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1 Introduction 

Let G be a Zariski-connected semisimple linear Lie group. 

Definition 1.1. Let H be a closed connected subgroup of G. We say that the homogeneous 

space G/H has a compact Clifford-Klein form if there is a discrete subgroup r of G such 

that r acts properly on G/H, and r\G/H is compact. 

A basic question in geometry is which homogeneous spaces of G admit compact 

Clifford-Klein forms. If H is compact, then G/H has a compact Clifford-Klein form by a 

result of Bore1 [Bor]. When H is noncompact, the situation is far from being well under- 

stood. Some examples of such homogeneous spaces admitting a compact Clifford-Klein 

form have been constructed by Kulkarni [Kul] , Goldman [Gol] , and T. Kobayashi [Kb6]. 

Their constructions are quite special as they concern specific groups. More generally, 

we suspect that most non-Riemannian homogeneous spaces do not admit a compact 

Clifford-Klein form (see [Kb5] and [Lab] for a survey on the general problem). 

If R-rank G = 0, or equivalently, if G is compact, then it is obvious that there is 

no interesting example. The same is true for the case of R-rank G = 1, even though it is 

not as obvious. 

Proposition 1.2 (see Proposition 2.7 and Corollary 2.3). If R-rank G = 1, then G/H 

does not have a compact Clifford-Klein form unless either H or G/H is compact. 
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So the first interesting case is when R-rank G = 2. For G = SL(3,R), there are 

again no interesting examples unless H is compact. This was proved by Y. Benoist when 

H is reductive. Generalizing the same method to other subgroups leads to the following 

theorem. 

Theorem 1.3 (see [Ben], [OWZ]). If G = SL(3,R), then G/H does not have a compact 

Clifford-Klein form unless either H or G/H is compact. 

We now consider G = SO(2, n).  We determine exactly which homogeneous spaces 

of SO(2, n)  have a compact Clifford-Klein form in the case where n is even (see Theorem 

1.7), and we have almost complete results in the case where n is odd (see Theorem 1.9). 

The work leads to new examples of homogeneous spaces of SO(2, n), (n even), that have 

compact Clifford-Klein forms (see Theorem 1.5). 

In the following notation, we realize SO(2, n) as isometries of the indefinite form 

(v I v) = vlvn+z + v2vn+1 + v: on (for v = (vl ,v2,. . . ,vn+z) c Rn+'). 

Notation 1.4. Let A be the subgroup consisting of the diagonal matrices in SO(2, n) 

whose diagonal entries are all positive, and let N be the subgroup consisting of the 

upper-triangular matrices in SO(2, n) with only 1 's on the diagonal. Thus, the Lie algebra 

of AN is 

Note that the first two rows of any element of a + n are sufficient to determine the entire 

matrix. 

Before we describe our new examples of homogeneous spaces of S0(2,2m) having 

compact Clifford-Klein forms, let us first recall the construction of compact Clifford- 

Klein forms found by Kulkarni [Kul, Theorem 6.11 (see also [Kbl, Proposition 4.91). 

Consider the subgroup SU(1,m) as a subgroup of SO(2,2m) embedded in a standard 

way. Then SU(1, m) acts properly and transitively on the homogeneous space S0(2,2m)/ 

SO(l,2m). Therefore, any cocompact lattice r in S0(1,2m) acts properly on S0(2,2m)/ 

SU(1, m), and the quotient r\ SO(2,2m)/ SU(1, m) is compact. Now let Hsu = SU(1, m) n 
(AN). Since Hgu is a connected cocompact subgroup of SU(l,m), it is not difficult to 

see that r\ SO(2, 2m)/Hsu is a compact Clifford-Klein form as well. (Similarly, Kulkarni 
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also constructed compact Clifford-Klein forms A\ SO(2,2m)/ SO(l,2m), by letting A be 

a cocompact lattice in SU(1, m).) 

The following theorem demonstrates how to construct new examples of com- 

pact Clifford-Klein forms F\ SO(2, 2m)/HB. The subgroup HB of S0(2,2m) is obtained by 

deforming Hsu, but HB is almost never contained in any conjugate of SU(1, m). 

