in Γ/N, for every n ∈ Z+

(see Exercise 1). Construct a CW complex M by gluing the boundary of a
2-disk Dλ to M along the curve λ, so the fundamental group of M is Γ/N.

We wish to show that γn is not null-homotopic in M. Suppose there
is a continuous map f : D2 → M, such that the restriction of f to the
boundary of D2 is γn. Let

D2
0 = f−1(M),

so D2
0 is a surface of genus 0 with some number k of boundary curves.

We may assume f is minimal (i.e., the area of D2 under the pull-back
metric is minimal). Then D2

0 is a surface of curvature κ(x) ≤ −1 whose
boundary curves are geodesics. Note that f maps

• one boundary geodesic onto γn, and

• the other k− 1 boundary geodesics onto multiples of λ.
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This yields a contradiction:

2π(k− 2) = −2π χ(D2
0) (see Exercise 2)

= −
∫
D2

0

κ(x)dx (Gauss-Bonnet Theorem)

≥
∫
D2

0

1dx

≥ (k− 1) length(λ) (see Exercise 3)

> 2π(k− 1). □

(17.2.2) Remark. Perhaps the simplest example of Theorem 17.2.1 is
when G = SL(2,R) and Γ is a free group (see Remark 6.1.6). In this case,
it is easy to find a normal subgroup N, such that N and Γ/N are both
infinite. (For example, we could take N = [Γ , Γ].)

There are numerous strengthenings of Theorem 17.2.1 that provide
infinite quotients of Γ with various interesting properties (if rankRG = 1).
We will conclude this section by briefly describing just one such example.

A classical theorem of Higman, Neumann, and Neumann states that
every countable group can be embedded in a 2-generated group. Since
2-generated groups are precisely the quotients of the free group F2 on
2 generators, this means that F2 is “SQ-universal” in the following sense:

(17.2.3) Definition. Γ is SQ-universal if every countable group is iso-
morphic to a subgroup of a quotient of Γ . (The letters “SQ” stand for
“subgroup-quotient.”)

More precisely, the SQ-universality of Γ means that if Λ is any count-
able group, then there exists a normal subgroup N of Γ , such that Λ is
isomorphic to a subgroup of Γ/N.

(17.2.4) Example. Fn is SQ-universal, for any n ≥ 2 (see Exercise 4).

SQ-universality holds not only for free groups, which are lattices in
SL(2,R) (see Remark 6.1.6), but for any other lattice of real rank one:

(17.2.5) Theorem. If rankRG = 1, then Γ is SQ-universal.

(17.2.6) Remark. Although the results in this section have been stated
only for Γ , which is a lattice, the theorems are valid for a much more gen-
eral class of groups. This is because normal subgroups can be obtained
from an assumption of negative curvature (as is illustrated by the proof
of Theorem 17.2.1). Indeed, Theorems 17.2.1 and 17.2.5 remain valid
when Γ is replaced with any group that is Gromov hyperbolic (see Defini-
tion 10.2.1), or even “relatively” hyperbolic (and not commensurable to
a cyclic group).
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Exercises for §17.2.

#1. Suppose
• γ and λ are nontrivial elements of Γ ,
• Γ is torsion free,
• N is a normal subgroup of Γ ,
• λ ∈ N, and
• γn ∉ N, for every positive integer n.

Show that neither N nor Γ/N is infinite.

#2. Show that the Euler characteristic of a 2-disk with k− 1 punctures
is 2− k.

#3. In the notation of the proof of Theorem 17.2.1, show∫
D2

0

1dx ≥ (k− 1) length(λ).

[Hint: All but one of the boundary components are at least as long as λ, and a
boundary collar of width 1 is disjoint from the collar around any other boundary
component.]

#4. Justify Example 17.2.4.
[Hint: You may assume the theorem of Higman, Neumann, and Neumann on em-
bedding countable groups in 2-generated groups.]

§17.3. Γ-equivariant quotients of G/P (optional)

In this section, we explain how to prove Theorem 17.1.6. However, we
will assume G = SL(2,R)× SL(2,R), for simplicity.

The space Z is not known explicitly, so it is difficult to study directly.
Instead, as in the proof of the ergodic decomposition in Section 14.4, we
will look at the σ-algebra B(Z) of Borel sets, modulo the sets of mea-
sure 0. (We will think of this as the set of {0,1}-valued functions in
+∞(Z), by identifying each set with its characteristic function.) Note that
ψ induces a Γ-equivariant inclusion

ψ∗ : B(Z)↩ B(G/P)
(see Exercise 1). Via the inclusion ψ∗, we can identify B(Z) with a sub-
σ-algebra of B(G/P):

B(Z) ⊆ B(G/P).
In order to establish that Z is a G-equivariant quotient of G/P, we wish to
show thatB(Z) isG-invariant (see Exercise 2). Therefore, Theorem 17.1.6
can be reformulated as follows:

(17.1.6′) Theorem. If B is any Γ-invariant sub-σ-algebra of B(G/P), then
B is G-invariant.

To make things easier, let us settle for a lesser goal temporarily:
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(17.3.1) Definition. The trivial Boolean sub-σ-algebra of B(G/P) is {0,1}
(the set of constant functions).

(17.3.2) Proposition. If B is any nontrivial, Γ-invariant sub-σ-algebra of
B(G/P), then B contains a nontrivial G-invariant Boolean algebra.

(17.3.3) Remark.

1) To establish Proposition 17.3.2, we will find a characteristic func-
tion f ∈ B(G/P) \ {0,1}, such that Gf ⊆ B.

2) The proof of Theorem 17.1.6′ is similar: letBG be the (unique) max-
imal G-invariant Boolean subalgebra of B. If BG ≠ B, we will find
some f ∈ B(G/P)\BG, such that Gf ⊆ B. (This is a contradiction.)

(17.3.4) Assumption. To simplify the algebra in the proof of Proposi-
tion 17.3.2, let us assume G = SL(2,R)× SL(2,R).

(17.3.5) Notation.

• G = G1 ×G2, where G1 = G2 = SL(2,R),
• P = P1 × P2, where Pi =

[∗
∗ ∗

]
⊂ Gi,

• U = U1 ×U2, where Ui =
[

1∗ 1

]
⊂ Pi,

• V = V1 × V2, where Vi =
[
1 ∗

1

]
⊂ Gi,

• Γ = some irreducible lattice in G, and

• B = some Γ-invariant sub-σ-algebra of B(G/P) .

(17.3.6) Remark. We have G/P = (G1/P1)×(G2/P2). Here are two useful,
concrete descriptions of this space:

• G/P = RP1 ×RP1 ≊ R2 (a.e.), and

• G/P ≊ V1 × V2 (a.e.) (see Exercise 4).

Note that, if we identify G/P with R2 (a.e.), then, for the action of G1

on G/P, we have

•
[
k
k−1

]
(x,y) = (k2x,y), and

•
[

1 t
1

]
(x,y) = (x + t,y)

(see Exercise 3).

The proof of Proposition 17.3.2 employs two preliminary results. The
first is based on a standard fact from first-year analysis:

(17.3.7) Lemma (Lebesgue Differentiation Theorem). Let

• f ∈ +1(Rn),
• λ be the Lebesgue measure on Rn, and

• Br (p) be the ball of radius r centered at p.
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For a.e. p ∈ Rn, we have

lim
r→0

1
λ
(
Br (p)

) ∫
Br (p)

f dλ = f(p). (17.3.8)

Letting n = 1 and applying Fubini’s Theorem yields:

(17.3.9) Corollary. Let

• f ∈ +∞(R2),

• a =
[
k
k−1

]
∈ G1, for some k > 1, and

• π2 : R2 → {0} ×R be the projection onto the y-axis.

Then, for a.e. v ∈ V1,

anvf converges in measure to (vf) ◦π2 as n→∞.
Proof. Exercise 6. □

The other result to be used in the proof of Proposition 17.3.2 is a
consequence of the Moore Ergodicity Theorem:

(17.3.10) Proposition. For a.e. v ∈ V1, Γv−1a−N is dense in G.

Proof. Taking inverses, we wish to show aNvΓ = G; i.e., the (forward)
a-orbit of vΓ is dense in G/Γ , for a.e. v ∈ V1. We will show that

aNgΓ = G, for a.e. g ∈ G,

and leave the remainder of the proof to the reader (see Exercise 7).
Given a nonempty open subset O of G/Γ , let

E =
∪
n>0

a−nO.

Clearly, a−1E ⊆ E. Since µ(a−1E) = µ(E) (because the measure on G/Γ is
G-invariant), this implies E is a-invariant (a.e.). Since the Moore Ergodic-
ity Theorem (14.2.4) tells us that a is ergodic on G/Γ , we conclude that
E = G/Γ (a.e.). This means that, for a.e. g ∈ G, the forward a-orbit of g
intersects O .

Since O is an arbitrary open subset, and G/Γ is second countable, we
conclude that the forward a-orbit of a.e. g is dense. □

Proof of Proposition 17.3.2 for G = SL(2,R) × SL(2,R). Identify G/P
with R2, as in Remark 17.3.6. Since B is nontrivial, it contains some
nonconstant f . Now f cannot be essentially constant both on almost
every vertical line and on almost every horizontal line (see Exercise 8), so
we may assume there is a non-null set of vertical lines on which it is not
constant. This means that{

v ∈ V1

∣∣∣∣∣ (vf) ◦π2 is not
essentially constant

}
has positive measure.
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Corollary 17.3.9 and Proposition 17.3.10 tell us we may choose v in this
set, with the additional properties that

• anvf → (vf) ◦π2, and

• Γv−1a−N is dense in G.

Let f = (vf) ◦π2, so
anvf → f .

Now, for any g ∈ G, there exist γi ∈ Γ and ni →∞, such that

gi := γiv−1a−ni → g.
Then we have

gianiv = γi ∈ Γ ,
so the Γ-invariance of B implies

B∋ γif = gi anivf → g f
(see Exercise 12). Since B is closed (see Exercise 11), we conclude that
g f ∈ B. Since g is an arbitrary element of G, this means Gf ⊆ B. Also,
from the choice of v, we know that f = (vf) ◦ π2 is not essentially
constant. □

Combining the above argument with a list of the G-invariant Boolean
subalgebras of B(G/P) yields Theorem 17.1.6′:

Proof of Theorem 17.1.6′ for G = SL(2,R) × SL(2,R). Let BG be the
largest G-invariant subalgebra of B, and suppose B≠ BG. (This will lead
to a contradiction.)

It is shown in Exercise 10 that the only G-invariant subalgebras of
B(G/P) = B(R2) are

• B(R2),
• { functions constant on horizontal lines (a.e.) },
• { functions constant on vertical lines (a.e.) }, and

• {0,1 }.
So BG must be one of these 4 subalgebras.

We know BG ≠ B(R2) (otherwise B = BG). Also, we know B is non-
trivial (otherwise B = {0,1} = BG), so Proposition 17.3.2 tells us that
BG ≠ {0,1}. Hence, we may assume, by symmetry, that

BG = { functions constant on vertical lines (a.e.) }. (17.3.11)

Since B≠ BG, there is some f ∈ B, such that f is not essentially constant
on vertical lines. Applying the proof of Proposition 17.3.2 yields f , such
that

• Gf ⊆ B, so f ∈ BG, and

• f is not essentially constant on vertical lines.

This contradicts (17.3.11). □
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Very similar ideas yield the general case of Theorem 17.1.6, if one
is familiar with real roots and parabolic subgroups. To illustrate this,
without using extensive Lie-theoretic language, let us explicitly describe
the setup for G = SL(3,R).

Modifications for SL(3,R).

• P =
[∗
∗ ∗
∗ ∗ ∗

]
, V =

[
1 ∗ ∗

1 ∗
1

]
, V1 =

[
1 ∗

1
1

]
, V2 =

[
1

1 ∗
1

]
.

Note that V = ⟨V1, V2⟩.
• There are exactly four subgroups containing P, namely,

P, G, P1 =
[∗ ∗
∗ ∗
∗ ∗ ∗

]
= ⟨V1, P⟩, P2 =

[∗
∗ ∗ ∗
∗ ∗ ∗

]
= ⟨V2, P⟩.

Hence, there are precisely four G-invariant subalgebras of B(G/P).
Namely, if we identify B(G/P)with B(V), then the G-invariant sub-
algebras of B(V) are
◦ B(V),
◦ {0,1},
◦ right V1-invariant functions,
◦ right V2-invariant functions.

(17.3.12) Remark. The homogeneous spaces G/P1 and G/P2 are
RP2 and the Grassmannian G2,3 of 2-planes in R3 (see Exercise 13).
Hence, in geometric terms, the G-invariant Boolean subalgebras of
B(G/P) are B(G/P), {0,1}, B(RP2), and B(G2,3).

• Let π2 be the projection onto V2 in the natural semidirect product

V = V2 ⋉ V⊥2 , where V⊥2 =
[

1 ∗
1 ∗

1

]
.

• For a =
[k
k

1/k2

]
∈ G, Exercise 14 tells us

a

1 x z
1 y

1

P =
1 x k3z

1 k3y
1

P. (17.3.13)

• A generalization of the Lebesgue Differentiation Theorem tells us,
for f ∈ B(G/P) = B(V) and a.e. v ∈ V⊥2 , that

anvf converges in measure to (vf) ◦π2.

With these facts in hand, it is not difficult to prove Theorem 17.1.6′ under
the assumption that G = SL(3,R) (see Exercise 15).
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Exercises for §17.3.

#1. In the setting of Theorem 17.1.6, define ψ∗ : B(Z) → B(G/P) by
ψ∗(f ) = f ◦ψ. Show that ψ∗ is injective and Γ-equivariant.
[Hint: Injectivity relies on the fact that ψ is measure-class preserving.]

#2. In the setting of Theorem 17.1.6, show that if the sub-σ-algebra
ψ∗

(B(Z)) of B(G/P) is G-invariant, then Z is a G-equivariant quo-
tient of G/P (a.e.).
[Hint: To reduce problems of measurability, you may pretend that G is countable.
More precisely, use Exercise 14.4#5 to show that if H is any countable subgroup
of G that contains Γ, then the Γ-action can be extended to an action of H on Z by
Borel maps, such that, for each h ∈ H, we have ψ(hx) = hψ(x) for a.e. x ∈ G/P.]

#3. Let Gi and Pi be as in Notation 17.3.5. Show that choosing appro-
priate coordinates on RP1 = R∪ {∞} identifies the action of Gi on
Gi/Piwith the action ofGi = SL(2,R)onR∪{∞}by linear-fractional
transformations: [

a b
c d

]
(x) = ax + b

cx + d .

In particular,[
k
k−1

]
(x) = k2x and

[
1 t

1

]
(x) = x + t.

[Hint: Map a nonzero vector (x1, x2) ∈ R2 to its reciprocal slope x1/x2 ∈ R∪{∞}.]

#4. Let Gi, Pi, and Vi be as in Notation 17.3.5. Show that the map
Vi → Gi/Pi : v , vPi injective and measure-class preserving.
[Hint: Exercise 3.]

#5. Show that Equation (17.3.8) is equivalent to

lim
k→∞

1
λ
(
B1(0)

) ∫
B1(0)

f
(
p + x

k

)
dλ(x) = f(p).

[Hint: A change of variables maps B1(0) onto Br (p) with r = 1/k.]

#6. Prove Corollary 17.3.9.
[Hint: Exercise 5.]

#7. Complete the proof of Proposition 17.3.10: assume, for a.e. g ∈ G,
that aNgΓ is dense in G, and show, for a.e. v ∈ V1, that aNvΓ is
dense in G.
[Hint: If aNgΓ is dense, then the same is true when g is replaced by any element
of CG(a)U1 g.]

#8. Let f ∈ B(R2). Show that if f is essentially constant on a.e. vertical
line and on a.e. horizontal line, then f is constant (a.e.).

#9. Assume Notation 17.3.5. Show that the only subgroups of G con-
taining P are P, G1 × P2, P1 ×G2, and G.
[Hint: P is the stabilizer of a point in RP1 ×RP1, and has only 4 orbits.]
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#10. Assume Notation 17.3.5. Show that the only G-equivariant quo-
tients of G/P are G/P, G2/P2, G1/P1, and G/G.
[Hint: Exercise 9.]

#11. Suppose B is a sub-σ-algebra of B(G/P). Show that B is closed
under convergence in measure.

More precisely, fix a probability measure µ in the Lebesgue
measure class on G/P, and show that B is a closed in the topol-
ogy corresponding to the metric on B(G/P) that is defined by
d(A1, A2) = µ(A1 △A2).

#12. Show that the action of G on B(G/P) is continuous.
[Hint: Suppose gn → e and µ(An △ A) → 0. The Radon-Nikodym derivative
d(gn)∗µ/dµ tends uniformly to 1, so µ(gnAn△gnA)→ 0. To bound µ(gnA△A),
note that

∫
gnAφdµ →

∫
Aφdµ, for every φ ∈ Cc(G/P).]

#13. In the notation of Remark 17.3.12, show that G/P1 and G/P2 are
G-equivariantly diffeomorphic to RP2 and G2,3, respectively.
[Hint: Verify that the stabilizer of a point in RP2 is P1, and the stabilizer of a point
in G2,3 is P2.]

#14. Verify Equation (17.3.13).
[Hint: Since a ∈ P, we have agP = (aga−1)P, for any g ∈ G.]

#15. Prove Theorem 17.1.6′ under the assumption that G = SL(3,R).
[Hint: You may assume (without proof) the facts stated in the “Modifications for
SL(3,R).”]

Notes

The Normal Subgroups Theorem (17.1.1) is due to G. A. Margulis [5,
6, 7]. Expositions of the proof appear in [8, Chap. 4] and [12, Chap. 8].
(However, the proof in [12] assumes that G has Kazhdan’s property (T).)

When Γ is not cocompact, the Normal Subgroups Theorem can be
proved by algebraic methods derived from the proof of the Congruence
Subgroup Problem (see [9, Thms. A and B, p. 109] and [10, Cor. 1, p. 75]).
On the other hand, it seems that the ergodic-theoretic approach of Mar-
gulis provides the only known proof in the cocompact case.

Regarding Remark 17.1.3(4), see [11] for an introduction to the Con-
gruence Subgroup Property.

Theorem 17.1.6 is stated for generalGof real rank≥ 2 in [8, Cor. 2.13]
and [12, Thm. 8.1.4]. Theorem 17.1.6′ is in [8, Thm. 4.2.11] and [12,
Thm. 8.1.3]. See [12, §8.2 and §8.3] and [8, §4.2] for expositions of the
proof.

The proof of Theorem 17.2.1 is adapted from [3, 5.5.F, pp. 150–152].
The Higman-Neumann-Neumann Theorem on SQ-universality of F2

(see p. 353) was proved in [4]. A very general version of Theorem 17.2.5
that applies to all relatively hyperbolic groups was proved in [1]. (The
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notion of a relatively hyperbolic group was introduced in [3], and gener-
alized in [2].)
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Chapter 18

Arithmetic Subgroups
of Classical Groups

This chapter will give a quite explicit description (up to commensurabil-
ity) of all the arithmetic subgroups of almost every classical Lie group G
(see Theorem 18.5.3). (Recall that a simple Lie group G is “classical” if
it is either a special linear group, an orthogonal group, a unitary group,
or a symplectic group (see Definition A2.1).) The key point is that all
the Q-forms of G are also classical, not exceptional, so they are fairly
easy to understand. However, there is an exception to this rule: some 8-
dimensional orthogonal groups have Q-forms of so-called “triality type”
that are not classical and will not be discussed in any detail here (see Re-
mark 18.5.10).

Given G, which is a Lie group over R, we would like to know all of
its Q-forms (because, by definition, arithmetic groups are made from Q-
forms). However, we will start with the somewhat simpler problem that
replaces the fields Q and R with the fields R and C: finding the R-forms
of the classical Lie groups over C.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Restriction of Scalars (Section 5.5)
and examples of arithmetic subgroups (Chapter 6).
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§18.1. R-forms of classical simple groups over C

To set the stage, let us recall the classical result that almost all complex
simple groups are classical:

(18.1.1) Theorem (Cartan, Killing). All but finitely many of the simple Lie
groups over C are isogenous to either SL(n,C), SO(n,C), or Sp(2n,C),
for some n.

(18.1.2) Remark. Up to isogeny, there are exactly five simple Lie groups
over C that are not classical. They are the “exceptional” simple groups,
and are called E6, E7, E8, F4, and G2.

Now, we would like to describe the R-forms of each of the classical
groups. For example, finding all the R-forms of SL(n,C) would mean
making a list of the (simple) Lie groups G, such that the “complexifica-
tion” of G is SL(n,C). This is not difficult, but we should perhaps begin
by explaining more clearly what it means.

It has already been mentioned that, intuitively, the complexification
of G is the complex Lie group that is obtained from G by replacing real
numbers with complex numbers. For example, the complexification of
SL(n,R) is SL(n,C). In general,G is (isogenous to) the set of real solutions
of a certain set of equations, and we letGC be the set of complex solutions
of the same set of equations:

(18.1.3) Notation. Assume G ⊆ SL(ℓ,R), for some ℓ. Since G is al-
most Zariski closed (see Theorem A4.9), there is a certain subset Q of
R[x1,1, . . . , xℓ,ℓ], such that G◦ = Var(Q)◦. Let

GC = VarC(Q) = {g ∈ SL(ℓ,C) | Q(g) = 0, for all Q ∈ Q}.
Then GC is a (complex, semisimple) Lie group.

(18.1.4) Example.

1) SL(n,R)C = SL(n,C).
2) SO(n)C = SO(n,C).
3) SO(m,n)C ≊ SO(m+n,C) (see Exercise 1).

(18.1.5) Definition. If GC is isomorphic to H, then we say that

• H is the complexification of G, and that

• G is an R-form of H.

The following result lists the complexification of each classical group.
It is not difficult to memorize the correspondence. For example, it is
obvious from the notation that the complexification of Sp(m,n) should
be symplectic. Indeed, the only case that really requires memorization
is the complexification of SU(m,n) (see Proposition 18.1.6(Aiv)).
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(18.1.6) Proposition. Here is the complexification of each classical Lie
group.

A) Real forms of special linear groups:
(i) SL(n,R)C = SL(n,C),

(ii) SL(n,C)C ≊ SL(n,C)× SL(n,C),
(iii) SL(n,H)C ≊ SL(2n,C),
(iv) SU(m,n)C ≊ SL(m+n,C).

B) Real forms of orthogonal groups:
(i) SO(m,n)C ≊ SO(m+n,C),

(ii) SO(n,C)C ≊ SO(n,C)× SO(n,C),
(iii) SO(n,H)C ≊ SO(2n,C).

C) Real forms of symplectic groups:
(i) Sp(n,R)C = Sp(n,C),

(ii) Sp(n,C)C ≊ Sp(n,C)× Sp(n,C),
(iii) Sp(m,n)C ≊ Sp

(
2(m+n),C).

Some parts of this proposition are more-or-less obvious (such as
SL(n,R)C = SL(n,C)). A few other examples appear in Section 18.2 be-
low, and the methods used there can be applied to all of the cases. In fact,
all of the calculations are straightforward adaptations of the examples,
except perhaps the determination of SO(n,H)C (see Exercise 18.2#4).

Nothing in Proposition 18.1.6 is very surprising. What is not at all
obvious is that this list of real forms is complete:

(18.1.7) Theorem (É. Cartan). Every real form of SL(n,C), SO(n,C), or
Sp(n,C) appears in Proposition 18.1.6 (up to isogeny).

We will discuss a proof of this theorem in Section 18.3.

(18.1.8) Remarks.

1) From Proposition 18.1.6, we see that a single complex group may
have several different real forms. However, there are always only
finitely many (even for exceptional groups).

2) The Lie algebra of GC is the tensor product g ⊗ C (see Exercise 2).
This is independent of the embedding of G in SL(ℓ,C), so, up to
isogeny, GC is independent of the embedding of G in SL(ℓ,C).

3) We ignored a technical issue in Notation 18.1.3: there may be many
different choices ofQ (having the same set of real solutions), and it
may be the case that different choices yield different sets of com-
plex solutions. (In fact, a bad choice ofQ can yield a set of complex
solutions that is not a group.) To eliminate this problem, we should
insist that Q be maximal; that is,

Q = {Q ∈ R[x1,1, . . . , xℓ,ℓ] | Q(g) = 0, for all g ∈ G}.
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Then GC is the Zariski closure of G (over the field C), from which it
follows that GC, like G, is a semisimple Lie group.

(18.1.9) Example. Because the center of SL(3,R) is trivial, we see that
SL(3,R) is the same Lie group as PSL(3,R). On the other hand, we have

SL(3,R)C = SL(3,C) ̸≊ PSL(3,C) = PSL(3,R)C.
This is a concrete illustration of the fact that different embeddings of
G can yield different complexifications. Note, however, that SL(3,C) is
isogenous to PSL(3,C), so the difference between the complexifications
is negligible (cf. Remark 18.1.8(2)).

Exercises for §18.1.

#1. Show that SO(m,n)C ≊ SO(m+n,C).
[Hint: SO(m,n)C is conjugate to SO(m + n,C) in SL(m + n,C), because −1 is a
square in C.]

#2. Show that the Lie algebra of GC is g⊗ C.

§18.2. Calculating the complexification of G

This section justifies Proposition 18.1.6, by calculating the complexifica-
tion of each classical group.

Let us start with SL(n,C). This is already a complex Lie group, but
we can think of it as a real Lie group of twice the dimension. As such, it
has a complexification:

(18.2.1) Proposition. SL(n,C)C ≊ SL(n,C)× SL(n,C).

Proof. We should embed SL(n,C) as a subgroup of SL(2n,R), find the
corresponding set Q of defining polynomials, and determine the com-
plex solutions. However, it is more convenient to sidestep some of these
calculations by using restriction of scalars, the method described in §5.5.

Define ∆ : C→ C⊕C by ∆(z) = (z, z). Then the vectors ∆(1) = (1,1)
and ∆(i) = (i,−i) are linearly independent (over C), so they form a basis
of C⊕ C. Thus, ∆(C) is the R-span of a basis, so it is a R-form of C⊕ C.
Therefore, letting V = C2n, we see that

VR = ∆(Cn) =
{
(v, v) | v ∈ Cn }

is a real form of V. Let(
SL(n,C)× SL(n,C)

)
R =

{
g ∈ SL(n,C)× SL(n,C)

∣∣ g(VR) = VR } .
Then we have an isomorphism

∆̃ : SL(n,C) ≊
-→ (

SL(n,C)× SL(n,C)
)
R,

defined by ∆̃(g) = (g, g), so

SL(n,C)C ≊
(
[SL(n,C)× SL(n,C)]R

)
C = SL(n,C)× SL(n,C). □
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(18.2.2) Remarks.

1) Generalizing Proposition 18.2.1, one can show that ifG is isogenous
to a complex Lie group, then GC is isogenous to G ×G.

2) From Proposition 18.2.1, we see that GC need not be simple, even
if G is simple. However, this only happens when G is complex: if
G is simple, and G is not isogenous to a complex Lie group, then
GC is simple.

Although not stated explicitly there, the proof of Proposition 18.2.1
is based on the fact that C⊗R C ≊ C⊕ C. Namely, the map

C⊗R C→ C⊕ C defined by v ⊗ λ, ∆(v)λ
is an isomorphism of C-algebras. Analogously, understanding the com-
plexification of a group defined from the algebra H of quaternions will
be based on a calculation of H⊗R C.

(18.2.3) Lemma. The tensor product H⊗R C is isomorphic to Mat2×2(C).

Proof. Define an R-linear map ϕ : H→ Mat2×2(C) by

ϕ(1) = Id, ϕ(i) =
[
i 0
0 −i

]
, ϕ(j) =

[
0 1
−1 0

]
, ϕ(k) =

[
0 i
i 0

]
.

It is straightforward to verify that ϕ is an injective ring homomorphism.
Furthermore,ϕ

({1, i, j, k}) is a C-basis of Mat2×2(C). Therefore, the map
ϕ̂ : H ⊗ C → Mat2×2(C) defined by ϕ̂(v ⊗ λ) = ϕ(v)λ is a ring isomor-
phism (see Exercise 1). □

(18.2.4) Proposition. SL(n,H)C ≊ SL(2n,C).

Proof. From Lemma 18.2.3, we have

SL(n,H)C ≊ SL
(
n,Mat2×2(C)

) ≊ SL(2n,C)
(see Exercises 2 and 3). □

As additional examples, let us look at the complexifications of the
classical simple Lie groups that are compact, namely, SO(n), SU(n), and
Sp(n). As observed in Example 18.1.4(2), we have SO(n)C = SO(n,C).
The other cases are not as obvious.

(18.2.5) Proposition. SU(n)C = SL(n,C).

Proof. Let

• σ : C→ C,

• −⇀σ : Cn → Cn, and

• σ̃ : SL(n,C)→ SL(n,C)
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be the usual complex conjugations σ(z) = z, −⇀σ (v) = v, and σ̃ (g) = g.
We have

SU(n) = {g ∈ SL(n,C) | g∗g = Id }
= {g ∈ SL(n,C) | σ̃ (gT )g = Id },

so, in order to calculate SU(n)C, we should determine the map η̃ on
SL(n,C) × SL(n,C) that corresponds to σ̃ when we identify Cn with

(Cn ⊕ Cn)R under the map
−⇀∆ .

First, let us determine −⇀η . That is, we wish to identify Cn with R2n,
and extend −⇀σ to a C-linear map on C2n. However, as usual, we use the

R-form
−⇀∆ (Cn), in place of R2n. It is obvious that if we

define −⇀η : Cn ⊕ Cn → Cn ⊕ Cn by −⇀η (x,y) = (y,x),
then −⇀η is C-linear, and the following diagram commutes:

Cn
−⇀∆
-→ Cn ⊕ Cny−⇀σ y−⇀η

Cn
−⇀∆
-→ Cn ⊕ Cn.

Thus, it is fairly clear that η̃(g,h) = (h, g). Hence

SU(n)C = { (g,h) ∈ SL(n,C)× SL(n,C) | η̃(gT , hT )(g,h) = (Id, Id) }
= { (g,h) ∈ SL(n,C)× SL(n,C) | (hT , gT )(g,h) = (Id, Id) }
= { (g, (gT )−1) | g ∈ SL(n,C) }
≊ SL(n,C). □

(18.2.6) Proposition. Sp(n)C = Sp(2n,C).

Proof. Let

• ϕ : H ↩ Mat2×2(C) be the embedding that is described in the proof
of Lemma 18.2.3,

• τ be the usual conjugation on H,

• J =
[

0 1
−1 0

]
, and

• η : Mat2×2(C)→ Mat2×2(C) be defined by η(x) = J−1xTJ.

Then η is C-linear, and the following diagram commutes:

H
ϕ
-→ Mat2×2(C)yτ yη

H
ϕ
-→ Mat2×2(C).
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Hence, because

Sp(2) = {g ∈ SL(2,H) | g∗g = Id
}

=
{[
a b
c d

]
∈ SL(2,H)

∣∣∣∣∣
[
τ(a) τ(c)
τ(b) τ(d)

][
a b
c d

]
= Id

}
,

we see that

Sp(2)C =
{[
a b
c d

]
∈ SL

(
2,Mat2×2(C)

) ∣∣∣∣∣
[
η(a) η(c)
η(b) η(d)

][
a b
c d

]
= Id

}

=
{[
a b
c d

]
∈ SL

(
2,Mat2×2(C)

) ∣∣∣∣∣ J−1

[
aT cT
bT dT

]
J
[
a b
c d

]
= Id

}
=
{
g ∈ SL(4,C)

∣∣∣ J−1gTJg = Id
}

=
{
g ∈ SL(4,C)

∣∣∣ gTJg = J }
= Sp(4,C).

Similarly, letting

Ĵn =


J
J

. . .
J

 ∈ SL(2n,C),

the same calculations show that

Sp(n)C = {g ∈ SL(2n,C) | gT Ĵng = Ĵn } ≊ Sp(2n,C). □

Exercises for §18.2.

#1. In the proof of Lemma 18.2.3, verify:
a) ϕ is an injective ring homomorphism,
b) ϕ

({1, i, j, k}) is a C-basis of Mat2×2(C), and
c) ϕ̂ is an isomorphism of C-algebras.

#2. Show SL(n,H)C ≊ SL
(
n,Mat2×2(C)

)
.

[Hint: Defineϕas in the proof of Lemma 18.2.3. Use the proof of Proposition 18.2.1,
with ϕ in the place of ∆.]

#3. Show SL
(
n,Matd×d(C)

) ≊ SL(dn,C).

#4. Show that SO(n,H)C ≊ SO(2n,C).
[Hint: Similar to (18.2.6). To calculate τr ⊗ C, note that τr (x) = j−1 τ(x) j, for
x ∈ H.]

§18.3. How to find the real forms of complex groups

In this section, we will explain how to find all of the possible R-forms
of SL(n,C). (Similar techniques can be used to justify the other cases of
Theorem 18.1.7, but additional calculations are needed, and we omit the
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details.) We take an algebraic approach, based on Galois theory, and we
first review the most basic terminology from the theory of (nonabelian)
group cohomology.

§18.3(i). Definition of the first cohomology of a group.

(18.3.1) Definitions. Suppose a group X acts (on the left) by automor-
phisms on a groupM. (For x ∈ X andm ∈ M, we write xm for the image
of m under x.)

1) A function α : X → M is a 1-cocycle (or “crossed homomorphism”)
if

α(xy) = α(x) · xα(y) for all x,y ∈ X.
2) Two 1-cocycles α and β are equivalent (or “cohomologous”) if there

is some m ∈ M, such that

α(x) =m−1 · β(x) · xm for all x ∈ X.
3) *1(X;M) is the set of equivalence classes of all 1-cocycles. It is

called the first cohomology of X with coefficients in M.

4) A 1-cocycle is a coboundary if it is cohomologous to the trivial
1-cocycle defined by τ(x) = e for all x ∈ X.

(18.3.2) Warning. In our applications, the coefficient group M is some-
times nonabelian. In this case, *1(X;M) is a set with no obvious algebraic
structure. However, ifM is an abelian group (as is often assumed in text-
books on group cohomology), then *1(X;M) is an abelian group.

§18.3(ii). How Galois cohomology comes into the picture. For con-
venience, let GC = SL(n,C). Suppose ρ : GC → SL(N,C) is an embedding,
such that ρ

(
GC
)

is defined over R. We wish to find all the possibilities for
the group ρ(GC)R = ρ(GC)∩SL(N,R) that can be obtained by considering
all the possible choices of ρ.

Let σ denote complex conjugation, the nontrivial Galois automor-
phism of C over R. Since R = {z ∈ C | σ(z) = z }, we have

SL(N,R) = {g ∈ SL(N,C)
∣∣ σ(g) = g } ,

where we apply σ to a matrix by applying it to each of the matrix entries.
Therefore

ρ(GC)R = ρ(GC)∩ SL(N,R) = {g ∈ ρ(GC) ∣∣ σ(g) = g } .
Since ρ(GC) is defined over R, we know that it is invariant under σ , so
we have

GC
ρ
-→ ρ(GC) σ

-→ ρ(GC) ρ
−1

-→ GC.
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Let σ̃ = ρ−1σρ : GC → GC be the composition. Then the real form corre-
sponding to ρ is

GR = ρ−1(ρ(GC)∩ SL(N,R)
) = {g ∈ GC | σ̃ (g) = g }.

To summarize, the obvious R-form of GC is the set of fixed points of
the usual complex conjugation, and any other R-form is the set of fixed
points of some other automorphism of GC.

Now let

α(σ) = σ̃ σ−1 : GC → GC. (18.3.3)

It is not difficult to see that

• α(σ) is an automorphism of GC (as an abstract group), and

• α(σ) is holomorphic (since ρ−1 and σρσ−1 are holomorphic — in
fact, they can be represented by polynomials in local coordinates).

So α(σ) ∈ Aut(GC). Thus, by defining α(1) to be the trivial automor-
phism, we obtain a function α : Gal(C/R)→ Aut(GC).

Let Gal(C/R) act on Aut(GC), by defining
σφ = σφσ−1 forφ ∈ Aut(GC).

Then α(σ) = φ−1 σφ, so α(σ) · σα(σ) = α(1) (since σ 2 = 1). This
means that α is 1-cocycle of group cohomology, and therefore defines an
element of the cohomology set *1

(
Gal(C/R),Aut(GC)

)
. In fact:

This construction provides a one-to-one correspondence
between *1

(
Gal(C/R),Aut(GC)

)
and the set of R-forms of GC

(18.3.4)

(see Exercise 1). Thus, finding all of the R-forms of GC amounts to cal-
culating the cohomology of a Galois group, or, in other words, “Galois
cohomology.”

(18.3.5) Observation. The above discussion is an example of a fairly gen-
eral principle: if X is an algebraic object that is defined over R, then
*1
(
Gal(C/R),Aut(XC)

)
is in one-to-one correspondence with the set of

R-isomorphism classes of R-defined objects whose C-points are isomor-
phic to XC.

(18.3.6) Example. Suppose V1 and V2 are two vector spaces over R, and
they are isomorphic over C. (I.e., V1 ⊗ C ≊ V2 ⊗ C.) Then the two vector
spaces have the same dimension, so elementary linear algebra tells us
that they are isomorphic over R. This means that the R-form of any
complex vector space VC is unique (up to isomorphism), so the general
principle (18.3.5) tells us

*1(Gal(C/R),Aut(VC)
) = 0.

In other words, we have

*1(Gal(C/R),GL(n,C)
) = 0.

A similar argument shows *1
(
Gal(C/R), SL(n,C)

) = 0 (see Exercise 2).
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(18.3.7) Warning. The “fairly general principle” (18.3.5) is not completely
general. Although almost nothing needs to be assumed in order to con-
struct a well-defined, injective map from the set of Q-forms to the co-
homology set (cf. Exercise 1), this map might not be surjective. That is,
there might be cohomology classes that do not come from Q-forms, un-
less some (fairly mild) hypotheses are imposed on the class of algebraic
objects.

(18.3.8) Warning. Up to now, we have usually ignored finite groups
in this book: an answer up to isogeny or commensurability was good
enough. However, such sloppiness is unacceptable when calculating Ga-
lois cohomology groups. For example, even though SL(n,C) is isoge-
nous to PSL(n,C), the two groups have completely different cohomology.
Namely:

• we saw in Example 18.3.6 that *1
(
Gal(C/R), SL(n,C)

)
is trivial, but

• Subsection 18.3(iii) will show *1
(
Gal(C/R),PSL(n,C)

)
is infinite.

§18.3(iii). Constructing explicitR-forms from cohomology classes.
Given α ∈ *1

(
Gal(C/R),Aut(GC)

)
, we will now see how to find the cor-

responding R-form GR.
It is known that the outer automorphism group of GC = SL(n,C) has

only one nontrivial element, namely, the “transpose-inverse” automor-
phism, defined by ω(g) = (gT )−1. So

Aut
(
GC
) = PSL(n,C)⋊ ⟨ω⟩.

We consider two cases.

Case 1. Assume α ∈ *1
(
Gal(C/R),PSL(n,C)

)
. It is a fundamental fact

in the theory of finite-dimensional algebras that every C-linear automor-
phism of the matrix algebra Matn×n(C) is inner (see Exercise 5). Since the
center acts trivially, this means Aut

(
Matn×n(C)

) = PSL(n,C). Therefore,

*1(Gal(C/R),PSL(n,C)
) = *1(Gal(C/R),Aut

(
Matn×n(C)

))
,

so, by the general principle (18.3.5), we can identify this cohomology
set with the set of R-forms of Matn×n(C). More precisely, it is the set of
algebras A over R, such that A⊗C ≊ Matn×n(C). Such an algebra must be
simple (since Matn×n(C) is simple), so, by Wedderburn’s Theorem (6.8.5),
it is a matrix algebra over a division algebra: A ≊ Matk(D), where D is
a division algebra over R. The corresponding R-form GR is SL(k,D). It
is well known that the only division algebras over R are R, C, and H
(see Exercise 6), so the real form must be either SL(k,R), SL(k,C), or
SL(k,H), all of which are on the list in Proposition 18.1.6(A).

Case 2. Assume the image of α is not contained in PSL(n,C). In this case,
we have α(σ) = (conjugation by A)ω for some A ∈ GL(n,R). Hence, for
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every g ∈ GR,

g = σ̃ (g) = (α(σ)σ)(g) = Aω(σ(g))A−1 = A ((σg)T )−1A−1,
which means gA(σg)T = A. In other words, g is in the unitary group
SU(A,σ) corresponding to the Hermitian form on Cn that is defined by
the matrix A. Since every Hermitian form on Cn is determined (up to
isometry) by the number of positive and negative eigenvalues of A, we
conclude that GR ≊ SU(m,n) for some m and n. So GR is listed in
Proposition 18.1.6(A).

Exercises for §18.3.

#1. Suppose ρ1(GC)R and ρ2(GC)R are two R-forms of SL(n,C), with
corresponding 1-cocycles α1 and α2.

a) Show that if ρ1(GC)R ≊ ρ2(GC)R, then α1 and α2 are cohomol-
ogous. (So the correspondence in (18.3.4) is well-defined.)

b) Conversely, show that if α1 is cohomologous to α2, then we
have ρ1(GC)R ≊ ρ2(GC)R. (So the correspondence in (18.3.4) is
one-to-one.)

In Subsection 18.3(iii), a real form of SL(n,C) is constructed for
each cohomology class α. This shows that the correspondence is
onto, and therefore completes the proof of (18.3.4).
[Hint: In (a), you may assume, without proof, that every isomorphism fromρ1(GC)R
to ρ2(GC)R extends to an isomorphism from ρ1(GC) to ρ2(GC).]

#2. Show *1
(
Gal(C/R), SL(n,C)

) = 0, by identifying SL(n,C) with the
automorphism group of a pair (V , ξ), where V is an n-dimensional
vector space and ξ is a nonzero element of the exterior power

∧n V.

#3. The short exact sequence

1 → SL(n,C)↩ GL(n,C) det
-→ C× → 1

gives rise to the following long exact sequence of cohomology:

*0(Gal(C/R),GL(n,C)
)→ *0(Gal(C/R),C×

)
→ *1(Gal(C/R), SL(n,C)

)→ *1(Gal(C/R),GL(n,C)
)
.

Show that the first map in this sequence is surjective, and combine
this with the vanishing of the last term to provide another proof
that *1

(
Gal(C/R), SL(n,C)

) = 0.
[Hint: The 0th cohomology group is the set of fixed points of the action.]

#4. Show that if n is odd, then every R-form of SO(n,C) is isogenous
to SO(p, q), for some p and q.
[Hint: You may assume, without proof, that every automorphism of SO(n,C) is
inner. Also note that SO(n,C) = PSO(n,C) (why?). Both of these observations
require the assumption that n is odd.]
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#5. Show that if α is any C-linear automorphism of the ring Matn×n(C),
then there exists T ∈ GL(n,C), such that φ(X) = TXT−1 for all
X ∈ Matn×n(C).
[Hint: For A = Matn×n(C), make Cn into a simple A-module via a ∗ v = α(a)v.
However, the usual action on Cn is the unique simple A-module (up to isomor-
phism), because A is a direct sum of submodules that are isomorphic to Cn.]

#6. Show:
a) C is the only finite field extension of R (other than R itself).
b) H is the only division algebra over R that is not commutative.

[Hint: (a) You may assume, without proof, that C is algebraically closed. This
implies that every irreducible real polynomial is either linear or quadratic. (b) If
x ∈ D∖R, then R[x] is a field extension of R; identify it with C. Then conjugation
by i is a C-linear map on D. Choose j to be in the −1-eigenspace, and let b = j2.

Show b ∈ R and D ≊ H−1,b
R .]

§18.4. The Q-forms of SL(n,R)

To illustrate how the method of the preceding section is used to find
Q-forms, instead of R-forms, we prove the following result that justifies
the claims made in Chapter 6 about arithmetic subgroups of SL(n,R):

(18.4.1) Theorem (cf. Section 6.8). Every Q-formGQ of SL(n,R) is either a
special linear group or a unitary group (perhaps over a division algebra).

(18.4.2) Remark. More precisely, GQ is isomorphic to either:

1) SL(m,D), for some m and some division algebra D over Q, or

2) SU(A, τ ;D) = {g ∈ SL(k,D)
∣∣ gA(τg)T = A }, where

• D is a division algebra over Q,
• τ is an anti-involution of D that acts nontrivially on the center

of D, and
• A is a matrix in Matk×k(D) that is Hermitian (i.e., (τA)T = A).

The proof is based on the following connection with Galois cohomol-
ogy. We will work with GC, instead of G, because algebraically closed
fields are much more amenable to Galois Theory. (That is, we are replac-
ing SL(n,R) with SL(n,C) to avoid technical issues.)

(18.4.3) Proposition. There is a one-to-one correspondence between the
Q-forms of GC and the Galois cohomology set *1

(
Gal(C/Q),Aut(GC)

)
.

Proof. We assume familiarity with the proof in Section 18.3, and highlight
the changes that need to be made.

Suppose we have an embedding ρ : GC → SL(N,C), such that ρ(GC)
is defined over Q. The main difference from Section 18.3 is that, un-
like Gal(C/R), the Galois group Gal(C/Q) has infinitely many nontrivial
elements, and we need to consider all of them: since

Q = {z ∈ C | σ(z) = z, ∀σ ∈ Gal(C/Q) },
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we have

ρ(GC)Q =
{
g ∈ ρC(GC)

∣∣ σ(g) = g, ∀σ ∈ Gal(C/Q)
}
.

For each σ ∈ Gal(C/Q), let

σ̃ = ρ−1σρ : GC → GC and α(σ) = σ̃ σ−1 : GC → GC.
Then

GQ = {g ∈ GC | σ̃ (g) = g, ∀σ ∈ Gal(C/Q) },
and α(σ) ∈ Aut(GC). Furthermore, since α(σ) = ρ−1σρσ−1 = ρ−1 σρ is
formally a 1-coboundary, it is easily seen to be a 1-cocycle, and therefore
represents a cohomology class in *1

(
Gal(C/Q),Aut(GC)

)
.

This defines the desired map from the set of Q-forms to the Galois
cohomology set. It can be proved to be well-defined and injective by
replacing R with Q in Exercise 18.3#1. That the map is surjective will
be established in the proof of Theorem 18.4.1 below, where we explicitly
describe the Q-form corresponding to each cohomology class. □

More generally, we have the following natural analogue of Observa-
tion 18.3.5:

(18.4.4) Observation. If X is an algebraic object that is defined over Q
(and satisfies mild hypotheses; cf. Warning 18.3.7), then the Galois coho-
mology set *1

(
Gal(C/Q),Aut(XC)

)
is in one-to-one correspondence with

the set of Q-isomorphism classes of Q-defined objects whose C-points
are isomorphic to XC.

(18.4.5) Corollary (cf. Example 18.3.6).

*1(Gal(C/Q),GL(n,C)
) = 0 and *1(Gal(C/Q), SL(n,C)

) = 0.

Proof of Theorem 18.4.1. Let GC = SL(n,C). As in Subsection 18.3(iii),
we have

Aut(GC) = PSL(n,C)⋊ ⟨ω⟩,
whereω(g) = (gT )−1. Givenα ∈ *1

(
Gal(C/Q),Aut(GC)

)
, corresponding

to a Q-form GQ, we consider two cases.

Case 1. Assume α ∈ *1
(
Gal(C/Q),PSL(n,C)

)
. By arguing exactly as in

Case 1 of Subsection 18.3(iii) (but with Q in the place of R), we see that
GQ ≊ SL(k,D), for some k and some division algebra D over Q.

Case 2. Assume the image of α is not contained in PSL(n,C). Since the
outer automorphism group Out(GC) is of order 2, it has no nontrivial
automorphisms. Therefore, the action of the Galois group Gal(C/Q) on
Out(GC)must be trivial. Hence, if we let α : Gal(C/Q)→ Out(GC) be the
1-cocycle obtained from α by modding out PSL(n,C), then α is an actual
homomorphism (not merely a “crossed homomorphism”).

By the assumption of this case (and the fact that |Out(GC)| = 2), the
kernel of α is a subgroup of index 2 in Gal(C/Q). This means that the
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fixed field of kerα is a quadratic extension L = Q
[√
r
]

of Q. Then, by
construction, we have Gal(C/L) = kerα.

For any σ ∈ Gal(C/L), the conclusion of the preceding paragraph
tells us that α(σ) is trivial. For simplicity, let us assume that the bar
can be removed, so α(σ) is trivial (see Correction 18.4.6(1)). Since, by
definition, we have α(σ) = σ̃ σ−1 (see (18.3.3)), this implies σ = σ̃ .
Therefore, for any g ∈ GQ, we have gσ = gσ̃ = g. Since this holds for all
σ ∈ Gal(C/L), we conclude that g ∈ SL(n, L).

Now, for the unique nontrivial τ ∈ Gal(L/Q), we have τ ∉ kerα, so
α(τ) = (conj by A)ω for some A ∈ GL(n,R). Hence, for any g ∈ GQ, we
have

g = τ̃(g) = (α(τ)τ)(g) = Aω(τ(g))A−1 = A ((τg)T )−1A−1,
so gA(τg)T = A, which means g ∈ SU(A, τ ;L). Furthermore, the equa-
tion τ̃2 = 1 provides an equation that can be used to show A is Hermitian
(or, more precisely, can be chosen to be Hermitian) (see Exercise 1). □

(18.4.6) Corrections.

1) Mixed case. We seem to have shown that all Q-forms of SL(n,R)
can be constructed from either division algebras (Case 1) or uni-
tary groups (Case 2). However, the discussion in Case 2 assumes
that α(σ) is trivial, when all we actually know is that α(σ) is triv-
ial. Removing this assumption means that α can map a part of
the Galois group into PSL(n,C). In other words, in addition to the
homomorphism α, there is a nontrivial cocycle from Gal(C/L) to
PSL(n,C). By the argument of Case 1, this cocycle yields a divi-
sion algebra D over L. The resulting Q-form GQ = SU(A, τ ;D) is
obtained by combining division algebras with unitary groups.

2) C vs. Q. We should really be using the algebraic closure Q of Q,
instead of C. The Galois cohomology set *1

(
Gal(Q/Q),Aut(GQ)

)
is defined to be the natural limit of the sets *1

(
Gal(F/Q),Aut(GQ)

)
,

where F ranges over all finite Galois extensions of Q.

Exercises for §18.4.

#1. In Case 2 of the proof of Theorem 18.4.1, show that the matrix A
can be chosen to be Hermitian.
[Hint: Amust be a scalar multiple λ of a Hermitian matrix (since τ̃2 = 1). Use the
fact that *1(Gal(C/L);C×

)
is trivial (why?) to replace A with a scalar multiple of

itself that makes λ = 1.]

§18.5. Q-forms of classical groups

By arguments similar to the ones applied to SL(n,R) in Section 18.4, it
can be shown that the Q-forms of almost any classical group come from
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special linear groups, unitary groups, orthogonal groups, or symplectic
groups. However, the special linear groups and unitary groups may in-
volve division algebras, and restriction of scalars (5.5.8) implies that the
groups may be over an extension F ofQ. (Recall that unitary groups over
division algebras were defined in Definition 6.8.13, and the involutions
τc and τr on the quaternion algebraHa,bF were defined in Example 6.8.12.)
Here is a list of the groups that arise:

(18.5.1) Definition. For any algebraic number field F, and any n, the fol-
lowing groups are said to be of classical type:

1) SL(n,D), where D is a division algebra whose center is F.

2) Sp(2n,F).

3) SO(A;F), where A is an invertible, symmetric matrix in Matn×n(F).

4) SU(A, τc ;H
a,b
F ), where Ha,bF is a quaternion division algebra over F,

and A is an invertible, τc-Hermitian matrix in Matn×n(H
a,b
F ).

5) SU(A, τr ;H
a,b
F ), where Ha,bF is a quaternion division algebra, and A

is an invertible, τr-Hermitian matrix in Matn×n(H
a,b
F ).

6) SU(A, τ ;D), where
• D is a division algebra whose center is a quadratic extension L

of F,
• τ is an anti-involution whose restriction to L is the Galois au-

tomorphism of L over F, and
• A is an invertible, τ-Hermitian matrix in Matn×n(D).

(18.5.2) Remark. Definition 18.5.1 is directly analogous to the list of clas-
sical simple Lie groups (see Examples A2.3 and A2.4). Specifically:

1) SL(n,D) is the analogue of SL(n,R), SL(n,C), and SL(n,H).

2) Sp(2n,F) is the analogue of Sp(2n,R) and Sp(2n,C).

3) SO(A;F) is the analogue of SO(m,n) and SO(n,C).

4) SU(A, τc ;H
a,b
F ) is the analogue of Sp(m,n).

5) SU(A, τr ;H
a,b
F ) is the analogue of SO(n,H).

6) SU(A, τ ;D) (with τ nontrivial on the center) is the analogue of
SU(m,n).

(18.5.3) Theorem. Suppose

• G is classical, and

• no simple factor of GC is isogenous to SO(8,C).

Then every irreducible, arithmetic lattice in G is commensurable to the
integer points of some group (of classical type) listed in Definition 18.5.1.
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(18.5.4) Remark. To state the conclusion of Theorem 18.5.3 more explic-
itly, let us assume, for simplicity, that the center of G is trivial. Then
Theorem 18.5.3 states that there exist:

• algebraic number field F, with places S∞ and ring of integers O,

• a group ĜF listed in Definition 18.5.1, with corresponding semisim-
ple Lie group Ĝ that is defined over F, and

• a homomorphism φ :
∏
σ∈S∞ Ĝσ → G, with compact kernel,

such that φ
(
∆(GO)

)
is commensurable to Γ (cf. Proposition 5.5.8).

(18.5.5) Warning. Although φ
(
∆(GO)

)
is commensurable to Γ , this does

not imply that φ
(
∆(GF)

)
is commensurable to GQ. For example, the

image of SL(2,Q) in PSL(2,Q) has infinite index (cf. Exercise 5.2#1).

Each of the groups in Definition 18.5.1 has a corresponding semisim-
ple Lie groupG that is defined over F. Before determining which Lie group
corresponds to each F-group, we first find the complexification ofG. This
is similar to calculations that we have already seen, so we omit the details.

(18.5.6) Proposition (cf. Section 18.2). The notation of each part of this
proposition is taken from the corresponding part of Definition 18.5.1. We
use d to denote the degree of the central division algebra D, and the ma-
trix A is assumed to be n×n.

1) SL(n,D ⊗F C) ≊ SL(dn,C).
2) Sp(2n,C) = Sp(2n,C) (obviously!).

3) SO(A;C) ≊ SO(n,C).
4) SU(A, τc ;H

a,b
F ⊗F C) ≊ Sp(2n,C).

5) SU(A, τr ;H
a,b
F ⊗F C) ≊ SO(2n,C).

6) SU(A, τ ;D ⊗F C) ≊ SL(dn,C).

If F Æ R, then the semisimple Lie group G corresponding to GF is the
complex Lie group in the corresponding line of the above proposition.
However, if F ⊂ R, then G is some R-form of that complex group. The
following result lists the correctR-form for each of the groups of classical
type.

(18.5.7) Proposition. The notation of each part of this proposition is taken
from the corresponding part of Definition 18.5.1. We use d to denote the
degree of the central division algebra D, and the matrix A is assumed to
be n×n.

Assume F is an algebraic number field, and that F ⊂ R. Then:

1) SL(n,D ⊗F R) ≊
SL(dn,R) if D ⊗F R ≊ Matd×d(R),

SL(dn/2,H) otherwise.

2) Sp(2n,R) = Sp(2n,R) (obviously!).
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3) SO(A,R) ≊ SO(p,n− p).

4) SU(A, τc ;H
a,b
F ⊗F R) ≊

Sp(2n,R) if Ha,bR ≊ Mat2×2(R),
Sp(p,n− p) if Ha,bR ≊ H.

5) SU(A, τr ;H
a,b
F ⊗F R) ≊

SO(p,2n− p) if Ha,bR ≊ Mat2×2(R),
SO(n,H) if Ha,bR ≊ H.

6) SU(A, τ ;D ⊗F R) ≊


SU(p,dn− p) if L ̸⊂ R,
SL(dn,R) if L ⊂ R and

D ⊗F R ≊ Matd×d(R),
SL(dn/2,H) otherwise.

(18.5.8) Remark. Proposition 18.5.7 does not specify the value of p,
where it appears. However, it can be calculated for any particular ma-
trix A. For example, to calculate p in (6), note that, because L ̸⊂ R, we
have

D ⊗F R ≊ D ⊗L C ≊ Matd×d(C),
so we may think of A ∈ Matn×n(D) as a (dn) × (dn) Hermitian matrix.
Then p is the number of positive eigenvalues of this Hermitian matrix
(and dn−p is the number of negative eigenvalues). We have already seen
this type of consideration in Notation 6.4.10 and Proposition 6.4.11.