Theorem 1.5 (cf. Theorem 4.1). Let G = SO(2,2m) with m > 2. Let B : R2m-2 + R2m-2 

be a linear transformation. Set 

and let HB be the corresponding closed, connected subgroup of G. Suppose that B has no 

real eigenvalue. Then for any cocompact lattice r in SO(l,2m), the quotient r\ SO(2,2m)/ 

HB is a compact Clifford-Klein form. 

Furthermore, HB is conjugate via 0(2,2m) to a subgroup of SU(1, m) if and only 

if for some a, b e R (with b # O), the matrix of B with respect to some orthonormal basis 

of P m 2  is a block diagonal matrix each of whose blocks is ( J^ 9. 
In fact, we can obtain uncountably many pairwise nonconjugate subgroups of 

the form HB by varying B (cf. [OW2]). We also obtain similar new examples of compact 

Clifford-Klein forms of homogeneous spaces of SU(2,2m.) and SO(4,4m) (see Section 4). 

We recall that extending work of Goldman [Gol], Kobayashi [Kb6, Theorem B] 

showed that a cocompact lattice in SU(1, m) can be deformed to a discrete subgroup A 

such that A acts properly on S0(2,2m)/ S0(1,2m) and the quotient space A\ S0(2,2m)/ 

SO(l,2m) is compact, but A is not contained in any conjugate of SU(1,m). Note that 

Kobayashi created new compact Clifford-Klein forms by deforming the discrete group 

while keeping the homogeneous space SO(2,2m)/ SO(1,Zm) fixed. In contrast, we deform 

the homogeneous space SO(2, 2m)/Hsu to another homogeneous space SO(2, 2m)/HB 

while keeping the discrete group r in SO(l,2m) fixed. 

For even n, we show that the Kulkarni examples and our deformations are essen- 

tially the only interesting homogeneous spaces of SO(2, n) that have compact Clifford- 

Klein forms when H is noncompact. We assume that H c AN as the general case reduces 

to this (see Lemma 3.5). 

Theorem 1.7 (cf. Theorem 5.1). Let G = S0(2,2m) with m 2 2, and let H be a connected, 

closed subgroup of AN such that neither H nor G/H is compact. The homogeneous space 

G/H has a compact Clifford-Klein form if and only if either 



238 Oh and Witte 

(1) H is conjugate to a cocompact subgroup of SO(1, Zm), or 

(2) H is conjugate to HB for some B as described in Theorem 1.5. 

It  is conjectured in [Kb6, Section 1.41 that if H is reductive and G/H has a com- 

pact ~lifford-Klein form, then there exists a reductive subgroup L of G such that L acts 

properly on G/H and the double coset space L\G/H is compact. Because there is no such 

subgroup L in the case where G = SO(2,Zm + 1) and H = SU(l,m), the following is a 

special case of the general conjecture. 

Conjecture 1.8. For m > 1, the homogeneous space S0(2,2m + 1)/ SU(1, m) does not 

have a compact Clifford-Klein form. 

If this conjecture is true, then there is no interesting example of a homogeneous 

space of S0(2,2m + 1) admitting a compact Clifford-Klein form unless H is compact. 

Theorem 1.9 (cf. Theorem 5.1). Let G = S0(2,2m + 1) with m > 1. Assume that G /  

SU(1, m) does not have a compact Clifford-Klein form. If H is a connected closed sub- 

group of G such that neither H nor G/H is compact, then G/H does not have a compact 

Clifford-Klein form. 

Here is a summary of the paper. In Section 2, we define the notion of a "Cartan- 

decomposition subgroup" and note that if H is such, then no noncompact subgroup of 

G acts properly on G/H. We also discuss some of the main results of [Owl] ,  which list 

all the subgroups of SO(2, n) and SL(3, R) that are not Cartan-decomposition subgroups, 

and hence all the homogeneous spaces admitting a proper action by a noncompact sub- 

group. Our proofs of Theorems 1.7 and 1.9 then reduce to determining whether each 

of these homogeneous spaces has a compact Clifford-Klein form. In Section 3, we state 

some results of Kobayashi (Theorem 3.1(1)) and of Margulis (Theorem 3.2) that imply 

that certain of these homogeneous spaces do not have compact Clifford-Klein forms. 