(18.5.9) Remark. The table on page 380 summarizes the above results in
a format that makes it easy to find the arithmetic subgroups of any given
simple Lie group G (or, by restriction of scalars, to find the irreducible
arithmetic subgroups of any semisimple Lie group that has G as a simple
factor), except that (as indicated by “?”) the list is not complete for groups
whose complexification is isogenous to SO(8,C).

The arithmetic group Γ that corresponds to a given F-form GF is ob-
tained by:

• replacing F with its ring of integers O, or

• replacing D with an order OD (see Lemma 6.8.7).

By restriction of scalars (5.5.8), Γ is an arithmetic subgroup of
∏
σ∈S∞ Gσ .

A parenthetical reference indicates the corresponding part of Defi-
nition 18.5.1, and also of Proposition 18.5.6 (for Fσ = C) and Proposi-
tion 18.5.7 (for Fσ = R). The reference column (combined with the “m or
p+q” column) also lists additional conditions that determine GF⊗F F∞ is
the desired simple Lie group G (except that the parameters p and q will
need to be calculated, if they arise).

The Q-rank of the corresponding arithmetic group Γ is either given
explicitly (as a function of n), or is the dimension of a maximal isotropic
subspace (of the associated vector space over either the field F or the
division algebra D, as indicated).
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Lie group G F -form GF reference m or p + q rankQ Γ

SL(m,R) SL(n,D) (1), F ⊂ R,
D split/R

m = dn n− 1

SU(B, τ ;D) (6), F ⊂ L ⊂ R,
D split/R

m = dn D-subspace

SL(m,C) SL(n,D) (1), F ̸⊂ R m = dn n− 1

SU(B, τ ;D) (6), F ̸⊂ R
(so L ̸⊂ R)

m = dn D-subspace

SL(m,H) SL(n,D) (1), F ⊂ R,
D not split/R

m = dn/2,
d even

n− 1

SU(B, τ ;D) (6), F ⊂ L ⊂ R,
D not split/R

m = dn/2,
d even

D-subspace

SU(p, q) SU(B, τ ;D) (6), F ⊂ R,
L ̸⊂ R

p + q = dn D-subspace

SO(p, q) SO(B;F) (3), F ⊂ R p + q = n F -subspace

SU(B, τr ;D) (5), F ⊂ R,
D split/R

p + q = 2n,
d = 2

D-subspace

? Remark 18.5.10 p + q = 8 ?

SO(m,C) SO(B;F) (3), F ̸⊂ R m = n F -subspace

SU(B, τr ;D) (5), F ̸⊂ R m = 2n,
d = 2

D-subspace

? Remark 18.5.10 m = 8 ?

SO(m,H) SU(B, τr ;D) (5), F ⊂ R,
D not split/R

m = n,
d = 2

D-subspace

? Remark 18.5.10 m = 4 ?

Sp(2m,R) Sp(2n,F) (2), F ⊂ R m = n n

SU(B, τc ;D) (4), F ⊂ R,
D split/R

m = n,
d = 2

D-subspace

Sp(2m,C) Sp(2n,F) (2), F ̸⊂ R m = n n

SU(B, τc ;D) (4), F ̸⊂ R m = n,
d = 2

D-subspace

Sp(p, q) SU(B, τc ;D) (4), F ⊂ R,
D not split/R

p + q = n,
d = 2

D-subspace

See Remark 18.5.9 on page 379 for an explanation of this table.
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(18.5.10) Remark (“triality”). Perhaps we should explain why the state-
ment of Theorem 18.5.3 assumes no simple factor of GC is isogenous to
SO(8,C). Fundamentally, the reason PSO(8,C) is special is that, unlike
all the other simple Lie groups over C, it has an outer automorphism ϕ
of order 3, called “triality.” For all of the other simple groups, the outer
automorphism group is either trivial or has order 2.

Here is how the triality automorphism ϕ can be used to construct
Q-forms that are not listed in Theorem 18.5.3. We first choose any ho-

momorphism α : Gal(C/Q) onto
-→ ⟨ϕ⟩ (so the kernel of α is a cubic, Galois

extension ofQ). The triality automorphism can be chosen so that it com-
mutes with the action of the Galois group (in other words, ϕ is “defined
over Q”), so the homomorphism α is a 1-cocycle into Aut

(
PSO(8,C)

)
.

Therefore, by the correspondence between cohomology and Q-forms
(18.4.3), there is a corresponding Q-form GQ. This Q-form is not any
of the groups listed in Theorem 18.5.3, because, for all those groups, the
image of the induced homomorphismα : Gal(C/Q)→ Out(GC)has order
1 or 2, not 3.

Mathematicians who understand the triality automorphism can con-
struct the corresponding Q-form explicitly, by reversing the steps in the
proof of Proposition 18.4.3. Namely, for each σ ∈ Gal(C/Q), let

σ̃ = α(σ) · σ ∈ Aut
(
PSO(8,C)

)
.

Then

GQ = {g ∈ PSO(8,C) | σ̃ (g) = g, ∀σ ∈ Gal(C/Q) }.

§18.6. Applications of the classification of arithmetic groups

Several results that were stated without proof in previous chapters are
easy consequences of the above classification of F-forms.

(18.6.1) Corollary (cf. Proposition 6.4.5). Suppose Γ is an arithmetic sub-
group of SO(m,n), andm+n ≥ 5 is odd. Then there is a finite extension F
of Q, with ring of integers O, such that Γ is commensurable to SO(A;O),
for some invertible, symmetric matrix A in Matn×n(F).

Proof. Let G = SO(m,n). Restriction of scalars (5.5.16) implies there is a
group Ĝ that is defined over an algebraic number field F and has a simple
factor that is isogenous to G, such that Γ is commensurable to ĜO. By
inspection, we see that a group of the form SO(m,n) never appears in
Proposition 18.5.6, and appears at two places in Proposition 18.5.7. How-
ever, in our situation, we know thatm+n is odd, so the only possibility
for ĜF is SO(A;F). Therefore, Γ is commensurable to SO(A;O). □
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(18.6.2) Corollary (cf. Remark 9.1.7(3b)). If G = SO(2, n), with n ≥ 5,
and n is odd, then rankRG = 2, but there is no lattice Γ in G, such that
rankQ Γ = 1.

Proof. We have rankR SO(2, n) = min{2, n} = 2 (see Proposition 8.1.8).
From the Margulis Arithmeticity Theorem (5.2.1), we know that Γ is

arithmetic, so Corollary 18.6.1 tells us that Γ is of the form SO(B;O),
where

• O is the ring of integers of some algebraic number field F, and

• B is a symmetric bilinear form on Fn+2.

If rankQ Γ = 1, then G/Γ is not compact, so Corollary 5.3.2 tells us that
we may take F = Q; therefore O = Z. We see that:

1) B has signature (2, n) on Rn+2 (because G = SO(2, n)), and

2) no 2-dimensional Q-subspace of Qn+2 is totally isotropic (because
we have rankQ Γ < 2).

Recall the following important fact that was used in the proof of Propo-
sition 6.4.1:

Meyer’s Theorem. If B0(x,y) is any nondegenerate, symmetric
bilinear form on Rd, such that
◦ B is defined over Q,
◦ d ≥ 5, and
◦ B0 is isotropic over R (that is, B(v,v) = 0 for some nonzero
v ∈ Rd),

then B0 is also isotropic over Q (that is, B(v,v) = 0 for some nonzero
v ∈ Qd).

This theorem, tells us there is a nontrivial isotropic vector v ∈ Qn+2.
Then, because B is nondegenerate, there is a vector w ∈ Qn+2, such that
B(v,w) = 1 and B(w,w) = 0. Let V be the R-span of {v,w}. Because the
restriction of B to V is nondegenerate, we haveRn+2 = V⊕V⊥. This direct
sum is obviously orthogonal (with respect to B), and the restriction of B
to V has signature (1,1), so we conclude that the restriction of B to V⊥ has
signature (1, n−1). Hence, there is an isotropic vector in V⊥. By applying
Meyer’s Theorem again, we conclude that there is an isotropic vector z in
(V⊥)Q. Then ⟨v, z⟩ is a 2-dimensional totally isotropic subspace ofQn+2.
This is a contradiction. □

(18.6.3) Corollary (cf. Proposition 6.4.2). If n ∉ {3,7}, then every nonco-
compact, arithmetic subgroup of SO(1, n) is commensurable to a conju-
gate of SO(A;Z), for some invertible, symmetric matrix A ∈ Matn×n(Q).

Proof. Assume, for simplicity, that n = 5, and let Γ be a noncocompact,
arithmetic subgroup ofG = SO(1,5). Since Γ is not cocompact, there is no
need for restriction of scalars: Γ corresponds to a Q-form GQ on G itself
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(see Corollary 5.3.2). We may assume the Q-form is not SO(A;Q); other-
wise, Γ is as described. Therefore, by inspection of Proposition 18.5.6 and
Proposition 18.5.7, we see that GQ must be of the form SU(A, τr ;H

a,b
Q ),

where A ∈ Mat3×3(H
a,b
Q ), and Ha,bQ ⊗Q R ≊ Mat2×2(R).

Because G/Γ is not compact, there is a vector v ∈ (Ha,bQ )3, such that
τr (v)TAv = 0 (see Exercise 18.7#4). Hence, it is not difficult to see that,
by making a change of basis, we may assume

A =

1 0 0
0 −1 0
0 0 p

 , for some p ∈ Ha,bQ .

Since the identity matrix Id2×2 is the image of 1 ∈ Ha,bQ under any iso-

morphism Ha,bQ ⊗Q R→ Mat2×2(R), this means

G = SU
(
A;Ha,bQ ⊗Q R

) ≊ SO(AR;R), where AR =


1

1
−1

−1 ∗ ∗
∗ ∗

 .
Therefore, G is isomorphic to either SO(2,4) or SO(3,3); it is not isoge-
nous to SO(1,5). This is a contradiction. □

(18.6.4) Proposition (see Proposition 6.6.5). Every noncocompact, arith-
metic subgroup of SL(3,R) is commensurable to a conjugate of either
SL(3,Z) or a subgroup of the form SU(J3, σ ;O), where

• J3 =

0 0 1
0 1 0
1 0 0

,

• L is a real quadratic extension of Q, with Galois automorphism σ ,
and

• O is the ring of integers of L.

Proof. Let Γ be an arithmetic subgroup of G = SL(3,R), such that G/Γ is
not compact. We know, from the Margulis Arithmeticity Theorem (5.2.1),
that Γ is arithmetic. Since G/Γ is not compact, there is no need for re-
striction of scalars (see Corollary 5.3.2), so there is a Q-form GQ of G,
such that Γ is commensurable to GZ. By inspection of Propositions 18.5.6
and 18.5.7, we see that there are only two possibilities for GQ. We con-
sider them individually, as separate cases.

Case 1. Assume GQ = SL(n,D), for some central division algebra D of
degree d over Q, with dn = 3. Because 3 is prime, there are only two
possibilities for n and d.

Subcase 1.1. Assume n = 3 and d = 1. Since d = 1, we have dimQD = 1,
so D = Q. Therefore, GQ = SL(3,Q). So Γ ≈ SL(3,Z).
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Subcase 1.2. Assume n = 1 and d = 3. We have GQ = SL(1,D). Therefore
Γ ≈ SL(1,OD) is cocompact (see Proposition 6.8.8(2)). This is a contra-
diction.

Case 2. Assume GQ = SU(A, τ ;D), for A,D,σ as in 18.5.1(6), with F = Q,
L ⊂ R, and dn = 3. If n = 1, then GQ ⊆ SL(1,D), so it has no unipotent
elements, which contradicts the fact that G/Γ is not compact. Thus, we
may assume that n = 3 and d = 1.

Since d = 1, we have D = L, so GQ = SU(A,σ ;L), where σ is the
(unique) Galois automorphism of L over Q, and B is a σ-Hermitian form
on L3.

Since Γ is not cocompact, we know rankQ Γ ≥ 1, so there is some
nonzero v ∈ L3 with vTAv = 0 (cf. Example 9.1.5(4)). From this, it is not
difficult to construct a basis of L3 in which A is a scalar multiple of J3

(see Exercise 3). □

Exercises for §18.6.

#1. Assume that F ⊂ R, and that A is an invertible, symmetric matrix
in Matn×n(F). Show that if exactly p of the eigenvalues of A are
positive, then SU(A;R) ≊ SO(p,n− p).

#2. Suppose
• F ⊂ R, Ha,bF is a quaternion division algebra over F, and
• A is an invertible τc-Hermitian matrix in Matn×n(D) that is di-

agonal.
Show:

a) every entry of the matrix A belongs to F (and, hence, to R), and
b) if exactly p of the diagonal entries of A are positive, then we

have SU(A, τc ;H
a,b
F ⊗F R) ≊ Sp(p,n− p).

#3. Complete the proof of Proposition 18.6.4, by showing that we may
assume A = J.
[Hint: Assume v1 and v3 are isotropic, and v2 is orthogonal to both v1 and v3.
Multiply A by a scalar in Q, so v∗2 Av2 = 1. Then normalize v3, so v∗1 Av3 = 1.]

#4. (B. Farb) For eachn ≥ 2, find a cocompact lattice Γn in SL(n,R), such
that Γ2 ⊆ Γ3 ⊆ Γ4 ⊆ · · · . (If we did not require Γn to be cocompact,
we could let Γn = SL(n,Z).)

#5. Show that if G = SU(A, τr ;H
a,b
F ), as in Definition 18.5.1(5), then

there existsA′ ∈ Matn×n(H
a,b
F ), such thatA′ is skew-Hermitian with

respect to the standard anti-involution τc, andG = SU(A′, τc ;H
a,b
F ).

[Hint: Use the fact that τr (x) = j−1τc(x)j.]
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§18.7. G has a cocompact lattice

We have already seen that ifG is not compact, then it has a noncocompact
lattice (see Corollary 5.1.17). In this section, we will show there is also a
lattice that is cocompact:

(18.7.1) Theorem. G has a cocompact, arithmetic lattice.

To illustrate the main idea, we briefly recall the prototypical case,
which is a generalization of Example 5.5.4.

(18.7.2) Proposition. SO(m,n) has a cocompact, arithmetic lattice.

Proof. Let

• F = Q(√2),
• σ be the Galois automorphism of F over Q,

• O = Z[√2],
• B(x,y) =∑pj=1 xjyj −

√
2
∑q
j=1 xp+jyp+j, for x,y ∈ Fp+q,

• G = SO(B)◦,
• Γ = GO, and

• ∆ : GF → G ×Gσ defined by ∆(g) = (g,σ(g)).
We know (from restriction of scalars) that ∆(Γ) is an irreducible, arith-
metic lattice in G × Gσ (see Proposition 5.5.8). Since Gσ ≊ SO(p + q)
is compact, we may mod it out, to conclude that Γ is an arithmetic lat-
tice in G ≊ SO(m,n)◦. Also, since Gσ is compact, we know that Γ is
cocompact (see Corollary 5.5.10). □

More generally, the same idea can be used to prove that any simple
group G has a cocompact, arithmetic lattice. Namely, start by letting K
be a compact group that has the same complexification as G. (For clas-
sical groups, the correct choice of K can be found by looking at Proposi-
tion 18.1.6.) Then show that G×K has an irreducible, arithmetic lattice.
More precisely, construct

• an extension F of Q that has exactly two places σ and τ, and

• a group Ĝ that is defined over F,

such that Ĝσ and Ĝτ are isogenous to G and K, respectively.
Although we could do this explicitly for the classical groups, we will

save ourselves a lot of work (and also be able to handle the exceptional
groups at the same time) by quoting the following powerful theorem.

(18.7.3) Theorem (Borel-Harder). Suppose

• F is an algebraic number field,

• S∞ is the set of places of F,

• G is defined over F,
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• GC is connected and simple, and has trivial center, and

• for each σ ∈ S∞, we are given some Fσ -form Gσ of GC.

Then there exists a group Ĝ that is defined over F, such that Ĝσ ≊ Gσ , for
each σ ∈ S∞.

Remark on the proof. For any place σ of F, there is a natural map

σ∗ : *1(Gal(C/F),Aut(GC)
)→ *1(Gal(C/Fσ ),Aut(GC)

)
.

Namely, any element of the domain corresponds to an F-form Ĝ of GC.
The twisted group Ĝσ is defined over σ(F), and is therefore also defined
over Fσ . Hence, it determines an element of the range. (The map can
also be defined directly, in terms of 1-cocycles, by restricting a cocycle
α : Gal(C/F)→ Aut(GC) to the subgroup Gal(C/Fσ ).)

However, we should replace C with Q in the domain (see Correc-
tion 18.4.6(2)). Making this correction, and putting together the maps
for the various choices of σ , we obtain a map

*1(Gal(Q/F),Aut(GQ)
)→ ×

σ∈S∞
*1(Gal(C/Fσ ),Aut(GC)

)
.

The theorem is proved by showing that this map is surjective. □

(18.7.4) Corollary. If G is isotypic (see Definition 5.6.1), then G has a co-
compact, irreducible, arithmetic lattice.

Proof. Assume G has trivial center (by passing to an isogenous group),
and write G = G1 × · · · × Gn, where each Gi is simple. Let Ĝ = G1,
and assume, for simplicity, that GiC is simple, for every i (see Exercise 2).
Then, by assumption, GiC ≊ ĜC for every i, which means that Gi is an
R-form of ĜC.

Let F be an extension ofQ, such that F has exactlynplaces v1, . . . , vn,
and all of them are real (see Lemma 18.7.8). The Borel-Harder Theorem
(18.7.3) provides some group Ĝ that is defined over F, such that ĜFvi ≊ Gi,
for each i. Then restriction of scalars (5.5.8) tells us that ĜO is (isomor-
phic to) an irreducible, arithmetic lattice in

∏n
i=1GFvi ≊ G.

We may assume that Gn is compact (by replacing G with G × K for
a compact group K, such that G × K is isotypic). Then Corollary 5.5.10
tells us that every irreducible, arithmetic lattice in G is cocompact. □

Proof of Theorem 18.7.1. We may assume G is simple. (If Γ1 and Γ2 are
cocompact, arithmetic lattices in G1 and G2, then Γ1 × Γ2 is a cocompact,
arithmetic lattice in G1 × G2.) Then G is isotypic, so Corollary 18.7.4
applies. □

The converse of Corollary 18.7.4 is true (even without assuming co-
compactness):
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(18.7.5) Proposition (cf. Proposition 5.5.12). IfG has an irreducible, arith-
metic lattice, then G is isotypic.

By the Margulis Arithmeticity Theorem (5.2.1), there is usually no
need to assume that the lattice is arithmetic:

(18.7.6) Corollary. G is isotypic if

• it has an irreducible lattice, and

• it is not isogenous to a group of the form SO(1, n)×K or SU(1, n)×K,
where K is compact.

We know that if G has an irreducible, arithmetic lattice that is not
cocompact, thenG is isotypic (see Proposition 18.7.5) and has no compact
factors (see Corollary 5.5.10). However, the converse is not true:

(18.7.7) Example. Every irreducible lattice in SO(3,H) × SO(1,5) is co-
compact.

Proof. Suppose Γ is an irreducible lattice in SO(3,H)×SO(1,5), such that
G/Γ is not compact. This will lead to a contradiction.

The Margulis Arithmeticity Theorem (5.2.1) implies that Γ is arith-
metic, so Corollary 5.5.15 implies that Γ can be obtained by restriction
of scalars. Hence, there exist:

• an algebraic number field F with exactly two places 1 and σ , and

• a (connected) group Ĝ that is defined over F,

such that

• Ĝ is isogenous to SO(3,H),
• Ĝσ is isogenous to SO(1,5), and

• Γ is commensurable to ∆(GO) in Ĝ × Ĝσ .

Since SO(n,H) occurs only once in Propositions 18.5.6 and 18.5.7 com-
bined, ĜF must be of the form SU(A, τr ;H

a,b
F ), for someA ∈ Mat3×3(H

a,b
F ).

However, since G/Γ is not compact, the proof of Corollary 18.6.3 im-
plies that Ĝσ is isomorphic to either SO(2,4) or SO(3,3); it is not isoge-
nous to SO(1,5). This is a contradiction. □

We close with a stronger version of a fact that was used in the proof
of Corollary 18.7.4:

(18.7.8) Lemma. For any natural numbers r and s, not both 0, there is an
algebraic number field F with exactly r real places and s complex places.

Proof. Let n = r + 2s. It suffices to find an irreducible polynomial
f(x) ∈ Q[x] of degree n, such that f(x) has exactly r real roots. (Then
we may let F = Q(α), where α is any root of f(x).)
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Choose a monic polynomial g(x) ∈ Z[x], such that

• g(x) has degree n,

• g(x) has exactly r real roots, and

• all of the real roots of g(x) are simple.

For example, choose distinct integers a1, . . . , ar , and let

g(x) = (x − a1) · · · (x − ar )(x2s + 1).
Fix a prime p. Exercise 5 allows us to assume

1) g(x) ≡ xn (mod p2), and

2) min{g(t) | g′(t) = 0 } > p,

by replacing g(x) with kng(x/k), for an appropriate integer k.
Let f(x) = g(x)−p. From (1), we know that f(x) ≡ xn−p (mod p2),

so the Eisenstein Criterion (B4.6) implies that f is irreducible. From (2),
we know that f(x) has the same number of real roots as g(x) (see the
figure below). Therefore f(x) has exactly r real roots. □

p
>p

y = f(x)

y = g(x)

Exercises for §18.7.

#1. Use restriction of scalars to construct cocompact arithmetic sub-
groups of SU(m,n) and Sp(m,n) for all m and n.
[Hint: See the proof of Proposition 18.7.2.]

#2. The proof of Corollary 18.7.4 assumes that GiC is simple for every i.
Remove this assumption.
[Hint: You may use Remark 18.2.2 (without proof), and you will need the full
strength of Lemma 18.7.8.]

#3. Construct a noncocompact, irreducible lattice in SL(2,R)× SO(3).
[Hint: The free group F2 is a noncocompact lattice in SL(2,R). Let Γ be the graph
of a homomorphism F2 → SO(3) that has dense image.]

#4. In the proof of Example 18.7.7, show there exists v ∈ (Ha,bF )3, such
that τr (v)TAv = 0.
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[Hint: If g is a nontrivial unipotent element of GF , then there is some w, such that
g fixes the nonzero vector v = gw −w.]

#5. a) Suppose g(x) is a monic polynomial of degree n, and assume
k ∈ Z∖ {0}, such that kg(x) ∈ Z[x]. Show kng(x/k) ∈ Z[x].

b) Suppose g(x) is a monic, integral polynomial of degree n, and
p is a prime. Show that p2ng(x/p2) ≡ xn (mod p2).

c) Suppose g(x) and h(x) are monic polynomials, and k and n
are nonzero integers, such that h(x) = kng(x/k). Show that

min{ |h(t)| | h′(t) = 0 } = knmin{ |g(t)| | g′(t) = 0 }.

Notes

A proof of the classification of complex semisimple Lie algebras
(18.1.1,18.1.2) can be found in standard texts, such as [6, Thm. 11.4,
pp. 57–58, and Thm. 18.4, p. 101].

The classification of real simple Lie algebras (Theorem 18.1.7) was
obtained by É. Cartan [4]. (The intervening decades have led to enormous
simplifications in the proof.)

In Sections 18.3 and 18.4, our cohomological approach to the classi-
fication of F-forms of the classical groups is based on [10, §2.3], where
full details can be found. See [12] for a list of all F-forms (mostly with-
out proof), including exceptional groups (intended for readers familiar
with root systems). The special case of real forms (including exceptional
groups) is proved, by a somewhat different approach, in [5, Chap. 10].

Theorem 18.5.3 is due to Weil [13]. A proof (together with Proposi-
tions 18.1.6 and 18.5.6) is in [10, §2.3, pp. 78–92]. We copied (18.1.6),
(18.5.1), and (18.5.6) from [10, p. 92], except that [10] uses a different
description of the groups in 18.5.1(5) (see Exercise 18.6#5).

Exercise 18.3#5 is an easy special case of the Skolem-Noether Theo-
rem, which can be found in texts on ring theory, such as [9, §12.6, p. 230].

Exercise 18.3#6, the classification of division algebras over R, is due
to Frobenius (1878), and a proof can be found in [7, pp. 452–453].

Theorem 18.7.3 is due to A. Borel and G. Harder [1]. See [8] for an
explicit construction of Ĝ in the special case where the simple factors
of G are classical.

G. Prasad (personal communication) supplied Example 18.7.7. It is
a counterexample to the noncocompact part of [8, Thm. C], which erro-
neously states that isotypic groups with no compact factors have both
cocompact and noncocompact irreducible lattices.

Remark 18.2.2 is a consequence of [3, Prop. 1 of App. 2, p. 385], since
a connected Lie group is simple if and only if its adjoint representation
has no nonzero, proper, invariant subspaces.
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Meyer’s Theorem (used in the proof of Corollary 18.6.2) can be found
in [2, Thm. 1 of §1.7 and Thm. 5 of §1.6, pp. 61 and 51] or [11, Cor. 2 of
§4.3.2, p. 43].

References

[1] A. Borel and G. Harder: Existence of discrete cocompact subgroups
of reductive groups over local fields, J. Reine Angew. Math. 298
(1978) 53–64. MR 0483367, http://eudml.org/doc/151965

[2] Z. I. Borevich and I. R. Shafarevich: Number Theory, Academic Press,
New York, 1966. MR 0195803

[3] N. Bourbaki: Lie Groups and Lie Algebras, Chapters 7–9. Springer,
Berlin, 2005. ISBN 3-540-43405-4, MR 2109105

[4] É. Cartan: Les groupes réels simples finis et continus, Ann. Sci.
École Norm. Sup. 31 (1914) 263–355. Zbl 45.1408.03,
http://www.numdam.org/item?id=ASENS_1914_3_31__263_0

[5] S. Helgason: Differential Geometry, Lie Groups, and Symmetric
Spaces. Academic Press, New York, 1978. ISBN 0-12-338460-5,
MR 0514561

[6] J. E. Humphreys: Introduction to Lie Algebras and Representation
Theory. Springer, Berlin Heidelberg New York, 1972. MR 0323842

[7] N. Jacobson: Basic Algebra I, 2nd ed.. Freeman, New York, 1985.
ISBN 0-7167-1480-9, MR 0780184

[8] F. E. A. Johnson: On the existence of irreducible discrete subgroups
in isotypic Lie groups of classical type, Proc. London Math. Soc. (3)
56 (1988) 51–77. MR 0915530,
http://dx.doi.org/10.1112/plms/s3-56.1.51

[9] R. S. Pierce: Associative Algebras. Springer, New York, 1982. ISBN
0-387-90693-2, MR 0674652

[10] V. Platonov and A. Rapinchuk: Algebraic Groups and Number
Theory. Academic Press, Boston, 1994. ISBN 0-12-558180-7,
MR 1278263

[11] J.–P. Serre: A Course in Arithmetic, Springer, New York 1973.
MR 0344216

[12] J. Tits: Classification of algebraic semisimple groups, in A. Borel
and G. D. Mostow, eds.: Algebraic Groups and Discontinuous
Subgroups (Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I.,
1966, pp. 33–62. MR 0224710

[13] A. Weil: Algebras with involution and the classical groups, J. Indian
Math. Soc. 24 (1960) 589–623. MR 0136682

http://www.ams.org/mathscinet-getitem?mr=0483367
http://eudml.org/doc/151965
http://www.ams.org/mathscinet-getitem?mr=0195803
http://www.ams.org/mathscinet-getitem?mr=2109105
http://zbmath.org/?q=an:45.1408.03
http://www.numdam.org/item?id=ASENS_1914_3_31__263_0
http://www.ams.org/mathscinet-getitem?mr=0514561
http://www.ams.org/mathscinet-getitem?mr=0323842
http://www.ams.org/mathscinet-getitem?mr=0780184
http://www.ams.org/mathscinet-getitem?mr=0915530
http://dx.doi.org/10.1112/plms/s3-56.1.51
http://www.ams.org/mathscinet-getitem?mr=0674652
http://www.ams.org/mathscinet-getitem?mr=1278263
http://www.ams.org/mathscinet-getitem?mr=0344216
http://www.ams.org/mathscinet-getitem?mr=0224710
http://www.ams.org/mathscinet-getitem?mr=0136682


Chapter 19

Construction of a Coarse
Fundamental Domain

The ordinary 2-torus is often depicted as a square with opposite sides
identified, and it would be useful to have a similar representation of
Γ\G, so we would like to construct a fundamental domain for Γ in G.
Unfortunately, it is usually not feasible to do this explicitly, so, as in
Chapter 7, where we showed that SL(n,Z) is a lattice in SL(n,R), we will
make do with a nice set that is close to being a fundamental domain:

(19.0.1) Definition (cf. Definition 4.7.2). A subsetF ofG is called a coarse
fundamental domain for Γ in G if

1) ΓF = G, and

2) {γ ∈ Γ | F ∩ γF ≠∅} is finite.