Theorem 3.1 (3) provides a method to determine whether a double coset space r\G/H is 

compact or not. In Section 4, we describe our new examples of compact Clifford-Klein 

forms of SO(2, Zm), SU(2, Zm), and S0(4,4m), and sketch the proof ofTheorem 1.6. In Sec- 

tion 5, we outline the proof of our classification results (Theorems 1.7 and 1.9). Finally, 

in Section 6 ,  we state similar results for finite volume-Clifford-Klein forms of SO(2, n). 

2 Cartan-decomposition subgroups 

Let G be a Zariski-connected semisimple linear Lie group as in the Introduction. We 

fix an Iwasawa decomposition G = KAN and a corresponding Cartan decomposition 

G = KA+K, where A+ is the (closed) positive Weyl chamber of A in which the roots 
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occurring in the Lie algebra of N are positive. Thus, K is a maximal compact subgroup, A is 

the identity component of a maximal split torus, and N is a maximal unipotent subgroup. 

The terminology introduced in the following definition is new, but the underlying 

concept is well known. 

Definition 2.1. A connected closed subgroup H of G is said to be a Cartan-decomposition 

subgroup of G if G = CHC for some compact subset C of G. 

Note that C is only assumed to be a subset of G; it need not be a subgroup. Some 

examples of Cartan-decomposition subgroups are the maximal split torus A (due to the 

Cartan decomposition G = KAK) and the maximal unipotent subgroup N (by a result of 

Kostant asserting that G = K N K  [Kos ,Theorem 5.11). If G is compact, then all subgroups 

of G are Cartan-decomposition subgroups. On the other hand, if G is noncompact, then 

not all subgroups are Cartan-decomposition subgroups, because it is obvious that every 

Cartan-decomposition subgroup of G must be noncompact. It is a somewhat less obvious 

fact that if H is a Cartan-decomposition subgroup of G,  then dim H > R-rank G. 

Our interest in Cartan-decomposition subgroups is largely motivated by the ba- 

sic observation that in order to construct nicely behaved actions on homogeneous spaces, 

one must find subgroups that are not Cartan-decomposition subgroups. (See [Kb5, 531 

for some historical background on this result.) 

Proposition 2.2 (Calabi-Markus phenomenon; cf. [Kul, proof of Theorem A.1.21). If H 

is a Cartan-decomposition subgroup of G,  then no closed noncompact subgroup of G 

acts properly on G/H. 

Proof. Suppose that G = CHC for some compact subset C. We may assume that C = C 1  

without loss of generality. If L acts properly on G/H, then the set {g e L 1 gCH n CH # 0} 
must be compact by the definition of proper action. But this set is L itself since L c G = 

CHC. Therefore, L must be compact. 

Corollary 2.3. If H is a Cartan-decomposition subgroup of G ,  then G/H does not have 

a compact Clifford-Klein form unless either H or G/H is compact. 

This leads to the following outline for our proof of Theorems 1.7 and 1.9: 

(1) Find all closed, connected subgroups H that are not Cartan-decomposition 

subgroups. 

(2) For each such H, determine whether there is a discrete subgroup r of G such 

that r\G/H is a compact Clifford-Klein form. 

To classify the Cartan-decomposition subgroups of G, our main tool is the Cartan 

projection. 
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Definition 2.4 (Cartan projection). For each element g of G, the Cartan decomposition 

G = KA+K implies that there is a unique element a of A+ with g KaK. So there is a 

well-defined function p : G Ã‘ A+ given by g Kp(g)K. 

It  is easy to see that the function p is continuous and proper. We now recall a 

fundamental result of Benoist and Kobayashi that enables us to use the Cartan projection 

to determine whether an action is proper or not. 

Theorem 2.5 (see [Ben, Proposition 1.51 , [Kb4, Corollary 3.51). Let Hi and Hz be closed 

subgroups of G. The subgroup Hi acts properly on G/Hz if and only if (p(Hi)C) n ^.(Hz) 

is compact for any compact subset C of A. 

As an immediate corollary, we obtain the following. 

Corollary 2.6 (see [Ben, Proposition 5.11, [Kb4, Theorem 1.11). A closed connected 

subgroup H of G is a Cartan-decomposition subgroup if and only if A+ c p(H)C for 

some compact subset C of A, or equivalently, p(H) comes within a bounded distance of 

every point in A+. 

We noted above that every subgroup is a Cartan-decomposition subgroup if R- 

rank G = 0. The following simple proposition shows that the characterization is again 

very easy if R-rank G = 1. 

Proposition 2.7 (cf. [Kb3, Lemma 3.21). Let R-rank G = 1. A closed connected subgroup 

H of G is a Cartan-decomposition subgroup if and only if H is noncompact. 

Proof. The "only if" direction is obvious since G is noncompact. To see the "if" direction, 

first note that we have p(e) = e .  Because p i s  a proper map, we have p(h) Ã‘ oo as h Ã‘ oo 

in H. Because R-rank G = 1, we know that A+ is homeomorphic to the half-line [O, oo) 

(with the point e in A+ corresponding to the endpoint 0 of the half-line). Hence, by 

continuity, it must be the case that p(H) = A+. Therefore, KHK = G, so H is a Cartan- 

decomposition subgroup. 

It  seems to be much more difficult to characterize the Cartan-decomposition 

subgroups when R-rank G = 2, so these are the first interesting cases. In [Owl], using 

Corollary 2.6, we study two examples in detail. When G = SL(3,R) or S0(2,n), we give 

an approximate calculation of the image of each closed subgroup of G under the Cartan 

projection. This yields an explicit description of all the Cartan-decomposition subgroups 

of G. 

Obviously, any connected closed subgroup that contains a Cartan-decomposition 

subgroup is itself a Cartan-decomposition subgroup. Therefore, the minimal Cartan- 
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decomposition subgroups are the most interesting ones. As a simple example of our 

results, we state the following theorem. 

Theorem 2.8. Let G = SL(3,R). Up to conjugation by automorphisms of G ,  the only 

minimal Cartan-decomposition subgroups of G are 

and subgroups of the form 

where p and q are fixed real numbers with max{p, q} = 1 and min{p, q} > -1/2, or of the 

form 

et cospt et sinpt s 

-et s inpt  et cos pt  r 

0 0 - 2 t  

where p is a fixed nonzero real number. 

Note that AN contains uncountably many nonconjugate minimal Cartan- 

decomposition subgroups of G since the minimum of the two parameters p and q in 

the above theorem can be varied continuously. However, up to conjugacy under Aut G,  

there is only one minimal Cartan-decomposition subgroup contained in A (namely, A it- 

self) and only one contained in N. 

Theorem 2.9 is a sample of our results on Cartan-decomposition subgroups of 

SO(2,n). 

Theorem 2.9. Let G = S0(2,5). Then there are exactly 6 nonconjugate minimal Cartan- 

decomposition subgroups of G contained in N.  The Lie algebra of each such subgroup is 

conjugate to one of the following: 
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@,x E R where Â£ {O, l}, I 
x, y 6 R where e3 E {O, l}. I 

In [Owl] ,  we describe all the Cartan-decomposition subgroups of SO(2,n) .  

3 General results on compact Clifford-Klein forms 

In this section, we state some general results on compact Clifford-Klein forms. Recall 

that G is a Zariski-connected semisimple linear Lie group. 

For a connected Lie group H, we use the notation d(H) = dim H-dim KH, where KH 

is a maximal compact subgroup of H (cf. [Kbl ,  (2.5), Â§5]) Since all the maximal compact 

subgroups of H are conjugate (see [Hoc ,Theorem XV.3.1]), this is well defined. Note that 

if H c AN, then d(H) = dim H because AN has no nontrivial compact subgroups. 

The following theorem is a very useful generalization of Corollary 2.3. 

Theorem 3.1 (cf. [Kbl, Corollary 5.51 and [Kb2,Theorem 1.51). Let H be a closed con- 

nected subgroup of G. Assume that there exists a closed connected subgroup L such that 

L c CHC for some compact subset C of G. 