The main result is Theorem 19.2.2, which states that the desired setF
can be constructed as a finite union of (translates of) “Siegel sets” in G.
Applications of the construction are described in Section 19.3.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: Q-rank (Chapter 9). Recommended:
Siegel sets for SL(n,Z) (sections 7.1 to 7.3).
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§19.1. What is a Siegel set?

Before defining Siegel sets in every semisimple group, we recall the fol-
lowing special case:

(19.1.1) Definition (cf. Definition 7.2.4). A Siegel set for SL(n,Z) is a set
of the form SN,c = NAc K ⊆ SL(n,R), where

• N is a compact subset of the groupN of upper-triangular unipotent
matrices,

• Ac = {a ∈ A | ai−1,i−1 ≥ c ai,i for i = 1, . . . , n− 1}, where A is the
group of positive-definite diagonal matrices (and c > 0), and

• K = SO(n).

In this section, we generalize this notion by replacing SL(n,Z) with
any arithmetic subgroup (or, more generally, any lattice) in any semisim-
ple Lie group G. To this end, note that the subgroups N, A, and K
above are the components of the Iwasawa decomposition G = KAN (or
G = NAK), which can be defined for any semisimple group (see Theo-
rem 8.4.9):

• N is a maximal unipotent subgroup of G.

• A is a maximal R-split torus of G that normalizes N, and

• K is a maximal compact subgroup of G.

Now, to construct Siegel sets in the general case, we will do two
things. First, we rephrase Definition 19.1.1 in a way that does not re-
fer to any specific realization of G as a matrix group. To this end, recall
that, for G = SL(n,R), the positive Weyl chamber is

A+ = {a ∈ A | ai,i > ai+1,i+1 for i = 1, . . . , n− 1}.
Therefore, in the notation of Definition 19.1.1, we have A+ = A1, and, for
any c > 0, it is not difficult to see that there exists some a ∈ A, such that
Ac = aA+ (see Exercise 7.2#11). Therefore, letting C = Na, we see that

SN,c = CA+K, and C is a compact subset of NA.

This description of Siegel sets can be generalized in a natural way to any
semisimple group G.

However, all of the above is based entirely on the structure of G, with
no mention of Γ , but a coarse fundamental domain F needs to be con-
structed with a particular arithmetic subgroup Γ in mind. For example,
if Γ\G is compact (or, in other words, if rankQ Γ = 0), then our coarse
fundamental domain needs to be compact, so none of the factors in the
definition of a Siegel set can be unbounded. Therefore, we need to re-
place the maximal R-split torus Awith a smaller torus S that reflects the
choice of a particular subgroup Γ . In fact, S will be the trivial torus when
G/Γ is compact. In general, S is a maximal Q-split torus of G (hence, S is
compact if and only if Γ\G is compact).
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Now, if S is properly contained in A, then NSK is not all of G. Hence,
NS will usually not be the appropriate replacement for the subgroup
NA. Instead, if we note that NA is the identity component of a minimal
parabolic subgroup of SL(n,R) (see Example 8.4.4(1)), and that NA is
obviously defined overQ, then it is natural to replace NAwith a minimal
parabolic Q-subgroup P of G.

The following definition implements these considerations.

(19.1.2) Definition. Assume

• G is defined over Q,

• Γ is commensurable to GZ,
• P is a minimal parabolic Q-subgroup of G,

• S is a maximal Q-split torus that is contained in P,

• S+ is the positive Weyl chamber in S (with respect to P),

• K is a maximal compact subgroup of G, and

• C is any nonempty, compact subset of P.

Then S = SC = C S+K is a Siegel set for Γ in G.

(19.1.3) Warning. Our definition of a Siegel set is slightly more general
than what is usually found in the literature, because other authors place
some restrictions on the compact set C. For example, it is often assumed
that C has nonempty interior.

Exercises for §19.1.

#1. Show that if S = C S+K is a Siegel set, then there is a compact
subset C′ of G, such that S ⊆ S+C′.
[Hint: Conjugation by any element of S+ centralizes MS and contracts N (where
P = MSN is the Langlands decomposition).]

#2. For every compact subset C of G, show there is a Siegel set that
contains C.
[Hint: Exercise 9.3#4.]

§19.2. Coarse fundamental domains made from Siegel sets

(19.2.1) Example. Let

• G = SL(2,R),
• S be a Siegel set that is a coarse fundamental domain for SL(2,Z)

in G (see Figure 7.2A(b)), and

• Γ be a subgroup of finite index in SL(2,Z).
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Then S may not be a coarse fundamental domain for Γ , because ΓS may
not be all of G. In fact, if the hyperbolic surface Γ\H has more than one
cusp, then no Siegel set is a coarse fundamental domain for Γ .

However, if we let F be a set of coset representatives for Γ in SL(2,Z),
then FS is a coarse fundamental domain for Γ (see Exercise 7.2#7(b)).

From the above example, we see that a coarse fundamental domain
can sometimes be the union of several translates of a Siegel set, even in
cases where it cannot be a single Siegel set. In fact, this construction
always works (if Γ is arithmetic):

(19.2.2) Reduction Theory for Arithmetic Groups. If Γ is commensu-
rable to GZ, then there exist a Siegel set S and a finite subset F of GQ, such
that F = F S is a coarse fundamental domain for Γ in G.

The proof will be given in Section 19.4.

Although the statement of this result only applies to arithmetic lat-
tices, it can be generalized to the non-arithmetic case. However, this
extension requires a notion of Siegel sets in groups that are not defined
over Q. The following definition reduces this problem to the case where
Γ is irreducible.

(19.2.3) Definition. If Si is a Siegel set for Γi in Gi, for i = 1,2, . . . , n, then

S1 ×S2 × · · · ×Sn

is a Siegel set for the lattice Γ1 × · · · × Γn in G1 × · · · ×Gn.

Then, by the Margulis Arithmeticity Theorem (5.2.1), all that remains
is to define Siegel sets for lattices in SO(1, n) and SU(1, n), but we can
use the same definition for all simple groups of real rank one:

(19.2.4) Definition. Assume G is simple, rankRG = 1, and K is a maximal
compact subgroup of G.

0) If rankQ Γ = 0, and C is any compact subset of G, then S = CK is a
Siegel set in G.

1) Assume now that rankQ Γ = 1. Let P be a minimal parabolic sub-
group of G, with Langlands decomposition P = MAN, such that

Γ ∩N is a maximal unipotent subgroup of Γ . (19.2.4N)

If
• C is any compact subset of P, and
• A+ is the positive Weyl chamber of A (with respect to P),

then S = CA+K is a generalized Siegel set in G.

(19.2.5) Remark. If Γ is commensurable to GZ (and G is defined over Q),
then (19.2.4N) holds if and only if P is defined over Q (and is therefore a
minimal parabolic Q-subgroup).

We can now state a suitable generalization of Theorem 19.2.2:
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(19.2.6) Theorem. If G has no compact factors, then there exist a general-
ized Siegel set S and a finite subset F of G, such that F = F S is a coarse
fundamental domain for Γ in G.

The proof is essentially the same as for Theorem 19.2.2.

Exercises for §19.2.

#1. Without using any of the results in this chapter (other than the
definitions of “Siegel set” and “coarse fundamental domain”), show
that if rankQ Γ = 0, then some Siegel set is a coarse fundamental
domain for Γ in G.

#2. SupposeF1 andF2 are coarse fundamental domains for Γ1 and Γ2 in
G1 and G2, respectively. Show thatF1×F2 is a coarse fundamental
domain for Γ1 × Γ2 in G1 ×G2.

#3. Suppose N is a compact, normal subgroup of G, and let Γ be the
image of Γ in G = G/N. Show that if F is a coarse fundamental
domain for Γ in G, then

F = {g ∈ G | gN ∈ F }
is a coarse fundamental domain for Γ in G.

#4. If G is simple, rankRG = 1, and G is defined over Q, then Defini-
tions 19.1.2 and 19.2.4 give two different definitions of the Siegel
sets for GZ. Show that Definition 19.2.4 is more general: any Siegel
set according to Definition 19.1.2 is also a Siegel set by the other
definition.
[Hint: Remark 19.2.5.]

§19.3. Applications of reduction theory

Having a coarse fundamental domain is very helpful for understanding
the geometry and topology of Γ\G. Here are a few examples of this (with
only sketches of the proofs).

§19.3(i). Γ is finitely presented. Proposition 4.7.7 tells us that if
Γ has a coarse fundamental domain that is a connected, open subset
of G, then Γ is finitely presented. The coarse fundamental domains con-
structed in Theorems 19.2.2 and 19.2.6 are closed, rather than open, but
it is easy to deal with this minor technical issue:

(19.3.1) Definition. A subset S̊ of G is an open Siegel set if S̊ = OS+K,
where O is a nonempty, precompact, open subset of P.

Choose a maximal compact subgroup K of G that contains a maximal
compact subgroup of CG(S). Then we may let:
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• F = F S be a coarse fundamental domain, with S = C S+K, such
that C ⊆ P◦ and F is connected (see Exercise 4),

• O be a connected, open, precompact subset of P◦ that contains C,

• S̊ = OS+K be the corresponding open Siegel set, and

• F̊ = F S̊.

Then F̊ is a coarse fundamental domain for Γ (see Exercise 5), and F̊ is
both connected and open.

This establishes Theorem 4.7.10, which stated (without proof) that
Γ is finitely presented.

§19.3(ii). Mostow Rigidity Theorem. When rankQ Γ1 = 1, G. Prasad
constructed a quasi-isometry φ : G1/K1 → G2/K2 from an isomorphism
ρ : Γ1 → Γ2, by using the Siegel-set description of the coarse fundamen-
tal domain for Γi\Gi. This completed the proof of the Mostow Rigidity
Theorem (15.1.2).

§19.3(iii). Divergent torus orbits.

(19.3.2) Definition. Let T be an R-split torus in G, and let x ∈ G/Γ . We
say the T-orbit of x is divergent if the natural map T → Tx is proper.

(19.3.3) Theorem. rankQ Γ is the maximal dimension of an R-split torus
that has a divergent orbit on G/Γ .

We start with the easy half of the proof:

(19.3.4) Lemma (cf. Exercise 2). Assume G is defined over Q, and let S be
a maximal Q-split torus in G (so dimS = rankQGZ). Then the S-orbit of
eGZ is divergent.

Now, the other half:

(19.3.5) Theorem. If T is an R-split torus, and dimT > rankQ Γ , then no
T-orbit in G/Γ is divergent.

Proof (assuming rankQ Γ = 1). Let T be a 2-dimensional, R-split torus T
of G, and define π : T → G/Γ , by π(t) = tΓ . Suppose π is proper. (This
will lead to a contradiction.)

Let P be a minimal parabolicQ-subgroup of G, and let S be a maximal
Q-split torus in P. For simplicity, let us assume that Γ = GZ, and also
that a single open Siegel set S̊ = KS−O provides a coarse fundamental
domain for Γ in G. (Note that, since we are considering G/Γ , instead of
Γ\G, we have reversed the order of the factors in the definition of the
Siegel set, and we use the opposite Weyl chamber.)

Choose a large, compact subset C of G/Γ , and let TR be a large circle
in T that is centered at e. Since π is proper, we may assume TR is so large
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that π(TR) is disjoint from C. Since TR is connected, this implies π(TR)
is contained in a connected component of the complement of C. So there
exists γ ∈ Γ , such that TR ⊆ SPZγ (cf. Remark 19.4.10 below).

Let t ∈ TR, and assume, for simplicity, that γ = e. Then t ∈ SPZ, and,
since TR is closed under inverses, we see that SPZ also contains t−1. How-
ever, it is not difficult to see that conjugation by any large element of SPZ
expands the volume form on P (see Exercise 7). Since the inverse of an
expanding element is a contracting element, not an expanding element,
this is a contradiction. □

Theorem 19.3.3 can be restated in the following geometric terms:

(19.3.6) Theorem (see Theorem 2.2.1). rankQ Γ is the largest natural num-
ber r , such that some finite cover of the locally symmetric space Γ\G/K
contains a closed, simply connected, r-dimensional flat.

§19.3(iv). The large-scale geometry of locally symmetric spaces.
If we let π : G → Γ\G/K be the natural map, then it is not difficult to
see that the restriction of π to any Siegel set is proper (see Exercise 6).
In fact, with much more work (which we omit), it can be shown that the
restriction of π is very close to being an isometry:

(19.3.7) Theorem. If S = C S+K is any Siegel set, and

π : G → Γ\G/K is the natural map,

then there exists c ∈ R+, such that, for all x,y ∈ S, we have

d
(
π(x),π(y)

) ≤ d(x,y) ≤ d(π(x),π(y))+ c.
This allows us to describe the precise shape of the the locally sym-

metric space associated to Γ , up to quasi-isometry:

(19.3.8) Theorem. Let

• X = Γ\G/K be the locally symmetric space associated to Γ , and

• r = rankQ Γ .
Then X is quasi-isometric to the cone on a certain (r − 1)-dimensional
simplicial complex at ∞.

Idea of proof. Modulo quasi-isometry, any features of bounded size inX
can be completely ignored. Note that:

• Theorem 19.3.7 tells us that, up to a bounded error, S looks the
same as its image in X.

• There is a compact subset C′ of G, such that S ⊆ S+C′ (see Exer-
cise 19.1#1), so every element of S is within a bounded distance
of S+. Therefore, S and S+ are indistinguishable, up to quasi-
isometry.
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Then, sinceF = F S covers all ofX, we conclude thatX is quasi-isometric
to
∪
f∈F fS+.
The Weyl chamber S+ is a cone; more precisely, it is the cone on an

(r − 1)-simplex at ∞. Therefore, up to quasi-isometry, X is the union of
these finitely many cones, so it is the cone on some (r − 1)-dimensional
simplicial complex at ∞. □

(19.3.9) Remarks.

1) The same argument shows that we get the same picture if, instead
of looking at X modulo quasi-isometry, we look at it from farther
and farther away, as in the definition of the asymptotic cone of X
in Definition 2.2.6. Therefore, the asymptotic cone of X is the cone
on a certain (r − 1)-dimensional simplicial complex at ∞. This
establishes Theorem 2.2.8.

2) For a reader familiar with “Tits buildings,” the proof (and the con-
struction of F) shows that this simplicial complex at∞ can be con-
structed by taking the Tits building of parabolicQ-subgroups of G,
and modding out by the action of Γ .

Exercises for §19.3.

#1. Show that Γ has only finitely many conjugacy classes of finite sub-
groups.
[Hint: If H is a finite subgroup of Γ, then Hg ⊆ K, for some g ∈ G. Write g = γx,
with γ ∈ Γ and x ∈ F. Then Hγx = x ·Hg ⊆ F, so H is conjugate to a subset of
{γ ∈ Γ | F ∩ γF ≠∅}.]

#2. Let G = SL(n,R), Γ = SL(n,Z), and S be the group of positive-
definite diagonal matrices. Show the S-orbit of Γe is proper.
[Hint: If sj,j/si,i is large, then conjugation by s contracts a unipotent matrix γ
whose only off-diagonal entry is γi,j.]

#3. Show that every open Siegel set is an open subset of G (so the ter-
minology is consistent).

#4. Assume
• K contains a maximal compact subgroup of CG(S),
• C is a compact subset of P, and
• F is a finite subset of G.

Show there is a compact subset C◦ of P◦, such that CS+K ⊆ C◦S+K
and FC◦S+K is connected.
[Hint: Show P◦

(
K ∩CP (S)

) = P.]

#5. Show the set F̊ constructed in Subsection 19.3(i) is indeed a coarse
fundamental domain for Γ in G.
[Hint: Exercise 7.2#2.]
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#6. Let π : G → Γ\G be the natural map. Show that if S = CS+K is a
Siegel set for Γ , then the restriction of π to S is proper.
[Hint: Let v be a nontrivial element of N ∩ Γ. If g is a large element of S, then
vg ≈ e.]

#7. Show that if O is contained in a compact subset of P, then conju-
gation by any large element of KS−OPZ expands the Haar measure
on P.
[Hint: Conjugation by any element of M ∪ N preserves the measure, conjugation
by an element of O is bounded, and S− centralizes SM and expands N. Also note
that PZ É MZNZ (see Exercise 19.4#4).]

§19.4. Outline of the proof of reduction theory

(19.4.1) Notation. Throughout this section, we assume

• G is defined over Q,

• Γ is commensurable to GZ, and

• P is a minimal parabolic Q-subgroup of G, with Langlands decom-
position P = MSN.

In order to use Siegel sets to construct a coarse fundamental domain,
a bit of care needs to be taken when choosing a maximal compact sub-
group K. Before stating the precise condition, we recall that the Cartan
involution corresponding to K is an automorphism τ of G, such that
τ2 is the identity, and K is the set of fixed points of τ. (For example, if
G = SL(n,R)andK = SO(n), then τ(g) = (gT )−1 is the transpose-inverse
of g.)

(19.4.2) Definition. A Siegel set S = C S+K is normal if S is invariant
under the Cartan involution corresponding to K.

Fix a normal Siegel set S = C S+K, and some finite F ⊆ GQ. Then,
letting F = F S, the proof of Theorem 19.2.2 has two parts, correspond-
ing to the two conditions in the definition of coarse fundamental domain
(19.0.1):

i) S and F can be chosen so that ΓF = G (see Theorems 19.4.3
and 19.4.4), and

ii) for all choices of S and F, the set {γ ∈ Γ | F ∩ γF ≠ ∅} is finite
(see Theorem 19.4.8).

We will sketch proofs of both parts (assuming rankQ Γ = 1). However, as
a practical matter, the methods of proof are not as important as under-
standing the construction of the coarse fundamental domain as a union
of Siegel sets (see Section 19.2), and being able to use this in applications
(as in Section 19.3).
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§19.4(i). Proof that ΓF = G. Here is the rough idea: Fix a base point
in Γ\G. A Siegel set can easily cover all of the nearby points (see Exer-
cise 19.1#2), so consider a point Γg that is far away. Godement’s Criterion
(5.3.1) implies there is some nontrivial unipotent v ∈ Γ , such that vg ≈ e.
Replacing g with a different representative of the coset replaces v with a
conjugate element. If we assume all the maximal unipotentQ-subgroups
of G are conjugate under Γ , this implies that we may assume v ∈ N. If we
furthermore assume, for simplicity, that the maximal Q-split torus S is
actually a maximal R-split torus, then the Iwasawa decomposition (8.4.9)
tells us G = NSK. The compact group K is contained in our Siegel set S,
and the subgroup N is contained in ΓS if S is sufficiently large, so let
us assume g ∈ S. Since g contracts the element v of N, and, by defini-
tion, S+ consists of the elements of S that contract N, we conclude that
g ∈ S+ ⊆ S.

We now explain how to turn this outline into a proof.
Recall that all minimal parabolicQ-subgroups of G are conjugate un-

der GQ (see Proposition 9.3.6(1)). The following technical result from the
algebraic theory of arithmetic groups asserts that there are only finitely
many conjugacy classes under the much smaller group GZ. In geometric
terms, it is a generalization of the fact that hyperbolic manifolds of finite
volume have only finitely many cusps.

(19.4.3) Theorem. There is a finite subset F of GQ, such that Γ F PQ = GQ.

The finite subset F provided by the theorem can be used to construct
the coarse fundamental domain F:

(19.4.4) Theorem. If F is a finite subset of GQ, such that ΓFPQ = GQ, then
there is a (normal) Siegel set S = C S+K, such that ΓFS = G.

Idea of proof (assuming rankQ Γ ≤ 1). For simplicity, assume Γ = GZ,
and that F = {e} has only one element (see Exercise 6), so

Γ PQ = GQ. (19.4.5)

The theorem is trivial if Γ is cocompact (see Exercise 19.2#1), so let us
assume rankQ Γ = 1.

From the proof of the Godement Compactness Criterion (5.3.1), we
have a compact subset C0 of G, such that, for each g ∈ G, either g ∈ ΓC0,
or there is a nontrivial unipotent element v of Γ , such that vg ≈ e. By
choosing C large enough, we may assume C0 ⊆ S (see Exercise 19.1#2).

Now suppose some element g of G is not in ΓS. Then g ∉ ΓC0, so
there is a nontrivial unipotent element v of Γ , such that

vg ≈ e. (19.4.6)

From (19.4.5), we see that we may assume v ∈ N, after multiplying g on
the left by an element of Γ (see Exercise 2).



19.4. OUTLINE OF THE PROOF OF REDUCTION THEORY 401

We have G = PK (cf. Exercise 9.3#4). Furthermore, P = MSN, and
Γ intersects both M and N in a cocompact lattice (see Example 9.1.5(3),
Theorem 9.3.3(3), and Exercise 9.3#6). Therefore, if we multiply g on the
left by an element of Γ ∩ P, and ignore a bounded error, we may assume
g ∈ S (see Exercise 3). Then, since rankQ Γ = 1, we have either g ∈ S+ or
g−1 ∈ S+ (see Exercise 5). From (19.4.6), we conclude it is g that is in S+.
So g ∈ S, which contradicts the fact that g ∉ ΓS. □

(19.4.7) Remark. The above proof overlooks a technical issue: in the
Langlands decomposition P = MSN, the subgroup M may be reductive,
rather than semisimple. However, the maximality of S implies that the
central torus T ofM has noR-split subtori (cf. Theorem 9.3.3(3)), so it can
be shown that this implies T/TZ is compact. ThereforeM/MZ is compact,
even if M is not semisimple.

§19.4(ii). Proof that S intersects only finitely many Γ-translates.
We know that Γ is commensurable toGZ. Therefore, if we make the minor
assumption that GC has trivial center, then Γ ⊆ GQ (see Exercise 5.2#4).
Hence, the following result establishes Condition 19.0.1(2) for F = FS:

(19.4.8) Theorem (“Siegel property”). If

• S = CS+K is a normal Siegel set, and

• q ∈ GQ,

then {γ ∈ GZ | qS∩ γS ≠∅} is finite.

Proof (assuming rankQ Γ ≤ 1). The desired conclusion is obvious if S is
compact, so we may assume rankQ Γ = 1. To simplify matters, let Γ = GZ,
and

assume q = e is trivial.

The proof is by contradiction: assume

σ = γσ ′,
for some large element γ of Γ , and some σ,σ ′ ∈ S. Since γ is large,
we may assume σ is large (by interchanging σ with σ ′ and replacing γ
with γ−1, if necessary). Let

u be an element of NZ of bounded size.

Since σ ∈ S = CS+K, we may write

σ = csk with c ∈ C, s ∈ S+, and k ∈ K.

Then smust be large (sinceK and C are compact), so conjugation by s per-
forms a large contraction on N. Since uc is an element of N of bounded
size, and K is compact, this implies that uσ ≈ e. In other words,

uγσ
′ ≈ e.
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In addition, we know that uγ ∈ GZ. Since σ ′ ∈ S, we conclude that
uγ ∈ N (see Exercise 7).

Now we use the assumption that rankQ Γ = 1: since

uγ ∈ N ∩Nγ ,
Lemma 9.2.5 tells us that N = Nγ, so Proposition 9.3.6(3) implies

γ ∈NG(N) = P.
Then, since (MN)Z has finite index in PZ (see Exercise 4), we may assume
γ ∈ (MN)Z.

This implies that we may work inside ofMN: if we choose a compact
subset C ⊆ MN, such that CS+ ⊆ CS, then we have

C(K ∩ P)∩ γC(K ∩ P) ≠∅ (19.4.9)

(see Exercise 9). Since C(K∩P) is compact (and Γ is discrete), we conclude
that there are only finitely many possibilities for γ. □

(19.4.10) Remark. When rankQ Γ = 1, the first part of the proof estab-
lishes the useful fact that there is a compact subset C0 of G, such that if
γ ∈ Γ , and S∩ γS ̸⊆ C0, then γ ∈ P.

Exercises for §19.4.

#1. Show that every Q-split torus of G is invariant under some Car-
tan involution of G. (Therefore, for any maximal Q-split torus S,
there exists a maximal compact subgroupK, such that the resulting
Siegel sets CS+K are normal.)
[Hint: If τ is any Cartan involution, then there is a maximal R-split torus A, such
that τ(a) = a−1 for all a ∈ A. Any R-split torus is contained in some conjugate
of A.]

#2. In the proof of Theorem 19.4.4, explain why it may be assumed
that v ∈ N.
[Hint: Being unipotent, v is contained in the unipotent radical of some minimal
parabolic Q-subgroup (see Proposition 9.3.6(2)). Since Γ PQ = GQ, we know that all
minimal parabolic Q-subgroups are conjugate under Γ.]

#3. In the proof of Theorem 19.4.4, complete the proof without assum-
ing that g ∈ S.
[Hint: Write g = pk ∈ PK. If C is large enough that MN ⊆ (Γ ∩ P)C, then we have
g ∈ Γcsk ⊆ ΓCSK, so vs ≈ e.]

#4. Show that if P = MAN is a Langlands decomposition of a par-
abolic Q-subgroup of G, then (MN)Z contains a finite-index sub-
group of PZ.
[Hint: A Q-split torus can have only finitely many integer points.]

#5. Show that if rankQ Γ = 1, then S = S+ ∪ (S+)−1.
[Hint: If s ∈ S+, then st ∈ S+ for all t ∈ Q+ (and, hence, for all t ∈ R+).]
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#6. Prove Theorem 19.4.4 in the case where rankQ Γ = 1.
[Hint: Replace the imprecise arguments of the text with rigorous statements, and
do not assume F is a singleton. (In order to assume v ∈ N, multiply g on the left
by an element x of FΓ. Then xΓx−1 contains a finite-index subgroup of Γ ∩ P.)]

#7. Let S = CS+K be a Siegel set, and let P be the minimal parabolic
Q-subgroup corresponding to S+. Show there is a neighborhoodW
of e in G, such that if γ ∈ GZ and γσ ∈ W , for some σ ∈ S, then
γ ∈ unipP.

#8. Suppose
• τ is the Cartan involution corresponding to the maximal com-

pact subgroup K, and
• S is a τ-invariant.

Show K ∩ P ⊆ M ⊆ CG(S).
[Hint: Since CG(S) is τ-invariant, the restriction of τ to the semisimple part ofM is
a Cartan involution. Therefore K∩M contains a maximal compact subgroup of M,
which is a maximal compact subgroup of P. The second inclusion is immediate
from the definition of the Langlands decomposition.]

#9. Establish (19.4.9).
[Hint: S∩ P ∩ γ(S∩ P) ≠∅ (since γ ∈ P) and S∩ P = CS+(K ∩ P) = C(K ∩ P)S+
(see Exercise 8).]

#10. Give a complete proof of Theorem 19.4.8.

#11. Show that Γ has only finitely many conjugacy classes of maximal
unipotent subgroups.
[Hint: You may assume, for simplicity, that Γ = GZ is arithmetic. Use Proposi-
tion 9.3.6(2) and Theorem 19.4.3.]

Notes

The main results of this chapter were obtained for many classical
groups by L. Siegel (see, for example, [8]), and the general results are due
to A. Borel and Harish-Chandra [2].

The book of A. Borel [1] is the standard reference for this material;
see [1, Thm. 13.1, p. 90] for the construction of a fundamental domain
for GZ as a union of Siegel sets. The proof there does not assume GZ
is a lattice, so this provides a proof of the fundamental fact that every
arithmetic subgroup of G is a lattice (see Theorem 5.1.11). See [6, §4.6]
for an exposition of Borel and Harish-Chandra’s original proof of this
fact (using the Siegel set Sc1,c2,c3 for SL(n,Z) from Definition 7.2.4).

Theorem 19.3.7 was conjectured by C. L. Siegel in 1959, and was
proved by L. Ji [4, Thm. 7.6]. Another proof is in E. Leuzinger [5, Thm. B].

The construction of coarse fundamental domains for non-arithmetic
lattices in groups of real rank one is due to Garland and Raghunathan
[3]. (An exposition appears in [7, Chap. 13].) Combining this result with
Theorem 19.2.2 yields Theorem 19.2.6.
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Exercise 19.3#1 can be found in [6, Thm. 4.3, p. 203].
Regarding Remark 19.4.7, see [1, Prop. 8.5, p. 55] or [6, Thm. 4.11,

p. 208] for a proof that if T is a Q-torus that has no Q-split subtori, then
T/TZ is compact.
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Chapter 20

Ratner’s Theorems
on Unipotent Flows

This chapter presents three theorems that strengthen and vastly gener-
alize the well-known and useful observation that if V is any straight line
in the Euclidean plane R2, then the closure of the image of L in T2 is a
very nice submanifold (see Example 20.1.1). The plane can be replaced
with any Lie group H, and V can be any subgroup of H that is generated
by unipotent elements.

§20.1. Statement of Ratner’s Orbit-Closure Theorem

(20.1.1) Example. Let

• V be any 1-dimensional subspace of the vector space R2,

• T2 = R2/Z2 be the ordinary 2-torus,

• x ∈ T2, and

• π : R2 → T2 be the natural covering map.

Geometrically, V +x is a straight line in the plane, and it is classical (and
not difficult to prove) that:

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/

Main prerequisites for this chapter: none.

405

http://creativecommons.org/publicdomain/zero/1.0/


406 20. RATNER’S THEOREMS ON UNIPOTENT FLOWS

1) If the slope of the line V + x is rational, then π(V + x) is closed,
and it is homeomorphic to the circle T1 (see Exercise 1).

2) If the slope of the lineV+x is irrational, then the closure ofπ(V+x)
is the entire torus T2 (see Exercise 2).

An analogous result holds in higher dimensions: if we take any vec-
tor subspace of Rℓ, the closure of its image in Tℓ will always be a nice
submanifold of Tℓ. Indeed, the closure will be a subtorus of Tℓ:

(20.1.2) Example (see Exercise 3). Let

• V be a vector subspace of Rℓ,

• Tℓ = Rℓ/Zℓ be the ordinary ℓ-torus,

• x ∈ Tℓ, and

• π : Rℓ → Tℓ be the natural covering map.

Then the closure of π(V + x) in Tℓ is homeomorphic to a torus Tk (with
0 ≤ k ≤ ℓ ).

More precisely, there is a vector subspace L of Rℓ, such that

• the closure of π(V + x) is π(L+ x), and

• L is defined over Q (or, in other words, L∩ Zℓ is a Z-lattice in L), so
π(L+ x) ≊ L/(L∩ Zℓ) is a torus.

The above observation about tori generalizes in a natural way to
much more general homogeneous spaces, by replacing:

• R3 with any connected Lie group H,

• Z3 with a lattice Λ in H,

• the vector subspace V of R3 with any subgroup of H that is gener-
ated by unipotent elements,

• x + V with the coset xV,

• the map π : Rℓ → Tℓ with the natural covering map π : H → H/Λ,
and

• the vector subspace L of Rℓ with a closed subgroup L of H.

Because it suffices for our purposes, we state only the case where H is
semisimple (so we call the group G, instead of H):

(20.1.3) Ratner’s Orbit-Closure Theorem. Suppose

• V is a subgroup of G that is generated by unipotent elements, and

• x ∈ G/Γ .
Then there is a closed subgroup L of G, such that the closure of Vx is Lx.

Furthermore, L can be chosen so that:

1) L contains the identity component of V,

2) L has only finitely many connected components, and

3) there is an L-invariant, finite measure on Lx.
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(Also note that Lx is closed in G/Γ , since it is the closure of Vx.)

(20.1.4) Remark. Write x = gΓ , for some g ∈ G, and let Λ = (gΓg−1)∩L.
1) The theorem tells us that the closure of Vx is a very nice subman-

ifold of G/Γ . Indeed, the closure is homeomorphic to the homoge-
neous space L/Λ .

2) Conclusion (3) of the theorem is equivalent to the assertion that Λ
is a lattice in L.

(20.1.5) Warning. The assumption that V is generated by unipotent el-
ements cannot be eliminated. For example, it is known that if V is
the group of diagonal matrices in G = SL(2,R), then there are points
x ∈ G/ SL(2,Z), such that the closure of Vx is a fractal. This means that
the closure of Vx can be a very bad set that is not anywhere close to
being a submanifold.

Unfortunately, the known proofs of Ratner’s Orbit-Closure Theorem
are rather long. One of the paramount ideas in the proof will be de-
scribed in Section 20.4, but, first, we will present a few of the theorem’s
applications (in Section 20.2) and state two other variants of the theorem
(in Section 20.3).

Exercises for §20.1.

#1. Verify Example 20.1.1(1).

#2. Verify Example 20.1.1(2).

#3. Verify Example 20.1.2.

#4. Show that if V is connected, then the subgroup L in the conclusion
of Theorem 20.1.3 can also be taken to be connected.

#5. (Non-divergence of unipotent flows) Suppose
• {ut} is a unipotent one-parameter subgroup of G, and
• x ∈ G/Γ .

Use Theorem 20.1.3 to show there is a compact subset K of G, such
that

{ t ∈ R | utx ∈ K } is unbounded.
(Hence, Theorem 7.4.6 is logically a corollary of Theorem 20.1.3. However, in prac-
tice, Theorem 7.4.6 is used in the proof of Theorem 20.1.3.

[Hint: Conclusion (3) of Theorem 20.1.3 is crucial.]

#6. Show, by providing an explicit counterexample, that the assump-
tion that {ut} is unipotent cannot be eliminated in Exercise 5.
[Hint: Consider the one-parameter group of diagonal matrices in SL(2,R), and let
Γ = SL(2,Z).]
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§20.2. Applications

We will briefly describe just a few of the many diverse applications of
Ratner’s Orbit-Closure Theorem (20.1.3).

§20.2(i). Closures of totally geodesic subspaces.

#�

M

Hn
H1(20.2.1) Example. Let M be a compact,

hyperbolic n-manifold (with n ≥ 2).

• There is a covering map π : Hn → M
that is a local isometry.

• There is a natural embedding
ι : H1 ↩ Hn.

• Let f1 be the composition π ◦ ι,
so f1 : H1 → M.

Then the image of f1 is a curve in M. It is well known (though not at all
obvious) that the closure of this curve can be a very bad set; in fact, even
thoughH1 andM are nice, smooth manifolds, this closure can be a fractal.
(This is a higher-dimensional analogue of the example in Warning 20.1.5.
In the literature, it is the fact that the closure of a geodesic in a compact
manifold of negative curvature can be a fractal.)

It is a consequence of Ratner’s Theorem that this pathology never
occurs if we replace H1 with a higher-dimensional hyperbolic space:

(20.2.2) Corollary. Let:

• m,n ∈ N, with m ≤ n,

• M be a compact, hyperbolic n-manifold,

• π : Hn → M be a covering map that is a local isometry,

• ι : Hm ↩ Hn be a totally geodesic embedding, and

• fm = π ◦ ι, so fm : Hm → M.

Ifm ≥ 2, then the closure fm(Hm)of the image of fm is a (totally geodesic)
immersed submanifold of M.

Proof. We prove only that the closure is a submanifold, not that it is
totally geodesic. Let

V = SO(1,m), G = SO(1, n), and x ∈ ι(Hm),
so

• G acts by isometries on Hn,

• M = Γ\Hn, for some lattice Γ in G, and

• ι(Hm) = Vx.
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From Ratner’s Orbit-Closure Theorem (20.1.3), we know there is a sub-
group L of G, such that ΓV = ΓL. So

fm(Hm) = π
(
ι(Hm)

) = π(Vx) = π(Lx)
is an immersed submanifold of M. □

(20.2.3) Remarks.

1) The same conclusion holds (with the same proof) when Hm and Hn

are replaced with much more general symmetric spaces X̃ and Ỹ
that have no compact factors, except that the closure may not be
totally geodesic if rank X̃ < rank Ỹ .

2) When rank X̃ = rank Ỹ , one proves that the submanifold is totally
geodesic by showing that the subgroup L in the above proof is in-
variant under the appropriate Cartan involution of G.

§20.2(ii). Values of quadratic forms. Many of the most impressive
applications of Ratner’s Orbit-Closure Theorem (and the related results
that will be described in Section 20.3) are in Number Theory. As an exam-
ple, we present a famous result on values of quadratic forms. It is now an
easy corollary of Ratner’s Orbit-Closure Theorem, but, historically, it was
proved by Margulis before this major theorem was available (by proving
the relevant special case of the general theorem).

Let

Q(−⇀x ) = Q(x1, x2, . . . , xn) be a quadratic form in n variables

(in other words, Q(−⇀x ) is a homogeneous polynomial of degree 2).
Classical number theorists were interested in determining the values

of c for which the equation Q(−⇀x ) = c has an integer solution; that is, a
solution with −⇀x ∈ Zn. For example:

1) Lagrange’s 4-Squares Theorem tells us that if

Q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + x2

4 ,
then Q(−⇀x ) = c has a solution iff c ∈ Z≥0.

2) Fermat’s 2-Squares Theorem tells us that ifQ(x1, x2) = x2
1+x2

2, and
p is an odd prime, thenQ(−⇀x ) = p has a solution iff p ≡ 1 (mod 4).

These very classical results consider only forms whose coefficients are
integers, but we can also look at forms with irrational coefficients, such
as

Q(x1, x2, x3, x4) = 3x2
1 −

√
2x2x3 +πx2

4 .

For a given quadratic form Q(−⇀x ), it is clear that

the equation Q(−⇀x ) = c does not have an integral solution,
for most real values of c,
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for the simple reason that there are only countably many possible integer
values of the variables x1, x2, . . . , xn, but there are uncountably many
possible choices of c. Therefore, instead of trying to solve the equation
exactly, we must be content with solving the equation approximately.
That is, we will be satisfied with knowing that we can find a value of
Q(−⇀x ) that is within ϵ of c, for every ϵ (and every c). In other words, we
would like to know that Q(Zn) is dense in R.

(20.2.4) Examples. There are some simple reasons that Q(Zn) may fail
to be dense in R:

1) Suppose all of the coefficients of Q(−⇀x ) are integers. Then we have
Q(Zn) ⊆ Z, soQ(Zn) is obviously not dense in R. More generally, if
Q(−⇀x ) is a scalar multiple of a form with integer coefficients, then
Q(Zn) is not dense in R.

2) Suppose all values of Q(−⇀x ) are ≥ 0 (or all are ≤ 0). (In this case,
we say thatQ(−⇀x ) is positive-definite (or negative-definite, respec-
tively). For example, this is the case if

Q(−⇀x ) = a1x2
1 + a2x2

2 + a3x2
3 + · · · + anx2

n,
with all coefficients ai of the same sign. Then it is clear thatQ(Zn)
is not dense in all of R.

3) Let Q(x1, x2) = x2
1 − αx2

2, where α = 3 + 2
√

2. Then, although it
is not obvious, one can show that Q(Z2) is not dense in R (see Ex-
ercise 3). Certain other choices of α also provide examples where
Q(Z2) is not dense (see Exercise 2), so having only 2 variables in
the quadratic form can cause difficulties.

4) Even if a form has many variables, there may be a linear change
of coordinates that turns it into a form with fewer variables. (For
example, letting z = x +√2y transforms x2 + 2

√
2xy + 2y2 into

z2.) A form that admits such a change of coordinates is said to be
degenerate. Therefore, a degenerate form with more than 2 vari-
ables could merely be a disguised version of a form with 2 variables
whose image is not dense in R.

The following result shows that any quadratic form avoiding these
simple obstructions does have values that are dense in R. It is often
called the “Oppenheim Conjecture,” because it was an open problem un-
der that name for more than 50 years, but that terminology is no longer
appropriate, since it is now a theorem.

(20.2.5) Corollary (Margulis’ Theorem on Values of Quadratic Forms). Let
Q(−⇀x ) be a quadratic form in n ≥ 3 variables, and assume Q(−⇀x ) is:

• not a scalar multiple of a form with integer coefficients,

• neither positive-definite nor negative-definite, and
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• nondegenerate.

Then Q(Zn) is dense in R.

Proof. For simplicity, assume n = 3. Let

• G = SL(3,R), and

• H = SO(Q)◦ = {h ∈ G |Q(h−⇀x ) = Q(−⇀x ) for all −⇀x ∈ R3 }◦.
SinceQ(−⇀x ) is nondegenerate, and neither positive-definite nor negative-
definite, we have H ≊ SO(1,2)◦ ≊ PSL(2,R), so H is generated by unipo-
tent elements. Furthermore, calculations in Lie theory (which we omit)
show that the only connected subgroups of G containing H are the obvi-
ous ones: H and G. Therefore, Ratner’s Orbit-Closure Theorem (20.1.3)
tells us that either:

• HGZ is closed, and GZ ∩H is a lattice in H, or

• the closure of HGZ is all of G.

However, if HZ = GZ∩H is a lattice in H, then the Borel Density Theorem
(4.5.6) implies that H is defined over Q (see Exercise 5.1#5). Then, since
H = SO(Q)◦, a bit of algebra shows that Q(−⇀x ) is a scalar multiple of a
form with integer coefficients (see Exercise 4). This is a contradiction.

Therefore, we conclude that the closure of HGZ is all of G. In other
words,

HGZ is dense in G,

so
HGZ(1,0,0) is dense in G(1,0,0).

Since GZ(1,0,0) ⊆ Z3, and G(1,0,0) = R3 ∖ {0}, this tells us that

HZ3 is dense in R3.

Then, since Q(−⇀x ) is continuous, we conclude that

Q(HZ3) is dense inQ(R3).
We also know:

• Q(HZ3) = Q(Z3), by the definition of H, and

• Q(R3) = R, becauseQ(−⇀x ) is neither positive-definite nor negative-
definite (see Exercise 5).

Therefore Q(Z3) is dense in R. □

§20.2(iii). Products of lattices.

(20.2.6) Corollary (see Exercise 6). If Γ1 and Γ2 are any two lattices in G,
and G is simple, then either

1) Γ1 and Γ2 are commensurable, so the product Γ1 Γ2 is discrete, or

2) Γ1 Γ2 is dense in G.
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Exercises for §20.2.

#1. Suppose β is a quadratic irrational. (This means that α is irrational,
and that α is a root of a quadratic polynomial with integer coeffi-
cients.) Show that β is badly approximable: i.e., there exists ϵ > 0,
such that if p/q is any rational number, then∣∣∣∣∣pq − β

∣∣∣∣∣ > ϵ
q2
.

#2. Let Q(x1, x2) = x2
1 − β2x2

2, where β is any badly approximable
number (cf. Exercise 1). Show that Q(Z2) is not dense in R.
[Hint: There exists δ > 0, such that |Q(p,q)| ≥ δ for p,q ∈ Z∖ {0}.]

#3. Let Q(x1, x2) = x2
1 − αx2

2, where α = 3 + 2
√

2. Show Q(Z2) is not
dense in R.
[Hint: Use previous exercises, and note that 3+ 2

√
2 = (1+√2

)2.]

#4. Suppose Q(−⇀x ) is a nondegenerate quadratic form in n variables.
Show that if SO(Q)◦ is defined over Q, then Q(−⇀x ) is a scalar mul-
tiple of a form with integer coefficients.
[Hint: Up to scalar multiples, there is a unique quadratic form that is invariant
under SO(Q)◦, and the uniqueness implies that it is invariant under the Galois
group Gal(C/Q).]

#5. Suppose Q(−⇀x ) is a quadratic form in n variables that is neither
positive-definite nor negative-definite. Show Q(Rn) = R.
[Hint: Q(λ−⇀x ) = λ2Q(−⇀x ).]

#6. Prove Corollary 20.2.6.
[Hint: Let Γ = Γ1 × Γ2 ⊂ G×G, and H = { (g, g) | g ∈ G }. Show the only connected
subgroups ofG×G that containH are the two obvious ones: H andG×G. Therefore,
Ratner’s Theorem implies that eitherH∩Γ is a lattice inH, or ΓH is dense in G×G.]

§20.3. Two measure-theoretic variants of the theorem

Ratner’s Orbit-Closure Theorem (20.1.3) is purely topological, or qualita-
tive. In some situations, it is important to have quantitative information.

(20.3.1) Example. We mentioned earlier that if V is a line with irrational
slope in R2, then the image π(V) of V in T2 is dense (see Example 20.1.1).
For applications in analysis, it is often necessary to know more, namely,
that π(V) is uniformly distributed in T2. Roughly speaking, this means
that a long segment of π(V) visits all parts of the torus equally often
(see Exercise 1).

(20.3.2) Definition. Let

• µ be a probability measure on a topological space X, and

• c : [0,∞)→ X be a continuous curve in X.
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We say that c is uniformly distributed in X (with respect to µ) if, for
every continuous function f : X → R with compact support, we have

lim
T→∞

1
T

∫ T
0
f
(
c(t)

)
dt =

∫
X
f dµ.

Ratner’s Orbit-Closure Theorem tells us that if

• U is any one-parameter subgroup of G, and

• x is any point in G/Γ ,
then the closure of the U-orbit Ux is a nice submanifold of G/Γ . The
following theorem tells us that the U-orbit is uniformly distributed in
this submanifold.

(20.3.3) Ratner’s Equidistribution Theorem. Let

• {ut} be any one-parameter unipotent subgroup of G,

• x ∈ G/Γ , and

• c(t) = utx, for t ∈ [0,∞).
Then there is a connected, closed subgroup L of G, such that

1) there is a (unique) L-invariant probability measure µ on Lx,

2) the curve c is uniformly distributed in Lx, with respect to µ,

3) the closure of { c(t) | t ∈ [0,∞) } is Lx (so Lx is closed in G/Γ), and

4) {ut} ⊆ L.
In the special case where V is a one-parameter unipotent subgroup

of G, the following theorem is a consequence of the above Equidistribu-
tion Theorem (see Exercise 3).

(20.3.4) Ratner’s Classification of Invariant Measures. Suppose

• V is a subgroup of G that is generated by unipotent elements, and

• µ is any ergodic V-invariant probability measure on G/Γ .
Then there is a closed subgroup L of G, and some x ∈ G/Γ , such that µ is
the unique L-invariant probability measure on Lx.

Furthermore, L can be chosen so that:

1) L has only finitely many connected components,

2) L contains the identity component of V, and

3) Lx is closed in G/Γ .
Here is a sample consequence of the Measure-Classification Theorem:

(20.3.5) Corollary. Suppose

• ui is a nontrivial unipotent element of Gi, for i = 1,2,

• f : G1/Γ1 → G2/Γ2 is a measurable map that intertwines the transla-
tion by u1 with the translation by u2; that is,

f(u1x) = u2 f(x), for a.e. x ∈ G1/Γ1,

and
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• G1 is connected and almost simple.

Then f is a continuous function (a.e.).

Proof. Let

• G = G1 ×G2,

• Γ = Γ1 × Γ2,

• u = (u1, u2) ∈ G, and

• graph(f ) = { (x, f(x)) ∣∣ x ∈ G1/Γ1
} ⊂ G/Γ .

The projection from G/Γ to G1/Γ1 defines a natural one-to-one corre-
spondence between graph(f ) and G1/Γ1. In fact, since f intertwines u1

with u2, it is easy to see that the projection provides an isomorphism
between the action of u1 on G1/Γ1 and the action of u on graph(f ). In
particular, the u1-invariant probability measure µ1 on G1Γ1 naturally cor-
responds to a u-invariant probability measure µ on graph(f ).

The Moore Ergodicity Theorem (14.2.4) tells us that µ1 is ergodic
for u1, so µ is ergodic for u. Hence, Ratner’s Measure-Classification The-
orem (20.3.4) provides

• a closed subgroup L of G, and

• x ∈ G/Γ ,
such that

• µ is the L-invariant measure on Lx, and

• Lx is closed.

Since the definition of µ implies that µ
(
graph(f )

) = 1, and the choice
of L implies that the complement of Lx has measure 0, we may assume,
by changing f on a set of measure 0, that

graph(f ) ⊆ Lx.
Assume, for simplicity, that L is connected and G1 is simply con-

nected. Then the natural projection from L to G1 is an isomorphism
(see Exercise 4), so there is a (continuous) homomorphism ρ : G1 → G2,
such that

L = graph(ρ).

Assuming, for simplicity, that x = (e, e), this implies that f(gΓ) = ρ(g)Γ
for all g ∈ G. So f , like ρ, is continuous. □

As an example of the many important consequences of Ratner’s
Measure-Classification Theorem (20.3.4), we point out that it implies the
Equidistribution Theorem (20.3.3). The proof is not at all obvious, and
we will not attempt to explain it here, but the following simple exam-
ple illustrates the important precept that knowing all of the invariant
measures can lead to an equidistribution theorem.
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(20.3.6) Proposition. Let

• {gt} be a one-parameter subgroup of G,

• µ be the G-invariant probability measure on G/Γ ,
• x ∈ G/Γ , and

• c(t) = gtx.

If

• µ is the only gt-invariant probability measure on G/Γ , and

• G/Γ is compact,

then the curve c is uniformly distributed in G/Γ , with respect to µ.

Proof. Suppose c is not uniformly distributed. Then there is a sequence
Tk →∞, and some continuous function f0 ∈ C(G/Γ), such that

lim
k→∞

1
Tk

∫ Tk
0
f0
(
c(t)

)
dt ≠ µ(f0) (20.3.7)

By passing to a subsequence, we may assume that

λ(f) = lim
k→∞

1
Tk

∫ Tk
0
f
(
c(t)

)
dt

exists for every f ∈ C(G/Γ) (see Exercise 5). Then:

1) λ is a continuous linear functional on the space C(G/Γ) of continu-
ous functions onG/Γ , so the Riesz Representation Theorem (B6.10)
tells us that λ is a measure on G/Γ .

2) λ(1) = 1, so λ is a probability measure.

3) From the definition of λ, it is not difficult to see that λ is gt-invariant
(see Exercise 6).

Since µ is the only gt-invariant probability measure, we must have λ = µ.
However, (20.3.7) says λ(f0) ≠ µ(f0), so this is a contradiction. □

(20.3.8) Remark. Here is a rough outline of how the three theorems are
proved:

1) Measure-Classification is proved in the case where V is unipotent.
• The general case of Measure-Classification follows from this.

2) Equidistribution is a consequence of Measure-Classification.

3) Equidistribution easily implies Orbit-Closure in the special case
where V is a one-parameter unipotent subgroup.
• The general case of Orbit-Closure can be deduced from this.

(20.3.9) Remarks.

1) Ratner’s Measure-Classification Theorem (20.3.4) remains valid if
the lattice Γ is replaced with any closed subgroup of G. However,
the other two theorems do not remain valid in this generality.
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2) Ratner’s Theorems assume that V is generated by unipotent ele-
ments, but N. Shah suggested that they might remain valid under
the much weaker assumption that the Zariski closure of V is gen-
erated by unipotent elements. For the important case where the
Zariski closure of V is semisimple (with no compact factors), this
was recently proved by Y. Benoist and J.–F. Quint.

Exercises for §20.3.

#1. Suppose µ is a probability measure on a compact metric space X.
Show that a curve c : [0,∞) → X is uniformly distributed with re-
spect to µ if and only if, for every open subset O of X, such that
µ(∂O ) = 0, we have

lim
T→∞

1
T
l{ t ∈ [0, T ] | c(t) ∈ O } = µ(O).

[Hint: Bound the characteristic function of O above and below by continuous func-
tions and apply Definition 20.3.2.]

#2. Show that if v is a nonzero vector of irrational slope in R2, then
the curve c(t) = π(tv) is uniformly distributed in T2 (with respect
to the usual Lebesgue measure on the torus).

[Hint: Any continuous function on T2 can be approximated by a trigonometric
polynomial

∑
am,ne2πimx+2πiny.]

#3. Show that if V = {ut} is a one-parameter unipotent subgroup
of G, then the conclusions of Theorem 20.3.4 follow from Theo-
rem 20.3.3.
[Hint: Pointwise Ergodic Theorem (see Exercise 14.3#8).]

#4. In the setting of the proof of Corollary 20.3.5, show that the pro-
jection L→ G1 is a (surjective) covering map.
[Hint: Show L∩ ({e}∩G2

)
is discrete, by using Fubini’s Theorem and the fact that

graph(f ) has nonzero measure.]

#5. Suppose
• Tk →∞,
• G/Γ is compact, and
• c : [0,∞)→ G/Γ is a continuous curve.

Show there is a subsequence Tki →∞, such that

λ(f) = lim
i→∞

1
Tki

∫ Tki
0
f
(
c(t)

)
dt

exists for all f ∈ C(G/Γ).
[Hint: It suffices to consider a countable subset of C(G/Γ) that is dense in the
topology of uniform convergence.]
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#6. In the notation used in the proof of Proposition 20.3.6, show, for
every f ∈ C(G/Γ) and every s ∈ R, that

λ(f) = lim
k→∞

1
Tk

∫ Tk
0
f
(
gs c(t)

)
dt.

§20.4. Shearing — a key ingredient in the proof

The known proofs of any of the three variants of Ratner’s Theorem are
quite lengthy, so we will just illustrate one of the main ideas that is in-
volved. To keep things simple, we will assume G = SL(2,R).

(20.4.1) Notation. Throughout this section,

• G = SL(2,R),

• ut =
[

1 0
t 1

]
is a one-parameter unipotent subgroup of G,

• at =
[
et 0
0 e−t

]
is a one-parameter diagonal subgroup of G, and

• X = SL(2,R)/Γ .

The proofs of Ratner’s Theorems depend on an understanding of
what happens to two nearby points of X as they are moved by the one-
parameter subgroup ut.

(20.4.2) Definition. If x andy are any two points ofG/Γ , then there exists
q ∈ G, such that y = qx. If x is close to y (which we denote x ≈ y),
then q may be chosen close to the identity. Therefore, we may define a
metric d on G/Γ by

d(x,y) = min

{
∥q − Id ∥

∣∣∣∣∣ q ∈ G,qx = y

}
,

where

• Id is the identity matrix, and

• ∥·∥ is any (fixed) matrix norm on Mat2×2(R). For example, one may
take ∥∥∥∥∥

[
a b
c d

]∥∥∥∥∥ = max
{|a|, |b|, |c|, |d|}.

(Actually, this definition does not guarantee d(x,y) = d(y,x), so
it may not define a metric, but let us ignore this minor issue.)

Now, we consider two points x and qx, with q ≈ Id, and we wish to
calculate d(utx,utqx) (see Figure 20.4A).

• To get from x to qx, one multiplies by q; therefore

d(x, qx) = ∥q − Id ∥.
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x

qx

utx

utqx

Figure 20.4A. The ut-orbits of two nearby orbits.

• To get from utx to utqx, one multiplies by utqu−t; therefore

d(utx,utqx) = ∥utqu−t − Id ∥.
(Actually, this equation only holds when the right-hand side is small
— there are infinitely many elements g ofGwith gutx = utqx, and
the distance is obtained by choosing the smallest one, which may
not be utqu−t if t is large.)

Letting

q − Id =
[

a b
c d

]
,

a simple matrix calculation shows that

utqu−t − Id =
[

a− bt b
c+ (a− d)t − bt2 d+ bt

]
. (20.4.3)

(20.4.4) Notation. For convenience, let xt = utx and yt = uty.

Consider the right-hand side of Equation (20.4.3), with a, b, c, and d
very small. Indeed, let us say they are infinitesimal (too small to see).
As t grows, it is the quadratic term in the bottom left corner that will
be the first matrix entry to attain macroscopic size. Comparing with
the definition of ut (see Notation 20.4.1), we see that this is exactly the
direction of the ut-orbit. Therefore:

(20.4.5) Proposition (Shearing Property). The fastest relative motion be-
tween two nearby points is parallel to the orbits of the flow.

x

y

xt

yt

Figure 20.4B. Shearing: If two points start out so close
together that we cannot tell them apart, then the first
difference we see will be that one gets ahead of the other,
but (apparently) following the same path. It is only much
later that we will be able to detect any difference between
their paths.
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(20.4.6) Remarks.

1) The only exception to Proposition 20.4.5 is that if q is in the cen-
tralizer CG(ut), then utqu−t = q for all t; in this case, the points
xt and yt simply move along together at exactly the same speed,
with no relative motion.

2) In contrast to the above discussion of ut,
• the matrix at is diagonal, but
• the largest entry in

atqa−t =
[

a e2tb
e−2tc d

]
is an off-diagonal entry,

so, under the action of the diagonal group, points move apart (at
exponential speed) in a direction transverse to the orbits (see Fig-
ure 20.4C).

x

y

xt

yt

Figure 20.4C. Divergence under a diagonal subgroup:
when two points start out so close together that we can-
not tell them apart, the first difference we see will be in a
direction transverse to the orbits.