(1) If d(L) > d(H), then G/H does not have a compact Clifford-Klein form. 

(2) If d(L) = d(H) and G/H has a compact Clifford-Klein form, then G/L also has 

a compact Clifford-Klein form. 

(3) If there is a closed subgroup L' of G such that L' acts properly on G/H, 

d(H) + d(L1) = d(G), and there is a cocompact lattice r in L', then the quotient r\G/H is 

compact. 

Kobayashi assumed that H is reductive, but the same proof works with only 

minor changes. Let us give an elementary proof of Theorem 3.1 (1) under the simplifying 

assumption that H c L. Let r be a discrete group that acts properly on G/H. Because 

L c CHC, we know that r also acts properly on G/L, so r\K/H is closed in r\G/H. By 

replacing r with a finite-index subgroup, we may assume that r n L = e.  Then r\K/H is 

homeomorphic to L/H, which is noncompact (because d(L) > d(H)). Thus r\G/H has a 

closed noncompact subset, and hence P\G/H is not compact. 

Recall the following notion introduced by Margulis (cf. [Mar, Defnition 2.21): a 

closed subgroup H of G is said to be (G, ̂ -tempered if there exists a function q 6 L1 (H) 
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such that for every nontrivial irreducible unitary representation TT of G with a K-fixed 

unit vector v, we have 1(7t(h)v,v)I < q(h) for all h E H. 

Theorem 3.2 (see [Mar, Theorem 3.11). If H is a closed noncompact (G,  K)-tempered 

subgroup of G ,  then G/H does not have a compact Clifford-Klein form. 

We refer to [Oh] for a method to determine when H is (G, K)-tempered as well as 

for examples of (G, K)-tempered subgroups. 

Using Theorems 3.1 and 3.2, we prove the following proposition. 

Proposition 3.3. Let G be a connected simple linear Lie group. If H is a closed connected 

noncompact one-parameter subgroup of G,  then G/H does not have a compact Clifford- 

Klein form. 

Sketch of proof. By Proposition 1.2, we may assume that R-rank G is at least 2. If H 

is unipotent, then there exists a connected closed subgroup L that is locally isomor- 

phic to SL(2,R) and contains H. Then H is a Cartan-decomposition subgroup of L by 

Proposition 2.7 and d(L) = 2 > 1 == d(H). Therefore, Theorem 3.1(1) applies. If H is diag- 

onalizable, then H is a (G,  K)-tempered subgroup (cf. [Mar]). Hence,Theorem 3.2 applies. 

The remaining case is where H == {atut \ t e R}, where at is semisimple and ut is unipo- 

tent such that at commutes with ut. It can be seen that H is a ( G ,  K)-tempered subgroup 

in this case as well. 

Remark 3.4. Benoist and Labourie [BL] proved that if H is unimodular and the center 

of H contains a nontrivial connected subgroup of A, then G/H does not have a compact 

Clifford-Klein form. This provides an alternate proof of Proposition 3.3 in the special 

case where H is conjugate to a subgroup of A. 

We use the following well-known lemma to reduce the study of compact Clifford- 

Klein forms of G/H to the case where H c AN. We remark that the proof is constructive. 

Lemma 3.5. Let H be a closed connected subgroup of G. Then there is a closed connected 

subgroup H' of G such that 

(1) H' is conjugate to a subgroup of AN, 

(2) dim H' = d(H), 

(3) CH = CHI for some compact connected subgroup C of G. 

Moreover, G/H has a compact Clifford-Klein form if and only if G/H' has a compact 

Clifford-Klein form. 

Sketch of proof. Replace H by a conjugate so that n n AN is cocompact in where 

is the Zariski closure of H, and choose a maximal connected compact subgroup of n. 
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Then write C = Ci Cz, where Cl is a maximal compact subgroup of H and C2 is contained 

in the Zariski closure of RadH. Finally, let H' = (HC2) n (AN). Â 

4 New examples of compact Clifford-Klein forms 

The first half of this section is devoted to a proof of the following theorem. In the other 

half, we describe analogous examples of homogeneous spaces SU(2,2m) and S0(4,4m) 

admitting compact Clifford-Klein forms. 