The Shearing Property (20.4.5) shows that the direction of fastest
relative motion is along ut. However, in the proof of Ratner’s Theorems,
it turns out that we wish to ignore motion along the orbits, and consider,
instead, only the component of the relative motion that is transverse (or
perpendicular) to the orbits of ut. This direction, by definition, does not
belong to {ut}.
(20.4.7) Definition. Suppose, as before, that x and y are two points in X
with x ≈ y. Then, by continuity, xt ≈ yt for a long time. Eventually, we
will be able to see a difference between xt and yt. The Shearing Property
(20.4.5) tells us that, when this first happens, yt will be indistinguishable
from some point on the orbit of x; that is, yt ≈ xt′ for some t′. This
will continue for another long time (with t′ some function of t), but we
can expect that yt will eventually diverge from the orbit of x — this is
transverse divergence. (Note that this transverse divergence is a second-
order effect; it is only apparent after we mod out the relative motion
along the orbit.) Letting xt′ be the point on the orbit of x that is closest
to yt, we write yt = gxt′ for some g ∈ G. Then g − Id represents the
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transverse divergence. When this transverse divergence first becomes
macroscopic, we wish to understand which of the matrix entries of g− Id
are macroscopic.

In the matrix on the right-hand side of Equation (20.4.3), we have
already observed that the largest entry is in the bottom left corner, the
direction of {ut}. If we ignore that entry, then the two diagonal entries
are the largest of the remaining entries. The diagonal corresponds to the
subgroup {at}. Therefore, the fastest transverse divergence is in the
direction of {at}. Notice that {at} normalizes {ut}.
(20.4.8) Proposition. The fastest transverse motion is along some direc-
tion in the normalizer of ut.

More precisely, if x,y ∈ X, with x ≈ y, and r > 0 is much smaller
than the injectivity radius of X, then either:

1) there exist large t, t′ ∈ R and g ∈NG
({ut}) such that

uty ≈ gut′x and ∥g∥ = d(g, {ut}) = r ,

or

2) for all t ∈ R, there exists t′ ∈ R, such that uty ≈ ut′x (i.e., there is
no transverse motion, only shearing).

To illustrate how understanding the transverse motion can be use-
ful, let us prove a very special case of Ratner’s Orbit-Closure Theorem
(20.1.3).

(20.4.9) Proposition. Let C = {ut}x, for some x ∈ X, and assume

• C is a minimal ut-invariant closed subset of X (this means that no
nonempty, proper, closed subset of C is {ut}-invariant ), and

• {g ∈ G | gC = C } = {ut}.
Then C = {ut}x, so C is a submanifold of X.

Proof. We wish to show C ⊆ {ut}x, but Exercise 1 implies that it suffices
to prove only the weaker statement that C ⊆NG

({ut})x.
Suppose C ̸⊆ NG

({ut})x. Then, since C is connected, there exists
y ∈ C, with y ≈ x, but y ∉ NG

({ut})x. From Proposition 20.4.8, we
see that there exist t, t′ ∈ R and

g ∈NG
({ut}), with g ∉ {ut}, such that uty ≈ gut′x.

For simplicity, let us pretend that

uty is equal to gut
′
x,

rather than merely being approximately equal (see Exercise 2). Then we
have C ∩ gC ≠ ∅ (because uty ∈ C and gut′x ∈ gC). This contradicts
Exercise 1. □
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Exercises for §20.4.

#1. Under the assumptions of Proposition 20.4.9, show:

if g ∈NG
({ut}), but g ∉ {ut}, then C ∩ gC = ∅.

(In particular, gx ∉ C.)
[Hint: gC isut-invariant (because g ∈NG

({ut})), so C∩gC is aut-invariant subset
of the minimal set C.]

#2. Complete the proof of Proposition 20.4.9 by eliminating the pre-
tense that uty is equal to gut′x.
[Hint: The compact sets C and {g ∈ NG

({ut}) | ∥g∥ = d(g, {ut}) = r } · C are
disjoint, so it is impossible for a point in one set to be arbitrarily close to a point
in the other set.]

Notes

Theorem 20.1.3 is due to M. Ratner [13], under the assumption that
V is either unipotent or connected. (A shorter proof can be found in
[7].) This additional hypothesis was removed by N. Shah [15] (except for
a technical problem involving Conclusions (2) and (3) that was resolved
in [3, Cor. 3.5.4]).

See [9] for a more thorough introduction to Ratner’s Theorems, their
proofs, and some applications.

See [16, Lem. 2] for the construction of orbits whose closure is not
a submanifold, demonstrating the pathology in Warning 20.1.5 and Ex-
ample 20.2.1. However, it was conjectured by G. A. Margulis [6, §1.1]
that certain analogues of Ratner’s Theorems are valid in some situations
where the subgroup V is a split torus of dimension > 1; see [3, §4.4c]
and [8] for references on this open problem and its applications.

Corollary 20.2.2 was proved by N. Shah [14]. The generalization in
Remark 20.2.3(1) is due to T. Payne [10].

Corollary 20.2.5 is due to G. A. Margulis [4]. See [5] for a survey of its
history and later related developments.

Corollary 20.2.6 was discovered by N. Shah [15, Cor. 1.5]. This con-
sequence of Ratner’s Theorem played an important role in [17].

Theorem 20.3.3 is due to M. Ratner [13].
Theorem 20.3.4 was proved by M. Ratner [12] in the case where V

is either unipotent or connected. (See [2] for a shorter and more self-
contained proof in the case where V ≊ SL(2,R).) The general case is due
to N. Shah [15].

Corollary 20.3.5 was proved by M. Ratner [11] if G1 ≊ G2 ≊ SL(2,R).
The general case is due to D. Witte [19].

Proposition 20.3.6 is a special case of a classical result in Ergodic
Theory that can be found in textbooks such as [18, Thm. 6.19].
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See [1] for the work of Y. Benoist and J.–F. Quint mentioned in Re-
mark 20.3.9(2). Shah’s suggestion about Zariski closures appears in [15,
end of §1, p. 232].

The discussion of shearing in Section 20.4 is excerpted from [9, §1.5],
except that Proposition 20.4.9 is a variant of [9, Prop. 1.6.10].
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Appendix A
Basic Facts about Semisimple Lie Groups

§A1. Definitions

We are interested in groups of matrices that are (topologically) closed:

(A1.1) Definitions.

1) Let Matℓ×ℓ(R) be the set of all ℓ× ℓmatrices with real entries. This
has a natural topology, obtained by identifying it with the Euclidean
space Rℓ

2
.

2) Let SL(ℓ,R) = {g ∈ Matℓ×ℓ(R) | detg = 1 }. This is a group under
matrix multiplication (see Exercise 1), and it is a closed subset of
Matℓ×ℓ(R) (see Exercise 2).

3) A Lie group is any (topologically) closed subgroup of some SL(ℓ,R).

Recall that an abstract group is simple if it has no nontrivial, proper,
normal subgroups. For Lie groups, we relax this to allow normal sub-
groups that are discrete (except that the one-dimensional abelian groups
R and T are not considered to be simple).

(A1.2) Definition. A Lie group G is simple if it has no nontrivial, con-
nected, closed, proper, normal subgroups, and G is not abelian.

(A1.3) Example. It can be shown that G = SL(ℓ,R) is a simple Lie group
(when ℓ > 1). If ℓ is even, then {± Id} is a subgroup of G, and it is normal,
but, because this subgroup is not connected, it does not disqualify G
from being simple as a Lie group.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/
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(A1.4) Remark. Although Definition A1.2 only refers to closed normal
subgroups, it turns out that, except for the center, there are no normal
subgroups at all: if G is simple, then every proper, normal subgroup of G
is contained in the center of G.

(A1.5) Other terminology. Some authors say that SL(n,R) is almost sim-
ple, and reserve the term “simple” for groups that have no (closed) nor-
mal subgroups at all, not even finite ones.

A Lie group is said to be semisimple if it is a direct product of simple
groups, modulo passing to a finite-index subgroup and/or modding out
a finite group:

(A1.6) Definitions.

1) G1 is isogenous to G2 if there is a finite, normal subgroup Ni of
a finite-index subgroup G′i of Gi, for i = 1,2, such that G′1/N1 is
isomorphic to G′2/N2.

2) G is semisimple if it is isogenous to a direct product of simple Lie
groups. That is, G is isogenous to G1 × · · · ×Gr , where each Gi is
simple.

(A1.7) Example. SL(2,R)× SL(3,R) is a semisimple Lie group that is not
simple (because SL(2,R) and SL(3,R) are normal subgroups).

(A1.8) Remark (see Exercise A4#9). If G is semisimple, then the center
of G is finite.

(A1.9) Assumption (cf. the Standing Assumptions (4.0.0)). Now that we
have the definition of a semisimple group, we will henceforth assume in
this chapter that the symbol G always denotes a semisimple Lie group
with only finitely many connected components (but the symbol Γ will
never appear).

(A1.10) Warning. A Lie group is usually defined to be any group that is
also a smooth manifold, such that the group operations are C∞ functions.
Proposition A6.2(1) below shows that every closed subgroup of SL(ℓ,R) is
a Lie group in the usual sense. However, the converse is false: not every
Lie group (in the usual sense) can be realized as a subgroup of some
SL(ℓ,R). (In other words, not every Lie group is linear .) Therefore, our
Definition A1.1(3) is more restrictive than the usual definition. (However,
every connected Lie group is “locally isomorphic” to a linear Lie group.)

Exercises for §A1.

#1. Show that SL(ℓ,R) is a group under matrix multiplication.
[Hint: You may assume (without proof) basic facts of linear algebra, such as the
fact that a square matrix is invertible if and only if its determinant is not 0.]
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#2. Show that SL(ℓ,R) is a closed subset of Matℓ×ℓ(R).
[Hint: For a continuous function, the inverse image of a closed set is closed.]

#3. Recall that GL(ℓ,R) = {g ∈ Matℓ×ℓ(R) | detg ≠ 0 }, and that this
is a group under matrix multiplication. Show that it is (isomorphic
to) a Lie group, by showing it is isomorphic to a closed subgroup
of SL(ℓ+ 1,R).

#4. Suppose G = G1 × · · · × Gr , where each Gi is simple, and N is a
connected, closed, normal subgroup of G. Show there is a subset S
of {1, . . . , r}, such that N =∏i∈S Gi.
[Hint: If the projection of N to Gi is all of Gi, then Gi = [Gi, Gi] = [N,Gi] ⊆ N.]

#5. Show that ifG is semisimple, andN is any closed, normal subgroup
of G, then G/N is semisimple.
[Hint: Exercise 4.]

#6. Suppose N is a connected, closed, normal subgroup of G. Show
that there is a connected, closed, normal subgroup H of G, such
that G is isogenous to N ×H.
[Hint: Exercise 4.]

§A2. The simple Lie groups

It is clear from Definition A1.6(2) that the study of semisimple groups
requires a good understanding of the simple groups. Probably the most
elementary examples of simple Lie groups are special linear groups and
orthogonal groups, but symplectic groups and unitary groups are also
fundamental. A group of any of these types is called “classical.” (The
other simple groups are “exceptional,” and are less easy to construct.)

(A2.1) Definition. G is a classical group if it is isogenous to the direct
product of any collection of the groups constructed in Examples A2.3
and A2.4 below. That is, each simple factor of G is either a special linear
group or the isometry group of a bilinear, Hermitian, or skew-Hermitian
form, over R, C, or H (where H is the algebra of quaternions).

(A2.2) Notation. Let

• gT denote the transpose of the matrix g,

• g∗ denote the adjoint (that is, the conjugate-transpose) of g,

• G◦ denote the identity component of the Lie group G, and

• Im,n = diag(1,1, . . . ,1,−1,−1, . . . ,−1) ∈ Mat(m+n)×(m+n)(R),
where the number of 1’s is m, and the number of −1’s is n.

(A2.3) Example.

1) The special linear group SL(n,R) is a simple Lie group (if n ≥ 2).
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2) Special orthogonal group. Let

SO(m,n) = {g ∈ SL(m+n,R) | gT Im,n g = Im,n }.
This is always semisimple (ifm+n ≥ 3). It may not be connected,
but the identity component SO(m,n)◦ is simple if eitherm+n = 3
orm+n ≥ 5. (Furthermore, the index of SO(m,n)◦ in SO(m,n) is
≤ 2.)

We use SO(n) to denote SO(n,0) (or SO(0, n), which is the same
group).

3) Special unitary group. Let

SU(m,n) = {g ∈ SL(m+n,C) | g∗Im,n g = Im,n }.
Then SU(m,n) is simple if m+n ≥ 2.

We use SU(n) to denote SU(n,0) (or SU(0, n)).
4) Symplectic group. Let

J2m =
(

0 Idm×m
− Idm×m 0

)
∈ GL(2m,R)

(where Idm×m denotes the m×m identity matrix), and let

Sp(2m,R) = {g ∈ SL(2m,R) | gTJ2m g = J2m }.
Then Sp(2m,R) is simple if m ≥ 1.

(A2.4) Example. Additional simple groups can be constructed by replac-
ing the field Rwith either the field C of complex numbers or the division
ring H of quaternions:

1) Complex and quaternionic special linear groups: SL(n,C) and
SL(n,H) are simple Lie groups (if n ≥ 2).

Note: The noncommutativity of H causes some difficulty in
defining the determinant of a quaternionic matrix. To avoid this
problem, we define the reduced norm of a quaternionic n×nma-
trix g to be the determinant of the 2n × 2n complex matrix ob-
tained by identifying Hn with C2n. Then, by definition, g belongs
to SL(n,H) if and only if its reduced norm is 1. It is not difficult
to see that the reduced norm of a quaternionic matrix is always a
(nonnegative) real number (see Exercise 1).

2) Complex and quaternionic special orthogonal groups:

SO(n,C) = {g ∈ SL(n,C) | gT Id g = Id }
and

SO(n,H) = {g ∈ SL(n,H) | τr (gT ) Id g = Id },
where τr is the reversion on H defined by

τr (a0 + a1i+ a2j + a3k) = a0 + a1i− a2j + a3k.
(Note that τr (ab) = τr (b)τr (a) (see Exercise 2); τr is included in
the definition of SO(n,H) in order to compensate for the noncom-
mutativity of H (see Exercise 3).)
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3) Complex symplectic group: Let

Sp(2m,C) = {g ∈ SL(2m,C) | gTJ2m g = J2m }.
4) Symplectic unitary groups: Let

Sp(m,n) = {g ∈ SL(m+n,H) | g∗Im,n g = Im,n }.
Here, as usual, g∗ denotes the conjugate-transpose of g; recall that
the conjugate of a quaternion is defined by

a+ bi+ cj + dk = a− bi− cj − dk
(and that xy = y x). We use Sp(n) to denote Sp(n,0) (or Sp(0, n)).

(A2.5) Other terminology. Some authors use

• SU∗(2n) to denote SL(n,H),
• SO∗(2n) to denote SO(n,H), or

• Sp(n,R) to denote Sp(2n,R).

(A2.6) Remark. SL(2,R) is the smallest connected, noncompact, simple
Lie group; it is contained (up to isogeny) in any other. For example:

1) If SL(n,R), SL(n,C), or SL(n,H) is not compact, then n ≥ 2, so the
group contains SL(2,R).

2) If SO(m,n) is semisimple and not compact, then min{m,n} ≥ 1
and max{m,n} ≥ 2, so it contains SO(1,2), which is isogenous to
SL(2,R).

3) If SU(m,n) or Sp(m,n) is not compact, then min{m,n} ≥ 1, so
the group contains SU(1,1), which is isogenous to SL(2,R).

4) Sp(2m,R) and Sp(2m,C) both contain Sp(2,R), which is equal to
SL(2,R).

5) If SO(n,C) is semisimple and not compact, thenn ≥ 3, so the group
contains SO(1,2), which is isogenous to SL(2,R).

6) If SO(n,H) is not compact, then n ≥ 2, so it contains a subgroup
conjugate to SU(1,1), which is isogenous to SL(2,R).

The classical groups are just examples, so one would expect there to
be many other (more exotic) simple Lie groups. Amazingly, that is not
the case — there are only finitely many others:

(A2.7) Theorem (É. Cartan). Every simple Lie group is isogenous to either

1) a classical group, or

2) one of the finitely many exceptional groups.

See Sections 18.1 and 18.3 for an indication of the proof of Theo-
rem A2.7.
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Exercises for §A2.

#1. For all nonzero g ∈ Matn×n(H), show that the reduced norm of g
is a nonnegative real number.
[Hint: Use row and column operations in Matn×n(H) to reduce to the case where
g is upper triangular. For n = 1, the reduced norm of g is g g.]

#2. In the notation of Example A2.4, show that τr (ab) = τr (b)τr (a)
for all a,b ∈ H.
[Hint: Calculate explicitly, or note that τr (x) = j xj−1 (and xy = y x).]

#3. For g,h ∈ Matn×n(H), show that τr
(
(gh)T

) = τr (hT ) τr (gT ).
#4. Show that SO(n,H) is a subgroup of SL(n,H).

§A3. Haar measure

Standard texts on real analysis construct a translation-invariant measure
on Rn. this is called Lebesgue measure, but the analogue for other Lie
groups is called “Haar measure:”

(A3.1) Proposition (Existence and Uniqueness of Haar Measure). If H is
any Lie group, then there is a unique (up to a scalar multiple) σ-finite Borel
measure µ on H, such that

1) µ(C) is finite, for every compact subset C of H, and

2) µ(hA) = µ(A), for every Borel subset A of H, and every h ∈ H.

(A3.2) Definitions.

1) The measure µ of Proposition A3.1 is called the left Haar measure
on H. Analogously, there is a unique right Haar measure with
µ(Ah) = µ(A) (see Exercise 2).

2) H is unimodular if the left Haar measure is also a right Haar mea-
sure. (This means µ(hA) = µ(Ah) = µ(A).)

(A3.3) Remark. Haar measure is always inner regular : µ(A) is the supre-
mum of the measures of the compact subsets of A.

(A3.4) Proposition. There is a continuous homomorphism ∆ : H → R+,
such that, if µ is any (left or right ) Haar measure on H, then

µ(hAh−1) = ∆(h)µ(A), for all h ∈ H and any Borel set A ⊆ H.
Proof. Let µ be a left Haar measure. For each h ∈ H, defineϕh : H → H by
ϕh(x) = hxh−1. Then ϕh is an automorphism of H, so (ϕh)∗µ is a left
Haar measure. By uniqueness, we conclude that there exists ∆(h) ∈ R+,
such that (ϕh)∗µ = ∆(h)µ. It is easy to see that ∆ is a continuous homo-
morphism. By using the construction of right Haar measure in Exercise 2,
it is easy to verify that the same formula also applies to it. □
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(A3.5) Definition. The function ∆ defined in Proposition A3.4 is called
the modular function of H.

(A3.6) Other terminology. Some authors call 1/∆ the modular function,
because they use the conjugation h−1Ah, instead of hAh−1.

(A3.7) Corollary. Let ∆ be the modular function of H, and let A be a Borel
subset of H.

1) If µ is a right Haar measure on H, then µ(hA) = ∆(h)µ(A), for all
h ∈ H.

2) If µ is a left Haar measure on G, then µ(Ah) = ∆(h−1)µ(A), for all
h ∈ H.

3) H is unimodular if and only if ∆(h) = 1, for all h ∈ H.

4) ∆(h) = |det(AdH h)| for all h ∈ H (see Notation A6.17).

(A3.8) Remark. G is unimodular, because semisimple groups have no
nontrivial (continuous) homomorphisms to R+ (see Exercise 3).

(A3.9) Proposition. Let µ be a left Haar measure on a Lie group H. Then
µ(H) <∞ if and only if H is compact.

Proof. (⇐) See Proposition A3.1(1).
(⇒) Since µ(H) < ∞ (and the measure µ is inner regular), there is a

compact subset C of H, such that µ(C) > µ(H)/2. Then, for any h ∈ H,
we have

µ(hC)+ µ(C) = µ(C)+ µ(C) = 2µ(C) > µ(H),
so hC cannot be disjoint from C. This implies that h belongs to the
set C · C−1, which is compact. Since h is an arbitrary element of H, we
conclude that H = C · C−1 is compact. □

Exercises for §A3.

#1. Prove the existence (but not uniqueness) of Haar measure on H,
without using Proposition A3.1, under the additional assumption
that the Lie group H is a C∞ submanifold of SL(ℓ,R) (cf. Proposi-
tion A6.2(1)).
[Hint: For k = dimH, there is a differential k-form on H that is invariant under left
translations.]

#2. Suppose µ is a left Haar measure on H, and define µ̃(A) = µ(A−1).
Show µ̃ is a right Haar measure.

#3. Assume G is connected. Show that if ϕ : G → A is a continuous
homomorphism, and A is abelian, then ϕ is trivial.
[Hint: The kernel of a continuous homomorphism is a closed, normal subgroup.]



434 A. BASIC FACTS ABOUT SEMISIMPLE LIE GROUPS

§A4. G is almost Zariski closed

(A4.1) Definitions.

1) We use R[x1,1, . . . , xℓ,ℓ] to denote the set of real polynomials in the
ℓ2 variables {xi,j | 1 ≤ i, j ≤ ℓ }.

2) For any Q ∈ R[x1,1, . . . , xℓ,ℓ], and any g ∈ Matℓ×ℓ(C), we use Q(g)
to denote the value obtained by substituting the matrix entries gi,j
into the variables xi,j. For example, if Q = x1,1x2,2 −x1,2x2,1, then
Q(g) is the determinant of the first principal 2× 2 minor of g.

3) For any subset Q of R[x1,1, . . . , xℓ,ℓ], let

Var(Q) = {g ∈ SL(ℓ,R) | Q(g) = 0, ∀Q ∈ Q}.
This is the variety associated to Q.

4) A subsetH of SL(ℓ,R) is Zariski closed if there exists a subsetQ of
R[x1,1, . . . , xℓ,ℓ], such thatH = Var(Q). (In the special case whereH
is a subgroup of SL(ℓ,R), we may also say thatH is a real algebraic
group or an algebraic group that is defined over R.)

5) The Zariski closure of a subset H of SL(ℓ,R) is the (unique) small-
est Zariski closed subset of SL(ℓ,R) that contains H. This is some-
times denoted H. (It can also be denoted H, if this will not lead to
confusion with the closure of H in the ordinary topology.)

(A4.2) Example.

1) SL(ℓ,R) is Zariski closed. Let Q = ∅.

2) The group of diagonal matrices in SL(ℓ,R) is Zariski closed. Let
Q = {xi,j | i ≠ j }.

3) For any A ∈ GL(ℓ,R), the centralizer of A is Zariski closed. Let

Q =


ℓ∑
k=1

(xi,kAk,j −Ai,kxk,j)
∣∣∣∣∣∣ 1 ≤ i, j ≤ ℓ

 .
4) If we identify SL(n,C)with a subgroup of SL(2n,R), by identifying
C with R2, then SL(n,C) is Zariski closed, because it is the central-
izer of Ti, the linear transformation in GL(2n,R) that corresponds
to scalar multiplication by i.

5) The classical groups of Examples A2.3 and A2.4 are Zariski closed
(if we identify C with R2 and H with R4 where necessary).

(A4.3) Other terminology.

• Other authors use GL(ℓ,R) in the definition of Var(Q), instead of
SL(ℓ,R). Our choice leads to no loss of generality, and simplifies
the theory slightly. (In the GL theory, one should, for technical
reasons, stipulate that the function 1/det(g) is considered to be a
polynomial. In our setting, detg is the constant function 1, so this
is not an issue.)



A4. G IS ALMOST ZARISKI CLOSED 435

• What we call Var(Q) is actually only the real points of the vari-
ety. Algebraic geometers usually consider the solutions in C, rather
than R, but our preoccupation with real Lie groups leads to our em-
phasis on real points.

(A4.4) Example. Let

H =



et 0 0 0
0 e−t 0 0
0 0 1 t
0 0 0 1


∣∣∣∣∣∣∣∣∣ t ∈ R

 ⊂ SL(4,R).

ThenH is a 1-dimensional subgroup that is not Zariski closed. Its Zariski
closure is

H =



a 0 0 0
0 1/a 0 0
0 0 1 t
0 0 0 1


∣∣∣∣∣∣∣∣∣
a ∈ R∖ {0},
t ∈ R

 ⊂ SL(4,R).

The point here is that the exponential function is transcendental, not
polynomial, so no polynomial can capture the relation that ties the diag-
onal entries to the off-diagonal entry inH. Therefore, as far as polynomi-
als are concerned, the diagonal entries in the upper left are independent
of the off-diagonal entry, as we see in the Zariski closure.

(A4.5) Remark. IfH is Zariski closed, then the setQof Definition A4.1 can
be chosen to be finite (because the ring R[x1,1, . . . , xℓ,ℓ] is Noetherian).

Everyone knows that a (nonzero) polynomial in one variable has only
finitely many roots. The following important fact generalizes this obser-
vation to any collection of polynomials in any number of variables.

(A4.6) Theorem. Every Zariski closed subset of SL(ℓ,R) has only finitely
many connected components.

(A4.7) Definition. A closed subgroupH of SL(ℓ,R) is almost Zariski closed
if it has only finitely many components, and there is a Zariski closed
subgroup H1 of SL(ℓ,R), such that H◦ = H◦1. In other words, in the
terminology of Definition 4.2.1, H is commensurable to a Zariski closed
subgroup.

(A4.8) Examples.

1) Let H be the group of diagonal matrices in SL(2,R). Then H is
Zariski closed (see Example A4.2(2)), but H◦ is not: any polynomial
that vanishes on the diagonal matrices with positive entries will
also vanish on the diagonal matrices with negative entries. So H◦
is almost Zariski closed, but it is not Zariski closed.

2) LetG = SO(1,2)◦. ThenG is almost Zariski closed (because SO(1,2)
is Zariski closed), but G is not Zariski closed (see Exercise 1).
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These examples are typical: a connected Lie group is almost Zariski
closed if and only if it is the identity component of a group that is Zariski
closed.

The following fact gives the Zariski closure a central role in the study
of semisimple Lie groups.

(A4.9) Theorem. If G ⊆ SL(ℓ,R), then G is almost Zariski closed.

Proof. Let G be the Zariski closure of G. Then G is semisimple. (For ex-
ample, if G is irreducible in SL(ℓ,C), then G is also irreducible, so Corol-

lary A7.7 below implies that G
◦

is semisimple.)
Since G has only finitely many connected components (see Assump-

tion A1.9), we may assume, by passing to a subgroup of finite index, that
it is connected. This implies that the normalizer NSL(ℓ,R)(G) is Zariski

closed (see Exercise 2). ThereforeG is contained in the normalizer, which
means that G is a normal subgroup of G.

Hence (up to isogeny), we have G = G ×H, for some closed, normal
subgroup H of G (see Exercise A1#6). So G = CG(H)◦ is almost Zariski
closed (see Example A4.2(3)). □

(A4.10) Warning. Theorem A4.9 relies on our standing assumption that
G is semisimple (see Example A4.4). (Actually, it suffices to know that,
besides being connected, G is perfect; that is, G = [G,G] is equal to its
commutator subgroup.)

Exercises for §A4.

#1. Show that SO(1,2)◦ is not Zariski closed.
[Hint: We have

1
2

s +
1
s s − 1

s 0
s − 1

s s + 1
s 0

0 0 2

 ∈ SO(1,2)◦ a s > 0.

If a rational function f : R∖ {0} → R vanishes on R+, then it also vanishes on R−.]

#2. Show that if H is a connected Lie subgroup of SL(ℓ,R), then the
normalizer NSL(ℓ,R)(H) is Zariski closed.
[Hint: g ∈N (H) if and only if ghg−1 = h, where h ⊆ Matℓ×ℓ(R) is the Lie algebra
of H.]

#3. Show that if H is the Zariski closure of a subgroup H of G, then
gHg−1 is the Zariski closure of gHg−1, for any g ∈ G.

#4. SupposeG is a connected subgroup of SL(ℓ,R) that is almost Zariski
closed, and that Q ⊂ R[x1,1, . . . , xℓ,ℓ].

a) Show that G ∩ Var(Q) is a closed subset of G.
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b) Show that if G ̸⊆ Var(Q), then G∩Var(Q) does not contain any
nonempty open subset of G.

c) Show that if G ̸⊆ Var(Q), then G ∩ Var(Q) has measure zero,
with respect to the Haar measure on G.

[Hint: For (b) and (c), you may assume, without proof, that, for some d, there exist

∅ = Var(Q−1) ⊆ Var(Q0) ⊆ Var(Q1) ⊆ · · · ⊆ Var(Qd) = Var(Q),
such that G∩ (Var(Qk)∖Var(Qk−1)

)
is a (possibly empty) k-dimensional C∞ sub-

manifold of G, for 0 ≤ k ≤ d. (G ∩ Var(Qk−1) is called the singular set of the
variety G ∩ Var(Qk).)]

#5. Show, for any subspace V of Rℓ, that

StabSL(ℓ,R)(V) = {g ∈ SL(ℓ,R) | gV = V }
is Zariski closed.

#6. A Zariski-closed subset of SL(ℓ,R) is irreducible if it cannot be writ-
ten as the union of two Zariski-closed, proper subsets. Show that
every Zariski-closed subset A of SL(ℓ,R) has a unique decomposi-
tion as an irredundant, finite union of irreducible, Zariski-closed
subsets. (By irredundant, we mean that no one of the sets is con-
tained in the union of the others.)
[Hint: The ascending chain condition on ideals of R[x1,1, . . . , xℓ,ℓ] implies the de-
scending chain condition on Zariski-closed subsets, so A can be written as a finite
union of irreducibles. To make the union irredundant, the irreducible subsets must
be maximal.]

#7. LetH be a connected subgroup of SL(ℓ,R). Show that ifH ⊆ A1∪A2,
where A1 and A2 are Zariski-closed subsets of SL(ℓ,R), then either
H ⊆ A1 or H ⊆ A2.
[Hint: The Zariski closure H = B1∪· · ·∪Br is an irredundant union of irreducible,
Zariski-closed subsets (see Exercise 6). For h ∈ H, we have H = hB1∪· · ·∪hBr , so
uniqueness implies that h acts as a permutation of {Bj}. Because H is connected,

conclude that H = B1 is irreducible.]

#8. Assume G is connected, and G ⊆ SL(ℓ,R). Show there exist
• a finite-dimensional real vector space V,
• a vector v in V, and
• a continuous homomorphism ρ : SL(ℓ,R)→ SL(V),

such that G = StabSL(ℓ,R)(v)◦.
[Hint: Let Vn be the vector space of polynomial functions on SL(ℓ,R), and let Wn
be the subspace consisting of polynomials that vanish on G. Then SL(ℓ,R) acts
on Vn by translation, and Wn is G-invariant. For n sufficiently large, Wn contains
generators of the ideal of all polynomials vanishing on G, so G = StabSL(ℓ,R)(Wn)◦.
Now let V be the exterior power

∧d Vn, where d = dimWn, and let v be a nonzero
vector in

∧dWn.]

#9. Show that the center of G is finite.
[Hint: The identity component of the Zariski closure of Z(G) is a connected, normal
subgroup of G.]
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§A5. Three useful theorems

§A5(i). Real Jordan decomposition.

(A5.1) Definition. Let g ∈ GL(n,R). We say that g is

1) semisimple if g is diagonalizable (over C),

2) hyperbolic if
• g is semisimple, and
• every eigenvalue of g is real and positive,

3) elliptic if
• g is semisimple, and
• every eigenvalue of g is on the unit circle in C,

4) unipotent (or parabolic) if 1 is the only eigenvalue of g over C.

(A5.2) Remark. A matrix g is semisimple if and only if the minimal poly-
nomial of g has no repeated factors.

1) Because its eigenvalues are real, any hyperbolic g element is diag-
onalizable over R. That is, there is some h ∈ GL(ℓ,R), such that
h−1gh is a diagonal matrix.

2) An element is elliptic if and only if it is contained in some compact
subgroup of GL(ℓ,R). In particular, if g has finite order (that is, if
gn = Id for some n > 0), then g is elliptic.

3) A matrix g ∈ GL(ℓ,R) is unipotent if and only if the characteristic
polynomial of g is (x − 1)ℓ. (That is, 1 is the only root of the char-
acteristic polynomial, with multiplicity ℓ.) Another way of saying
this is that g is unipotent if and only if g − Id is nilpotent (that is,
if and only if (g − Id)n = 0 for some n ∈ N).

(A5.3) Remark. Remark A2.6 implies that if G is not compact, then it
contains nontrivial hyperbolic elements, nontrivial elliptic elements, and
nontrivial unipotent elements.

(A5.4) Proposition (Real Jordan Decomposition). Any element g of G can
be written uniquely as the product g = aku of three commuting elements
a,k,u of G, such that a is hyperbolic, k is elliptic, and u is unipotent.

§A5(ii). Engel’s Theorem on unipotent subgroups.

(A5.5) Definition. A subgroup U of SL(ℓ,R) is said to be unipotent if all
of its elements are unipotent.
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(A5.6) Example. Let N be the group of upper-triangular matrices with 1’s
on the diagonal; that is,

N =




1

1 ∗
0

. . .
1


 ⊆ SL(ℓ,R).

It is obvious that N is unipotent.

Therefore, it is obvious that every subgroup of N is unipotent. Con-
versely:

(A5.7) Theorem (Engel’s Theorem). Every unipotent subgroup of SL(ℓ,R)
is conjugate to a subgroup of the group N of Example A5.6.

§A5(iii). Jacobson-Morosov Lemma.

(A5.8) Theorem (Jacobson-Morosov Lemma). For every unipotent ele-
ment u of G, there is a subgroup H of G isogenous to SL(2,R), such that
u ∈ H.

Exercises for §A5.

#1. Show that an element of SL(ℓ,R) is unipotent if and only if it is
conjugate to an element of the subgroup N of Example A5.6.
[Hint: If g is unipotent, then all of its eigenvalues are real, so it can be triangularized
over R.]

#2. Show that the Zariski closure of every unipotent subgroup is unipo-
tent.

§A6. The Lie algebra of a Lie group

(A6.1) Definition. A map ρ from one Lie group to another is a homomor-
phism if

• it is a homomorphism of abstract groups (i.e., ρ(ab) = ρ(a)ρ(b)),
and

• it is continuous.

(Hence, an isomorphism of Lie groups is a continuous isomorphism of
abstract groups, whose inverse is also continuous.)

Although the definition only requires homomorphisms to be contin-
uous, it turns out that they are always infinitely differentiable:

(A6.2) Proposition. SupposeH1 andH2 are closed subgroups of GL(ℓi,R),
for i = 1,2. Then

1) Hi is a C∞ submanifold of GL(ℓi,R),
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2) every (continuous) homomorphism from H1 to H2 is C∞ and

3) if H1 ⊆ H2, then the coset space H2/H1 is a C∞ manifold.

(A6.3) Remark. In fact, the submanifolds and homomorphisms are real
analytic, not justC∞, but we will have no need for this stronger statement.

(A6.4) Remark. If H is any Lie group, then conjugation by any element h
of H is an automorphism. That is, if we define a map φh : H → H by
φh(x) = h−1xh, then φh is a continuous automorphism of H. Any such
automorphism is said to be “inner .” The group of all inner automor-
phisms is isomorphic to H/Z(H), where Z(H) is the center of H. For
some groups, there are many other automorphisms. For example, every
inner automorphism of an abelian group is trivial, but the automorphism
group of Rn is GL(n,R), which is quite large. In contrast, it can be shown
that the group of inner automorphisms of G has finite index in Aut(G)
(since G is semisimple).

(A6.5) Definitions.

1) For A,B ∈ Matℓ×ℓ(R), the commutator (or Lie bracket ) of A and B
is the matrix [A, B] = AB − BA.

2) A vector subspace h of Matℓ×ℓ(R) is a Lie algebra if it is closed
under the Lie bracket. That is, for all A,B ∈ h, we have [A, B] ∈ h.

3) A map ρ from one Lie algebra to another is a homomorphism if
• it is a linear transformation, and
• it preserves brackets (that is, [ρ(A), ρ(B)] = ρ([A, B])).

4) Suppose H is a closed subgroup of GL(ℓ,R). Then H is a C∞ man-
ifold, so it has a tangent space at every point; the tangent space
at the identity element e is called the Lie algebra of H. Note that,
since H is contained in the vector space Matℓ×ℓ(R), its Lie algebra
can be identified with a vector subspace of Matℓ×ℓ(R).

(A6.6) Notation. Lie algebras are usually denoted by lowercase German
letters: the Lie algebras of G and H are g and h, respectively.

(A6.7) Examples.

1) The Lie algebra sl(ℓ,R)of SL(ℓ,R) is the set of matrices whose trace
is 0 (see Exercise 2).

2) The Lie algebra so(n) of SO(n) is the set of n×n skew-symmetric
matrices of trace 0 (see Exercise 3).

It is an important fact that the Lie algebra ofH is indeed a Lie algebra:

(A6.8) Proposition. If H is a closed subgroup of SL(ℓ,R), then the Lie
algebra of H is closed under the Lie bracket.

Here is a very useful reformulation:
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(A6.9) Corollary. Suppose H1 and H2 are Lie groups, with Lie algebras h1

and h2. If H1 is a subgroup of H2, then h1 is a Lie subalgebra of h2.

Hence, for every closed subgroup of H, there is a corresponding Lie
subalgebra of h. Unfortunately, the converse may not be true: although
every Lie subalgebra corresponds to a subgroup, the subgroup might not
be closed.

(A6.10) Example. The 2-torus T2 = R2/Z2 can be identified with the Lie
group SO(2) × SO(2). For any line through the origin in R2, there is a
corresponding 1-dimensional subgroup of T2. However, if the slope of
the line is irrational, then the corresponding subgroup of T2 is dense, not
closed.

Therefore, in order to obtain a subgroup corresponding to each Lie
subalgebra, we need to allow subgroups that are not closed:

(A6.11) Definition. Suppose H1 and H2 are Lie groups, and ρ : H1 → H2

is a homomorphism. Then ρ(H1) is a Lie subgroup of H2.

(A6.12) Proposition. If H is a Lie group with Lie algebra h, then there is
a one-to-one correspondence between the connected Lie subgroups of H
and the Lie subalgebras of h.

(A6.13) Definitions. Let H be a Lie group in SL(ℓ,R).
1) If h : R → H is any (continuous) homomorphism, we call h a one-

parameter subgroup ofH, and we usually write ht, instead of h(t).
2) We define exp: Matℓ×ℓ(R)→ GL(ℓ,R) by

expX =
∞∑
k=0

1
k!
Xk.

This is called the exponential map.

(A6.14) Proposition. Let h be the Lie algebra of a Lie group H ⊆ SL(ℓ,R).
1) For any X ∈ h, the function xt = exp(tX) is a one-parameter sub-

group of H.

2) Conversely, every one-parameter subgroup of H is of this form, for
some unique X ∈ h.

Furthermore, for X ∈ Matℓ×ℓ(R), we have

X ∈ h a ∀t ∈ R, exp(tX) ∈ H.
(A6.15) Definition. Lie groups H1 and H2 are locally isomorphic if there
is a connected Lie groupH and homomorphisms ρi : H → H◦i , for i = 1,2,
such that each ρi is a covering map.

(A6.16) Proposition. Two Lie groups are locally isomorphic if and only if
their Lie algebras are isomorphic.
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(A6.17) Notation (adjoint representation). Suppose h is the Lie algebra
of a closed subgroup H of SL(ℓ,R). For h ∈ H and x ∈ h ⊆ Matℓ×ℓ(R),
we define

(AdH h)(x) = hxh−1 ∈ h.
Then AdH : H → GL(h) is a (continuous) homomorphism. It is called the
adjoint representation of H.

Exercises for §A6.

#1. Suppose ρ : Rm → Rn is a continuous map that preserves addition.
(That is, we have ρ(x + y) = ρ(x) + ρ(y).) Show (without using
Proposition A6.2) that ρ is a linear transformation (and is there-
fore C∞). This is a very special case of Proposition A6.2.
[Hint: By assumption, we have ρ(kx) = kρ(x) for all k ∈ Z, so ρ(tx) = tρ(x) for
all t ∈ Q (why?). Then continuity implies this is true for all t ∈ R.]

#2. Verify Example A6.7(1).
[Hint: A ∈ sl(ℓ,R) iff d

dt det(Id+tA)
∣∣
t=0 = 0, and, letting λ = 1/t, we have

det(Id+tA) = tℓ det(λI +A) = tℓ(λℓ + (traceA)λℓ−1 +· · · = 1+ (traceA)t+· · · .]

#3. Verify Example A6.7(2).
[Hint: A matrix A of trace 0 is in so(n) iff d

dt (Id+tA)T (Id+tA)
∣∣
t=0 = 0. Calculate

the derivative by using the Product Rule.]

#4. In the notation of Notation A6.17, show, for all h ∈ H, that AdH h
is an automorphism of the Lie algebra h. (In particular, it is an
invertible linear transformation, so it is in GL(h).
[Hint: The map a , hah−1 is a diffeomorphism of H that fixes e, so its derivative
is a linear transformation of the tangent space at e.]

§A7. How to show a group is semisimple

A semisimple group G = G1 × · · ·Gr will often have connected, nor-
mal subgroups (such as the simple factors Gi). However, these normal
subgroups cannot be abelian (see Exercise 1). The converse is a major
theorem in the structure theory of Lie groups:

(A7.1) Theorem. A connected Lie group H is semisimple if and only if it
has no nontrivial, connected, abelian, normal subgroups.

(A7.2) Remark. A connected Lie group R is solvable if every nontriv-
ial quotient of R has a nontrivial, connected, abelian, normal subgroup.
(For example, abelian groups are solvable.) It can be shown that every
connected Lie group H has a unique maximal connected, closed, solv-
able, normal subgroup. This subgroup is called the radical of H, and
is denoted RadH. Our statement of Theorem A7.1 is equivalent to the
more usual statement that H is semisimple if and only if RadH is trivial
(see Exercise 2).
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The following result makes it easy to see that the classical groups,
such as SL(n,R), SO(m,n), and SU(m,n), are semisimple (except a few
abelian groups in small dimensions).

(A7.3) Definition. A subgroup H of GL(ℓ,R) (or GL(ℓ,C)) is irreducible
if there are no nontrivial, proper, H-invariant subspaces of Rℓ (or Cℓ,
respectively).

(A7.4) Example. SL(ℓ,R) is an irreducible subgroup of SL(ℓ,C) (see Exer-
cise 3).

(A7.5) Warning. In a different context, the adjective “irreducible” can
have a completely different meaning when it is applied to a group. For
example, saying that a lattice is irreducible (as in Definition 4.3.1) has
nothing to do with Definition A7.3.

(A7.6) Remark. If H is a subgroup of GL(ℓ,C) that is not irreducible (that
is, if H is reducible), then, after a change of basis, we have

H ⊆
(

GL(k,C) ∗
0 GL(n− k,C)

)
,

for some k with 1 ≤ k ≤ n− 1.
Similarly for GL(ℓ,R).

(A7.7) Corollary. If H is a nonabelian, closed, connected, irreducible sub-
group of SL(ℓ,C), then H is semisimple.

Proof. Suppose A is a connected, abelian, normal subgroup of H. For
each function w : A→ C×, let

Vw = {v ∈ Cℓ | ∀a ∈ A, a(v) = w(a)v }.
That is, a nonzero vector v belongs to Vw if

• v is an eigenvector for every element of A, and

• the corresponding eigenvalue for each element of a is the number
that is specified by the function w.

Of course, 0 ∈ Vw for every function w; let W = {w | Vw ≠ 0 }. (This is
called the set of weights of A on Cℓ.)

Each element of a has an eigenvector (because C is algebraically
closed), and the elements of A all commute with each other, so there
is a common eigenvector for the elements of A. Therefore, W ≠∅. From
the usual argument that the eigenspaces of any linear transformation are
linearly independent, one can show that the subspaces {Vw | w ∈ W }
are linearly independent. Hence, W is finite.

For w ∈ W and h ∈ H, a straightforward calculation shows that
hVw = Vh(w), where

(
h(w)

)
(a) = w(h−1ah). That is, H permutes the

subspaces {Vw}w∈W . BecauseH is connected andW is finite, this implies
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hVw = Vw for each w; that is, Vw is an H-invariant subspace of Cℓ. Since
H is irreducible, we conclude that Vw = Cℓ.

Now, for any a ∈ A, the conclusion of the preceding paragraph im-
plies that a(v) = w(a)v, for all v ∈ Cℓ. Therefore, a is a scalar matrix.

Since deta = 1, this scalar is an ℓth root of unity. So A is a subgroup
of the group of ℓth roots of unity, which is finite. Since A is connected,
we conclude that A = {e}, as desired. □

Here is another useful characterization of semisimple groups.

(A7.8) Corollary. Let H be a closed, connected subgroup of SL(ℓ,C). If

• the center Z(H) is finite, and

• H∗ = H (where ∗ denotes the “adjoint,” or conjugate-transpose),

then H is semisimple.

Proof. Because H∗ = H, it is not difficult to show that H is completely
reducible: there is a direct sum decomposition Cℓ =⊕r

j=1 Vj, such that
the restriction H|Vj is irreducible, for each j (see Exercise 6).

Let A be a connected, normal subgroup of H. The proof of Corol-
lary A7.7 (omitting the final paragraph) shows thatA|Vj consists of scalar
multiples of the identity, for each j. Hence A ⊂ Z(H). Since A is con-
nected, but (by assumption) Z(H) is finite, we conclude that A is triv-
ial. □

(A7.9) Remark. There is a converse: if G is semisimple (and connected),
then G is conjugate to a subgroup H, such that H∗ = H. However, this is
more difficult to prove.

Exercises for §A7.

#1. Prove (⇒) of Theorem A7.1.

#2. Show that a connected Lie group H is semisimple if and only if H
has no nontrivial, connected, solvable, normal subgroups.
[Hint: If R is a solvable, normal subgroup of H, then [R,R] is also normal in H.
Repeating this eventually yields an abelian, normal subgroup.]

#3. Show that no nontrivial, proper C-subspace of Cℓ is invariant under
SL(ℓ,R).
[Hint: Suppose v,w ∈ Rℓ, not both 0. If they are linearly independent, then there
exists g ∈ SL(ℓ,R)with g(v+iw) = v−iw. Otherwise, there exists nonzero λ ∈ C
with λ(v + iw) ∈ Rℓ.]

#4. Give an example of a nonabelian, closed, connected, irreducible
subgroup H of SL(ℓ,R), such that H is not semisimple.
[Hint: U(2) is an irreducible subgroup of SO(4).]
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#5. Suppose H ⊆ SL(ℓ,C). Show that H is completely reducible if
and only if, for every H-invariant subspace W of Cℓ, there is an
H-invariant subspace W ′ of Cℓ, such that Cℓ = W ⊕W ′.
[Hint: (⇒) If W ′ = V1 ⊕ · · · ⊕ Vs, and W ′ ∩W = {0}, but (W ′ ⊕ Vj) ∩W ≠ {0} for

every j > s, then W ′ +W = Cℓ. (⇐) Let W be maximal among the subspaces that
are direct sums of irreducibles, and let V be a minimal H-invariant subspace ofW ′.
Then W ⊕ V contradicts the maximality of W.]

#6. Suppose H = H∗ ⊆ SL(ℓ,C).
a) Show that if W is an H-invariant subspace of Cℓ, then the or-

thogonal complement W⊥ is also H-invariant.
b) Show that H is completely reducible.

Notes

See [6] for a very brief introduction to Lie groups, compatible with
Definition A1.1(3). Similar elementary approaches are taken in the books
[1] and [3].

Almost all of the material in this appendix (other than §A4) can be
found in Helgason’s book [4]. However, we do not follow Helgason’s
notation for some of the classical groups (see Terminology A2.5).

Theorem A4.9 is proved in [5, Thm. 8.3.2, p. 112].
Proposition A5.4 can be found in [4, Lem. IX.7.1, p. 430].
See [2, Prop. 2 in §11.2 of Chapter 8, p. 166] or [7, Thm. 3.17, p. 100]

for a proof of the Jacobson-Morosov Lemma (A5.8).
See [9, Thm. 2.7.5, p. 71] for a proof of Proposition A6.16.
Remark A7.9 is due to Mostow [8].
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Appendix B
Assumed Background

Since the target audience of this book includes mathematicians from
a variety of backgrounds (and because very different theorems some-
times have names that are similar, or even identical), this chapter lists
(without proof or discussion) specific notations, definitions, and theo-
rems of graduate-level mathematics that are assumed in the main text.
(Undergraduate-level concepts, such as the definitions of groups, metric
spaces, and continuous functions, are generally not included.) All of this
material is standard, so proofs can be found in graduate textbooks (and
on the internet).

§B1. Groups and group actions

(B1.1) Notation. Let H be a group, and let K be a subgroup.

1) We usually use e to denote the identity element.

2) Z(H) = {z ∈ H | hz = zh for all h ∈ H } is the center of H.

3) CH(K) = {h ∈ H | hk = kh for all k ∈ K } is the centralizer of K
in H.

4) NH(K) = {h ∈ H | hKh−1 = K } is the normalizer of K in H.

(B1.2) Definition. An action of a Lie group H on a topological space X is
a continuous function α : H ×X → X, such that

• α(e,x) = x for all x ∈ X, and

• α(g,α(h,x)) = α(gh,x) for g,h ∈ H and x ∈ X.

(B1.3) Definitions. Let a (discrete) group Λ act on a topological space M.

1) The action is free if no nonidentity element of Λ has a fixed point.

Recall: The Standing Assumptions (4.0.0 on page 41) are in effect, so, as
always, Γ is a lattice in the semisimple Lie group G ⊆ SL(ℓ,R).
You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/
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2) It is properly discontinuous if, for every compact subset C of M,

the set {λ ∈ Λ | C ∩ (λC) ≠∅} is finite.
3) For any p ∈ M, we define StabΛ(p) = {λ ∈ Λ | λp = p }. This is a

subgroup of Λ called the stabilizer of p in Λ.

4) M is connected if it is not the union of two nonempty, disjoint,
proper, open subsets.

5) M is locally connected if every neighborhood of every p ∈ M con-
tains a connected neighborhood of p.

(B1.4) Proposition. IfΛacts freely and properly discontinuously on a topo-
logical space M, then the natural map π : M → Λ\M is a covering map.

Under the simplifying assumption that M is locally connected, this
means that every p ∈ Λ\M has a connected neighborhood U, such that
the restriction of π to each connected component of π−1(U) is a homeo-
morphism onto U.

§B2. Galois theory and field extensions

(B2.1) Theorem (Fundamental Theorem of Algebra). The field C of com-
plex numbers is algebraically closed; that is, every nonconstant polynomial
f(x) ∈ C[x] has a root in C.

(B2.2) Proposition. Let F be a subfield of C, and let σ : F → C be any
embedding. Then σ extends to an automorphism σ̂ of C.

(B2.3) Notation. If F is a subfield of a field L, then |L : F| denotes dimF L,
the dimension of L as a vector space over F. This is called the degree
of L over F.

(B2.4) Proposition. If F and L are subfields of C, such that F ⊆ L, then
|L : F| is equal to the number of embeddingsσ of L inC, such thatσ |F = Id.

(B2.5) Definition. An extension L of a field F (of characteristic zero) is
Galois if, for every irreducible polynomial f(x) ∈ F[x], such that f(x)
has a root in L, there exist α1, . . . , αn ∈ L, such that

f(x) = (x −α1) · · · (x −αn).
That is, if an irreducible polynomial in F[x] has a root in L, then all of
its roots are in L.

(B2.6) Definition. Let L be a Galois extension of a field F. Then

Gal(L/F) = {σ ∈ Aut(L) | σ |F = Id }.
This is the Galois group of L over F.

(B2.7) Proposition. If L is a Galois extension of a field F of characteristic 0,
then |Gal(L/F)| = |L : F|.



B4. POLYNOMIAL RINGS 449

(B2.8) Corollary. If L is a Galois extension of a field F of characteristic 0,
then there is a one-to-one correspondence between

• the subfields K of L, such that F ⊆ K, and

• the subgroups H of Gal(L/F).
Specifically, the subgroup of Gal(L/F) corresponding to the subfield K is
Gal(L/K).

§B3. Algebraic numbers and transcendental numbers

(B3.1) Definitions.

1) A complex number z is algebraic if there is a nonzero polynomial
f(x) ∈ Z[x], such that f(z) = 0.

2) A complex number is transcendental if it is not algebraic.

3) A (nonzero) polynomial is monic if its leading coefficient is 1; that
is, we may write f(x) =∑nk=0 akxk with an = 1.

4) A complex number z is an algebraic integer if there is a monic
polynomial f(x) ∈ Z[x], such that f(z) = 0.

(B3.2) Proposition. Ifα is an algebraic number, then there is some nonzero
m ∈ Z, such that mα is an algebraic integer.

(B3.3) Proposition. The set of algebraic integers is a subring of C.

(B3.4) Proposition. Fix some n ∈ N+. Let

• ω be a primitive nth root of unity, and

• Z×n be the multiplicative group of units modulo n.

Then there is an isomorphism

f : Z×n → Gal
(
Q[ω]/Q

)
: k, fk,

such that fk(ω) =ωk, for all k ∈ Z×n.

§B4. Polynomial rings

(B4.1) Definition. A commutative ring R is Noetherian if the following
equivalent conditions hold:

1) Every ideal of R is finitely generated.

2) If I1 ⊆ I2 ⊆ · · · is any increasing chain of ideals of R, then there is
some m, such that Im = Im+1 = Im+2 = · · · .

(B4.2) Proposition (Hilbert Basis Theorem). For any field F, the polynomial
ring F[x1, . . . , xs] (in any number of variables) is Noetherian.

(B4.3) Theorem. Let F be a subfield of a field L. If L is finitely gen-
erated as an F-algebra (that is, if there exist c1, . . . , cr ∈ L, such that
L = F[c1, . . . , cr ]), then L is algebraic over F.
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(B4.4) Proposition (Nullstellensatz). Let

• F be an algebraically closed field,

• F[x1, . . . , xr ] be a polynomial ring over F, and

• I be any proper ideal of F[x1, . . . , xr ].
Then there exist a1, . . . , ar ∈ F, such that f(a1, . . . , ar ) = 0 for all
f(x1, . . . , xr ) ∈ I.
(B4.5) Corollary. If B is any finitely generated subring of C, then there is
a nontrivial homomorphism from B to the algebraic closure Q of Q.

(B4.6) Lemma (Eisenstein Criterion). Let f(x) ∈ Z[x]. If there is a prime
number p, and some a ∈ Zp ∖ {0}, such that

• f(x) ≡ axn (mod p), where n = deg f(x), and

• f(0) ̸≡ 0 (mod p2),
then f(x) is irreducible over Q.

§B5. General topology

(B5.1) Definitions. Let X be a topological space.

1) A subset C of X is precompact (or relatively compact ) if the clo-
sure of C is compact.

2) X is locally compact if every point of X is contained in a precom-
pact, open subset.

3) X is separable if it has a countable, dense subset.

4) If I is an index set (of any cardinality), and Xi is a topological space,
for each i ∈ I, then the Cartesian product ×i∈I Xi has a natural
“product topology ,” in which a set is open if and only if it is a
union (possibly infinite) of sets of the form ×i∈I Ui, where each Ui
is an open subset of Xi, and we have Ui = Xi for all but finitely
many i.

(B5.2) Theorem (Tychonoff’s Theorem). If Xi is a compact topological
space, for each i ∈ I, then the Cartesian product ×i∈I Xi is also compact
(with respect to the product topology ).

(B5.3) Proposition (Zorn’s Lemma). Suppose ≤ is a binary relation on a
set P, such that:

• If a ≤ b and b ≤ c, then a ≤ c.
• If a ≤ b and b ≤ a, then a = b.

• a ≤ a for all a.

• If C ⊆ P, such that, for all c1, c2 ∈ C, either c1 ≤ c2 or c2 ≤ c1, then
there exists b ∈ P, such that c ≤ b, for all c ∈ C.

Then there exists a ∈ P, such that a ̸≤ b, for all b ∈ P.
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§B6. Measure theory

(B6.1) Assumption. Throughout this section, X and Y are complete, sep-
arable metric spaces. (Recall that complete means all Cauchy sequences
converge.)

(B6.2) Definitions.

1) The Borel σ-algebra B(X) of X is the smallest collection of subsets
of X that:
• contains every open set,
• is closed under countable unions (that is, if A1, A2, . . . ∈ B,

then
∪∞
i=1Ai ∈ B), and

• is closed under complements (that is, ifA ∈ B, thenX∖A ∈ B).

2) Each element of B(X) is called a Borel set .

3) A function f : X → Y is Borel measurable if f−1(A) is a Borel set
in X, for every Borel set A in Y .

4) A function µ : B(X) → [0,∞] is called a measure if it is countably
additive. This means that if A1, A2, . . . are pairwise disjoint, then

µ

 ∞∪
i=1

Ai

 = ∞∑
i=1

µ(Ai).

5) A measure µ onX is Radon if µ(C) <∞, for every compact subset C
of X.

6) A measure µ on X is σ-finite if X is the union of countably many
sets of finite measure. This means X = ∪∞i=1Ai, with µ(Ai) <∞ for
each i.

(B6.3) Proposition. If µ is a measure on X, and f is a measurable function
on X, such that f ≥ 0, then the integral

∫
X f dµ is a well-defined element

of [0,∞], such that:

1)
∫
X χA dµ = µ(A) if χA is the characteristic function of A.