Theorem 4.1. Let G = S0(2,2m) with m > 2 and let HB be as in Theorem 1.5. Suppose 

that B has no real eigenvalue. Then r\ SO(2, 2m)/HB is a compact Clifford-Klein form for 

any cocompact lattice r in SO(1,Zm). 

To establish the above theorem, we first show that SO(l,2m) and hence r act 

properly on SO(2, 2m)/HB. By Theorem 2.5, it suffices to show that p(SO(l,2m)) and 

p(HB) diverge from each other. 

To calculate the approximate image of any subgroup of SO(2,2m) under the Car- 

tan projection, we use a method of Benoist [Ben] that approximates p(h) by using the 

norms of the image of h under the (two) fundamental representations of S0(2,2m). Con- 

sider the representation 

p : S0(2,2m) 4 SL (IRZrn+' A R ~ ~ + ~ )  given by p(g) = g A g. 

Then the representations g i ~ >  g and g i ~ >  p(g) form a set of fundamental representations 

of G. 

Notation 4.2. For subsets X, Y c A+, we write X w Y if there is a compact subset C of A 

with X c YC and Y c XC. 

Notation 4.3. For a subgroup H of G and for i, j e {l ,2}, we write p(H) w [llhlli, llhlp] if 

for every sufficiently large C > 1, we have 

where ]lhll denotes the norm of the linear transformation h. 

If we denote the two walls of A+ by Wl and W2, then ~ ~ h ~ ~ i  = ] I  p(h)]l for h Wi 

(possibly after interchanging Wl and W2). Because SO(l,2m) and SU(1,m) are reduc- 

tive, their Cartan projections are easy to calculate; we have p(SO(1,Zm)) = WI and 

p(SU(1, m)) = Wz. In the following proposition, we show that ^(Ha) stays within a 

bounded distance of Wz as  long as B has no real eigenvalue. 



New Examples of Compact Clifford-Klein Forms 245 

Proposition 4.4. If B has no real eigenvalue, then ^(Ha) Ã [llhl12, llhl12] w p(SU(1,m)) 

(hence, SO(l,2m) acts properly on G/HB). 

Proof. Given h E HB, write h = au  with a A n  HB and u N n Hp. There is some t e R+ 

with 

In the following, we use the notation f l  x f2 if fl = O(f2) and f2 = O(f1). Because h x h-' 

and p ( h l )  x p(h), we may assume that t > 1. 

There is some Z E ljB n n with u = exp Z. From (1.6), we know that there exist 

x R2mP2 and q e R with 

Calculating exp Z, we obtain 

1 0 x q-((1/2)(x,Bx)) -(l/2) llxl12 

1 Bx -(l/2)l]Bxl12 -q - ((1/2)(x. Bx)) 

- ( B X ) ~  -xT 

1 0 

1 

Then it is clear that llhll == llaul] >; m a ~ { t , t ~ q ~ , t ~ ~ x ] ~ ~ } .  To calculate llp(h) = h A  hll ap- 

proximately, we use the norm ]lp(h)ll that is the maximum absolute value among the 

determinants of all the 2 x 2 submatrices of h. 

We have det ;;:; ) = t2 and 

Since B has no real eigenvalue, x and Bx are linearly independent for all nontrivial x 

R2mP2. Hence, we have 

2 2 2  2 Therefore, llp(h)ll x max(t , t  q , t  llxl14) x Ill-~l]~, that is, ~ ( H B )  w [llhIl2, llhl12]. It now 

follows from Theorem 2.5 that S0(1,2m) acts properly on G/HB . Â 
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Now note that d(SO(2,2m)) = 4m, d(SO(l,2m)) = 2m, and d(HB) = dim(HB) = 

2m; hence d(SO(2,Zm)) = d(SO(l,2m)) + d(HB). Therefore, the quotient space F\ 

S0(2,2m)/H~ is compact for any cocompact lattice r in SO(l,2m), by Theorem 3.1(3). 

This finishes the proof of Theorem 4.1. 