2)
∫
X(a1f1 + a2f2)dµ = a1

∫
X f1 dµ + a2

∫
X f2 dµ for a1, a2 ∈ [0,∞).

3) if {fn} is a sequence of measurable functions on X, such that we
have 0 ≤ f1 ≤ f2 ≤ · · · , then∫

X
lim
n→∞fn dµ = lim

n→∞

∫
X
fn dµ.

(B6.4) Corollary (Fatou’s Lemma). If {fn}∞n=1 is a sequence of measurable
functions on X, with fn ≥ 0 for all n, and µ is a measure on X, then∫

X
lim inf
n→∞ fn dµ ≤ lim inf

n→∞

∫
X
fn dµ.

(B6.5) Proposition. If X is locally compact and separable, then every
Radon measure µ on X is inner regular. This means

µ(E) = sup{µ(C) | C is a compact subset of E }, for every Borel set E.
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(B6.6) Proposition (Lusin’s Theorem). Assume µ is a Radon measure onX,
and X is locally compact. Then, for every measurable function f : X → R,
and every ϵ > 0, there is a continuous function g : X → R, such that

µ
({x ∈ X | f(x) ≠ g(x) } < ϵ.

(B6.7) Definition. If µ is a measure on X, and f : X → Y is measurable,
then the push-forward of µ is the measure f∗µ on Y that is defined by

(f∗µ)(A) = µ
(
f−1(A)

)
for A ⊆ Y.

(B6.8) Proposition (Fubini’s Theorem). Assume

• X1 and X2 are complete, separable metric spaces, and

• µi is a σ-finite measure on Xi, for i = 1,2.

Then there is a measure ν = µ1 × µ2 on X1 ×X2, such that:

1) ν(E1×E2) = ν(E1)·ν(E2)when Ei is a Borel subset of Xi for i = 1,2,
and

2)
∫
X1×X2

f dν =
∫
X1

∫
X2
f(x1, x2)dµ2(x2)dµ1(x1) when the function

f : X1 ×X2 → [0,∞] is Borel measurable.

(In particular,
∫
X2
f(x1, x2)dµ2(x2) is a measurable function of x1.)

(B6.9) Definitions.

1) The support of a function f : X → C is defined to be the closure of
{x ∈ X | f(x) ≠ 0 }.

2) Cc(X) = { continuous functions f : X → C with compact support }.
3) λ : Cc(X)→ C is a positive linear functional on Cc(X) if:

• it is linear (that is, λ(a1f1 + a2f2) = a1λ(f1) + a2λ(f2) for
a1, a2 ∈ C and f1, f2 ∈ C(X)), and

• it is positive (that is, if f(x) ≥ 0 for all x, then λ(f) ≥ 0).

(B6.10) Theorem (Riesz Representation Theorem). Assume X is locally
compact and separable. If λ is any positive linear functional on Cc(X),
then there is a Radon measure µ on X, such that

λ(f) =
∫
X
f dµ for all f ∈ Cc(X).

(B6.11) Definitions. Assume µ is a measure on X, and the function
φ : X → C is measurable.

1) For 1 ≤ p <∞, the +++p-norm of φ is

∥φ∥p =
(∫
X
|φ(x)|p dµ(x)

)1/p
.

2) An assertion P(x) is said to be true for almost all x ∈ X (or to
be true almost everywhere, which is usually abbreviated to a.e.),
if µ

({x | P(x) is false }) = 0.
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3) In particular, two functions φ1 and φ2 are equal (a.e.) if

µ
({x | φ1(x) ≠φ2(x) }

) = 0.
This defines an equivalence relation on the set of (measurable)
functions on X.

4) The +++∞-norm (or essential supremum) of φ is

∥φ∥∞ = min
{
a ∈ (−∞,∞] |φ(x) ≤ a for a.e. x

}
.

5) +p(X, µ) = {φ : X → C | ∥φ∥p < ∞}, for 1 ≤ p ≤ ∞. An element
of +p(X, µ) is called an +++p-function on X. Actually, two functions
in +p(X, µ) are identified if they are equal almost everywhere, so,
technically, +p(X, µ) should be defined to be a set of equivalence
classes, instead of a set of functions.

(B6.12) Definition. Two measures µ and ν on X are in the same measure
class if they have exactly the same sets of measure 0:

µ(A) = 0 ⇐⇒ ν(A) = 0.
(This defines an equivalence relation.)

(B6.13) Theorem (Radon-Nikodym Theorem). Two σ-finite measures µ
and ν on X are in the same class if and only if there is a measurable
function D : X → R+, such that µ = Dν. That is, for every measurable
subset A of X, we have µ(A) =

∫
ADdν.

The function D is called the Radon-Nikodym derivative dµ/dν.

§B7. Functional analysis

(B7.1) Definitions. Let F be either R or C, and let V be a vector space
over F.

1) A topological vector space is a vector space V, with a topology,
such that the operations of scalar multiplication and vector ad-
dition are continuous (that is, the natural maps F × V → V and
V × V → V are continuous).

2) A subset C of V is convex if, for all v,w ∈ C and 0 ≤ t ≤ 1, we
have tv + (1− t)w ∈ C.

3) A topological vector space V is locally convex if every neighbor-
hood of 0 contains a convex neighborhood of 0.

4) A locally convex topological vector space V is Fréchet if its topol-
ogy can be given by a metric that is complete (that is, such that
every Cauchy sequence converges to a limit point).

5) A norm on V is a function ∥ ∥ : V → [0,∞), such that:
(a) ∥v +w∥ ≤ ∥v∥ + ∥w∥ for all v,w ∈ V,
(b) ∥av∥ = |a| ∥v∥ for a ∈ F and v ∈ V, and
(c) ∥v∥ = 0 if and only if v = 0.
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Note that any norm ∥ ∥ on V provides a metric that is defined by
d(v,w) = ∥v −w∥. Thus, the norm determines a topology on V.

6) A Banach space is a vector space B, together with a norm ∥ ∥, such
that the resulting metric is complete. (Banach spaces are Fréchet.)

7) An inner product on V is a function ⟨ | ⟩ : V × V → F, such that
(a) ⟨av+bw | x⟩ = a⟨v|x⟩+b⟨w|x⟩ for a,b ∈ F and v,w,x ∈ V,
(b) ⟨v | w⟩ = ⟨w | v⟩ for v,w ∈ V, where a denotes the complex

conjugate of a, and
(c) ⟨v | v⟩ ≥ 0 for all v ∈ V, with equality iff v = 0.

Note that if ⟨ | ⟩ is an inner product on V, then a norm on V is
defined by the formula ∥v∥ =

√
⟨v | v⟩.

8) A Hilbert space is a vector space H , together with an inner prod-
uct ⟨ | ⟩, such that the resulting normed vector space is complete.
(Hence, every Hilbert space is a Banach space.)

9) An isomorphism between Hilbert spaces
(H1, ⟨ | ⟩1

)
and

(H2, ⟨ | ⟩2
)

is an invertible linear transformation T : H1 →H2, such that

⟨Tv | Tw⟩2 = ⟨v | w⟩1 for all v,w ∈H1.
An isomorphism from H to itself is called a unitary operator
on H .

(B7.2) Example. If µ is a measure on X, then the +p-norm makes +p(X, µ)
into a Banach space (for 1 ≤ p ≤ ∞). Furthermore, +2(X, µ) is a Hilbert
space, with the inner product

⟨φ | ψ⟩ =
∫
X
φ(x)ψ(x)dµ(x).

(B7.3) Definitions. Let B be a Banach space (over F ∈ {R,C}).
1) A continuous linear functional on B is a continuous function
λ : B → F that is linear (which means λ(av+bw) = aλ(v)+bλ(w)
for a,b ∈ F and v,w ∈ B).

2) B∗ = { continuous linear functionals on B} is the dual of B. This
is a Banach space: the norm of a linear functional λ is

∥λ∥ = sup{ |λ(v)| | v ∈ B, ∥v∥ ≤ 1 }.
3) For each v ∈ B, there is a linear function ev : B∗ → F, defined by
ev(λ) = λ(v). The weak∗ topology on B∗ is the coarsest topology
for which every ev is continuous.

In other words, the basic open sets in the weak∗ topology are
of the form {λ ∈ B∗ | λ(v) ∈ U }, for some v ∈ B and some open
subset U of F. A set in B∗ is open if and only if it is a union of sets
that are finite intersections of basic open sets.

4) Any continuous, linear transformation from B to itself is called a
bounded operator on B.
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5) The set of bounded operators on B is itself a Banach space, with
the operator norm

∥T∥ = sup{ ∥T(v)∥ | ∥v∥ ≤ 1 }.
(B7.4) Proposition (Banach-Alaoglu Theorem). If B is any Banach space,
then the closed unit ball in B∗ is compact in the weak∗ topology.

(B7.5) Proposition (Hahn-Banach Theorem). Suppose

• B is a Banach space over F,

• W is a subspace of B (not necessarily closed), and

• λ : W → F is linear.

If |λ(w)| ≤ ∥w∥ for all w ∈ W , then λ extends to a linear functional
λ̂ : B → F, such that |λ̂(v)| ≤ ∥v∥ for all v ∈ B.

(B7.6) Proposition (Open Mapping Theorem). AssumeX and Y are Fréchet
spaces, and f : X → Y is a continuous, linear map.

1) If f is surjective, and O is any open subset of X, then f(O) is open.

2) If f is bijective, then the inverse f−1 : Y → X is continuous.

(B7.7) Assumption. Hilbert spaces are always assumed to be separable.

This has the following consequence:

(B7.8) Proposition. There is only one infinite-dimensional Hilbert space
(up to isomorphism). In other words, every infinite-dimensional Hilbert
space is isomorphic to +2(R, µ), where µ is Lebesgue measure.

(B7.9) Definitions.

1) If H1 and H2 are Hilbert spaces, then the direct sum H1⊕H2 is a
Hilbert space, under the inner product⟨

(φ1,φ2) | (ψ1,ψ2)
⟩ = ⟨φ1 | ψ1⟩ + ⟨φ2 | ψ2⟩.

By induction, this determines the direct sum of any finite number of
Hilbert spaces; see Definition 11.6.1 for the direct sum of infinitely
many.

2) We use “⊥” as an abbreviation for “is orthogonal to.” Therefore, if
φ,ψ ∈ H , then φ ⊥ ψ means ⟨φ | ψ⟩ = 0. For subspaces K,K′

of H , we write K ⊥K′ if φ ⊥φ′ for all φ ∈K and φ′ ∈ K′.
3) The orthogonal complement of a subspace K of H is

K⊥ = {φ ∈H |φ ⊥K}.
This is a closed subspace ofH . We haveH =K+K⊥ andK ⊥K⊥,
so H =K ⊕K⊥.

4) The orthogonal projection onto a closed subspace K of H is the
(unique) bounded operator P : H →K, such that
• P(φ) =φ for all φ ∈K, and
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• P(ψ) = 0 for all φ ∈K⊥.

(B7.10) Definitions. Let T : H →H be a bounded operator on a Hilbert
space H .

1) The adjoint of T is the bounded operator T∗ on H , such that

⟨Tφ | ψ⟩ = ⟨φ | T∗ψ⟩ for allφ,ψ ∈H .
It does not always exist, but T∗ is unique if it does exist.

2) T is self-adjoint (or Hermitian) if T = T∗.

3) T is normal if TT∗ = T∗T .

4) T is compact if there is a nonempty, open subset O of H , such
that T(O ) is precompact.

(B7.11) Proposition. Let T be a bounded operator on a Hilbert space H .

1) If T(H ) is finite-dimensional, then T is compact.

2) The set of compact operators onH is closed (in the topology defined
by the operator norm).

(B7.12) Proposition (Spectral Theorem). If T is any bounded, normal op-
erator on any Hilbert space H , then there exist

• a finite measure µ on [0,1],
• a bounded, measurable function f : [0,1]→ C, and

• an isomorphism U : H → +2([0,1], µ),
such that U(Tφ) = f U(φ), for all φ ∈ H (where f U(φ) denotes the
pointwise multiplication of the functions f and U(φ).

Furthermore:

1) T is unitary if and only if |f(x)| = 1 for a.e. x ∈ [0,1].
2) T is self-adjoint if and only if f(x) ∈ R for a.e. x ∈ [0,1].

(B7.13) Definition. In the situation of Proposition B7.12, the spectral
measure of T is f∗µ.

(B7.14) Corollary (Spectral Theorem for compact, self-adjoint operators).
Let T be a bounded operator on any Hilbert space H . Then T is both self-
adjoint and compact if and only if there exists an orthonormal basis {en}
of H , such that

1) each en is an eigenvector of T , with eigenvalue λn,

2) λn ∈ R, and

3) limn→∞ λn = 0.

(B7.15) Proposition (Fréchet-Riesz Theorem). If λ is any continuous lin-
ear functional on a Hilbert space H , then there exists ψ ∈ H , such that
λ(φ) = ⟨φ | ψ⟩ for all φ ∈H .



Appendix C
A Quick Look at S-Arithmetic Groups

Classically, and in the main text of this book, the Lie groups under con-
sideration were manifolds over the field R of real numbers. However,
in some areas of modern mathematics, especially Number Theory and
Geometric Group Theory, it is important to understand the lattices in Lie
groups not only over the classical field R (or C), but also over “nonar-
chimedean” fields of p-adic numbers. The natural analogues of arith-
metic groups in this setting are called “S-arithmetic groups.” Roughly
speaking, this generalization is obtained by replacing the ring Z with a
slightly larger ring.

(C0.1) Definition. For any finite set S = {p1, p2, . . . , pn} of prime num-
bers, let

ZS =
{
p
q
∈ Q

∣∣∣∣∣ every prime factor
of q is in S

}
= Z[1/p1,1/p2, . . . ,1/pn

]
.

This is called the ring of S-integers.

(C0.2) Example.

1) The prototypical example of an arithmetic group is SL(ℓ,Z).
2) The corresponding example of an S-arithmetic group is SL

(
ℓ,ZS

)
(where S is a finite set of prime numbers).

That is, while arithmetic groups do not allow their matrix entries to have
denominators, S-arithmetic groups allow their matrix entries to have de-
nominators that are products of certain specified primes.

Most of the results in this book can be generalized in a natural way
to S-arithmetic groups. (The monographs [5] and [8] treat S-arithmetic
groups alongside arithmetic groups throughout.) We will now give a very
brief description of these more general results.

You can copy, modify, and distribute this work, even for commercial purposes, all without
asking permission. http://creativecommons.org/publicdomain/zero/1.0/
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(C0.3) Remark. The monograph [5] of Margulis deals with a more gen-
eral class of S-arithmetic groups that allows R to be replaced with cer-
tain “local” fields of characteristic p, but we discuss only the fields of
characteristic 0.

§C1. Introduction to S-arithmetic groups

Most of the theory in this book (and much of the importance of the theory
of arithmetic groups) arises from the fundamental fact that GZ is a lattice
in G. Since the ring ZS is not discrete (unless S = ∅), the group GZS is
usually not discrete, so it is usually not a lattice in G. Instead, it is a
lattice in a group GS that will be defined in this section.

The construction of R as the completion of Q can be generalized as
follows:

(C1.1) Definition (p-adic numbers). Let p be a prime number.

1) If x is any nonzero rational number, then there is a unique integer
v = vp(x), such that we may write

x = pv a
b
,

where a and b are relatively prime to p. (We let vp(0) = ∞.) Then
vp(x) is called the p-adic valuation of x.

2) Let
dp(x,y) = p−vp(x−y).

It is easy to verify that dp is a metric on Q. It is called the p-adic
metric .

3) Let Qp be the completion of Q with respect to this metric. (That
is, Qp is the set of equivalence classes of convergent Cauchy se-
quences.) This is a field that naturally contains Q. It is called the
field of p-adic numbers.

4) If G is an algebraic group over Q, we can define the group G(Qp)
of Qp-points of G.

(C1.2) Notation. To discuss real numbers and p-adic numbers uniformly,
it is helpful to let Q∞ = R.

The construction of arithmetic subgroups by restriction of scalars
(see Section 5.5) is based on the fact that the ring O of integers in a
number field F embeds as a cocompact, discrete subring in

⊕
v∈S∞ Fv.

Using this fact, it was shown that G(O) is a lattice in ×v∈S∞ G(Fv).
Similarly, to obtain a lattice in a p-adic group G(Zp), or, more gener-

ally, in a product ×v∈S∪{∞} Fv of p-adic groups and real groups, we note
that

ZS embeds as a cocompact, discrete subring in
⊕

p∈S∪{∞}
Qp.
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Using this fact, it can be shown that

G(OS) is a lattice in GS = ×
p∈S∪{∞}

G(Qp).

We call G(OS) an S-arithmetic subgroup.

(C1.3) Example. Let G be the special linear group SLn.

1) Letting S = ∅, we have ZS = Z and GS = SL(n,R). So SL(n,Z) is
an S-arithmetic lattice in SL(n,R). This is a special case of the fact
that every arithmetic lattice is an S-arithmetic lattice (with S = ∅).

2) Letting S = {p}, where p is a prime, we see that SL
(
n,Z[1/p]

)
is a

lattice in SL(n,R)× SL(n,Qp).
3) More generally, letting S = {p1, p2, . . . , pr}, where p1, . . . , pr are

primes, we see that SL
(
n,ZS

)
is a lattice in

SL(n,R)× SL(n,Qp1)× SL(n,Qp2)× · · · × SL(n,Qpr ).
This is an elaboration of our previous comment that SL(ℓ,ZS) is the pro-
totypical example of an S-arithmetic group (see Example C0.2).

(C1.4) Remark [2, Chap. 7]. In the study of arithmetic subgroups of a Lie
group G, the symmetric space G/K is a very important tool. In the theory
of S-arithmetic subgroups of GS, this role is taken over by a space called
the Bruhat-Tits building of GS. It is a Cartesian product

XS = (G/K)× ×
p∈S
Xp,

where Xp is a contractible simplicial complex on which G(Qp) acts prop-
erly (but not transitively).

Optional: Readers familiar with the basic facts of Algebraic Number
Theory will realize that the above discussion has the following natural
generalization:

(C1.5) Definition ([5, p. 61], [8, p. 267]). Let

• O be the ring of integers of an algebraic number field F,

• S be a finite set of finite places of F, and

• G be a semisimple algebraic group over F, and

• GS =×v∈S∪S∞ G(Fv).
Then G(OS) is an S-arithmetic subgroup of GS.

(C1.6) Remark. More generally, much as in Definition 5.1.19, if

• Γ ′ is an S-arithmetic subgroup of G′S, and

• φ : G′S → GS is a surjective, continuous homomorphism, with com-
pact kernel,

then any subgroup of GS that is commensurable to φ(Γ ′)may be called
an S-arithmetic subgroup of GS.
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(C1.7) Theorem [8, Thm. 5.7, p. 268]. Every S-arithmetic subgroup of GS
is a lattice in GS.

§C2. List of results on S-arithmetic groups

(C2.1) Warning. The Standing Assumptions (4.0.0) do not apply in this
appendix, because G is not assumed to be a real Lie group.

Instead:

(C2.2) Assumption. Throughout the remainder of this appendix:

• G is a semisimple algebraic group over Q,

• S is a finite set of prime numbers, and

• Γ is an S-arithmetic lattice in GS =×p∈S∪{∞}G(Qp).
To avoid trivialities, we assume GS is not compact, so Γ is infinite.

(C2.3) Definition. As a substitute for real rank in this setting, let

S-rank G =
∑

p∈S∪{∞}
rankQp G.

(C2.4) Remark. All of these results generalize to the setting of Defini-
tion C1.5, but we restrict our discussion to Q for simplicity.

The following theorems on S-arithmetic groups are all stated without
proof, but each result is provided with a reference for further reading.
The reader should be aware that these references are almost always sec-
ondary sources, not the original appearance of the result in the literature.

Results related to Chapter 4 (Basic Properties of Lattices).

(4.4.3S) Γ\GS is compact if and only if the identity element e is not an
accumulation point of ΓGS [9, Thm. 1.12, p. 22].

(4.4.4S) If Γ has a nontrivial, unipotent element, then Γ\GS is not compact.
In fact, Godement’s Criterion (5.3.1S) tells us that the converse is also
true.

(4.5.1S) The Borel Density Theorem holds, for any continuous homomor-
phism ρ : GS → GL(V), where V is a vector space over R, C, or any
p-adic field Qp [5, Thm. II.2.5 (and Lem. II.2.3), p. 84].

(4.7.10S) Γ is finitely presented [8, Thm. 5.11, p. 272].

(4.8.2S) (Selberg Lemma) Γ has a torsion-free subgroup of finite index [9,
Thm. 6.11, p. 93].

(4.9.2S) (Tits Alternative) Γ has a nonabelian free subgroup [5, App. B,
pp. 351–353].
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Results related to Chapter 5 (What is an Arithmetic Group?).

(5.2.1S) (Margulis Arithmeticity Theorem) If S-rank G ≥ 2, then every ir-
reducible lattice in GS is S-arithmetic [5, Thm. IX.1.10, p. 298, and
Rem. (vi) on p. 290]. (Note that our definition of irreducibility is
stronger than the one used in [5].)

(5.3.1S) (Godement Criterion) Γ\GS is compact if and only if Γ has no
nontrivial unipotent elements [8, Thm. 5.7(2), p. 268].

Remark. Exercise 4.4#10 (easily) implies:

1) [13, Thm. 1] If v is any nonarchimedean place of F, then every
lattice in G(Fv) is cocompact.

2) If G(S∞) is compact, then every lattice in G is cocompact.

Warning. We know that ifO is the ring of integers of F, then G(O)embeds
as an arithmetic lattice in ×v∈S∞ G(Fv), but that restriction of scalars
allows us to realize this same lattice as the Z-points of an algebraic group
defined over Q (cf. Proposition 5.5.8). This means that all arithmetic
groups can be found by using only algebraic groups that are defined
over Q, not other number fields. It is important to realize that the same
cannot be said for S-arithmetic groups: most extensions of Q provide
many S-arithmetic groups that cannot be obtained from Q.

For example, suppose p is a prime in Z, but p factors in the integersO
of an extension field, and a is a prime factor of p inO. Then the subgroup
SL
(
2,O[1/p]) can be obtained by restriction of scalars, but SL

(
2,O[1/a])

is an {a}-arithmetic subgroup that cannot be obtained by this method.

A result related to Chapter 12 (Amenable Groups).

(12.4.5S) For v ∈ S, if G(Fv) is not compact, then G(Fv) is not amenable
[12, Rem. 8.7.11, p. 260].

Results related to Chapter 13 (Kazhdan’s Property (T)).

(13.2.4S) If rankFv G ≥ 2, for every simple factor G of G(Fv), and every
v ∈ S, then GS has Kazhdan’s property [5, Cor. III.5.4, p. 130].

(13.4.1S) If GS has Kazhdan’s property, then Γ also has Kazhdan’s prop-
erty [5, Thm. III.2.12, p. 117].

(13.4.3S) If Γ has Kazhdan’s property, then Γ/[Γ , Γ] is finite [5, Thm. III.2.5,
p. 115].



462 C. A QUICK LOOK AT S-ARITHMETIC GROUPS

A result related to Chapter 16 (Margulis Superrigidity Theorem).

Assumption. Assume

• S-rankG ≥ 2,

• Γ is irreducible, and

• w is a place of some algebraic number field F ′.

(16.1.6S) (Margulis Superrigidity Theorem [5, Prop. VII.5.3, p. 225]) If

• G′ is a Zariski-connected, noncompact, simple algebraic group
over F ′w, with trivial center, and

• φ : Γ → G′(F ′w) is a homomorphism, such that φ(Γ) is:
◦ Zariski dense in G′, and
◦ not contained in any compact subgroup of G′(F ′w),

then φ extends to a continuous homomorphism φ̂ : GS → G′(F ′w).
Furthermore, there is some v ∈ S, such that Fv is isomorphic to

a subfield of a finite extension of F ′w.

Warning. Exercise 16.4#1 does not extend to the setting of S-arithmetic
groups: for example, the lattice SL(n,Z) is not cocompact, but the image
of the natural inclusion SL(n,Z)↩ SL(n,Qp) is precompact.

Results related to Chapter 17 (Normal Subgroups of Γ).
(17.1.1S) (Margulis Normal Subgroups Theorem [5, Thm. VIII.2.6, p. 265])

Assume

• S-rank G ≥ 2,

• Γ is irreducible, and

• N is a normal subgroup of Γ .
Then either N is finite, or Γ/N is finite.

(17.2.1S) If S-rank G = 1, then Γ has (many) normal subgroups N, such
that neither N nor Γ/N is finite [4, Cor. 7.6].

Results related to Chapter 18 (Arithmetic Subgroups of Classical
Groups).

(18.1.1S) LetQp be the algebraic closure ofQp. Then all but finitely many
of the simple Lie groups over Qp are isogenous to either SL(n,Qp),
SO(n,Qp), or Sp(2n,Qp), for some n [3, Thm. 11.4, pp. 57–58, and
Thm. 18.4, p. 101].

(18.1.7S), (18.5.3S) Every Q-form or Qp-form of SL(n,Qp), SO(n,Qp), or
Sp(n,Qp) is of classical type, except for some “triality” forms of
SO(8,Qp) (cf. Remark 18.5.10) [8, §2.3].
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(18.5.10S) Unlike R, the field Qp has extensions of degree 3, so some
Qp-forms of SO(8,Qp) are triality groups, even though there are no
such R-forms of SO(8,C).

(18.7.1S) GS has a cocompact, S-arithmetic lattice [1].

(18.7.4S) If G is isotypic, then GS has a cocompact, irreducible lattice that
is S-arithmetic [1].

(18.7.5S) If GS has an irreducible, S-arithmetic lattice, then G is isotypic.

A result related to Chapter 19 (Construction of a Coarse Fundamen-
tal Domain). If F is any coarse fundamental domain for G(Z) in G(R),
then there is a compact subset C of ×p∈S G(Qp), such that F × C is a
coarse fundamental domain for G(ZS) in GS [8, Prop. 5.11, p. 267].

This implies that every S-arithmetic subgroup of GS is a lattice [8,
Thm. 5.7, p. 268], but the short proof outlined in Section 7.4 does not
seem to generalize to this setting.

Results related to Chapter 20 (Ratner’s Theorems on Unipotent
Flows). Ratner’s three main theorems (20.1.3, 20.3.3, and 20.3.4) have
all been generalized to the S-arithmetic setting by Ratner [10, 11] and
Margulis-Tomanov [6, 7] (independently).
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type, 276
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Q-, see Q-rank
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real root, 180
reduced norm, 116, 430
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linear group, 443

Reduction Theory, 152
reductive, 181
regular

measure, inner, 432, 451
representation, 212

relative motion, 418, 419
fastest, 419

relatively compact, 450
representation
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induced, 218, 219
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regular, see regular representation
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unitarizable, 255



INDEX 473
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Restriction of Scalars, 69, 325
reversion anti-involution, 123, 146, 430
Riemannian manifold, 3

S-
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integers, 457

Sanov subgroup, 76
second countable, 236
second-order effect, 419
self-adjoint operator, 456
semisimple

element of G, 438
Lie group, 428

separable topological space, 450
shearing property, 418

in SL(2,R), 419
Siegel set, 64, 312, 392–394

generalized, 394
normal, 399
open, 395

σ-finite measure, 285, 451
simple

absolutely, 104
abstract group, 427
algebra, 148
almost, 428
Lie group, 427
module, 144
ring, 144

simply connected, algebraically, 320
singular set, 437
skew field, 144
solvable Lie group, 442
special linear group, 429, 430
spectral measure, 456
stabilizer, 448

essential, 288
star (of finitely many rays), 24
star-shaped neighborhood, 6
stationary, 339
subexponential growth, 247
subrepresentation, 212, 268
support, 452
symmetric
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generating set, 203
measure, 253
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space, 5, 7

symplectic group, 430

complex, 431
unitary, 431

tangent cone at infinity, see asymptotic
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thin, δ-, see δ-thin
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torus, 177
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real number field, 112

transcendental number, 449
transverse divergence, 419, 420
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triality, 363, 381, 463
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uniform subgroup, 44
uniformly distributed, 291, 412, 413
unimodular group, 432
unipotent

element, 50, 438
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subgroup, 438

unirational, 89, 109
unitary

dual, 213
group, special, 430
operator, 454
representation, 211
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weak∗ topology, 454
weakly contained, 269
weights of a representation, 443
Weyl chamber, positive, 198, 392
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metric, 203

Z-lattice, 96
unimodular, 164

Zariski
closed, 434
closure, 434
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