Remark 4.5. The subgroups HE of Theorem 1.5 are not all isomorphic (unless m = 2). 

For example, let m = 3 and let 

The characteristic polynomial of B is det(A - B) = A4 - A2 + 1, which has no real zeros, 

so B has no real eigenvalues. Let v = (0,0,0,1). We have BTv = Bv, so for every x R4, 

we have x . Bv - v . Bx = 0. Thus, if h is any element of ljB n n with XH = v, then h is in 

the center of bB n n. Therefore, the center of bB n n contains (h, ua+~p) ,  so the dimension 

of the center is at  least 2. (In fact, the center is 3-dimensional.) Because the center of 

ljsu fl n is ua+2p, which is 1-dimensional, we conclude that is not isomorphic to bsu. 

We now describe how to construct examples analogous to those of the above 

theorem for SU(2,2m) and S0(4,4m). Let us recall that rl\ SU(2,2m)/ Sp(1, m) and r2\ 
SO(4,4m)/ Sp(1, m) are compact Clifford-Klein forms, where Fl and r2 are cocompact 

lattices of SU(1,2m) and S0(3,4m), respectively (see [Kb5]), We define a subgroup fiB of 

SU(2,2m) for every linear transformation B : RZm-' + RZmp2 , which can be considered 

as a deformation of a cocompact subgroup of Sp(1,m). More precisely, let us realize 
2m SU(2,Zm) as isometrics of the following form (v 1 v) = v ~ V ~ ~ + ~  + v ~ % ~ + ~  + lvi12 

on C2 '̂ (for v = (vi , V 2 ,  . . . , Vzm, C2m+2). Thus, the Lie algebra of AN is 

For any linear transformation B Mat(2m- 2,R) c Mat(2m- 2, C),  set f i B  to be 

the connected closed subgroup of G whose Lie algebra is 
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Note that if Bo is the block diagonal matrix, each of whose blocks is ( 3 ) , then 

HB,, is a cocompact subgroup of Sp(1, m), and more precisely, Sp(1, m) n AN. 

Theorem 4.6. Suppose that B e SO(2m - 2) and that B has no real eigenvalue. Then the 

following hold: 

(1) r\ SU(2,2m)/fi~ is a compact Clifford-Klein for any cocompact lattice r in 

SU(1,Zm); 

(2) r\ ~ 0 ( 4 , 4 m ) / f i ~  is a compact Clifford-Klein for any cocompact lattice in  

SO(3,4m) (since SU(2,2m) c SO(4,4m), we may consider fiB c SO(4, 

4 4  1. 

The proof of the above theorem is similar to that of Theorem 4.1. 

5 Nonexistence results on compact Clifford-Klein 

forms of SO(2,n)/H 

The "if" direction of Theorem 1.7 is obtained by Theorem 4.1 and Kulkarni's construction 

(see [Kul ,Theorem 6.11) of compact Clifford-Klein forms of SO(2,2m)/ SO(1,Zm). In this 

section, we outline the proof of the following theorem, which contains Theorem 1.9 and 

the "only if" direction of Theorem 1.7. 

Theorem 5.1. Let G = SO(2, n)  with n > 3. Let H be a closed connected subgroup of AN 

such that neither H nor G/H is compact. Suppose that G/H has a compact Clifford- 

Klein form. 

(1) If n is even, then H is conjugate either to SO(1, n)nAN or to HB (seeTheorem 1.5 

for notation). 

(2) If n is odd, then dim H = n - 1 and SU(1, (n  - 1)/2) c CHC for some compact 

subset C of G. 

Let L5 c SL5 (R) be the image of SLz (R) under an irreducible 5-dimensional rep- 

resentation of SL2 (R). More concretely, we may take the Lie algebra of 1-5 to be the image 
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of the homomorphism TT : d(2, R) Ã‘ 50(2,3) given by 

we may realize SO(2,3) as a subgroup of SO(2, n) ,  so we may view 1.5 as a subgroup of 

SO(2,n) for any n > 3. 

In view of Theorem 3.1(1), Proposition 3.3, and Lemma 3.5, the following theorem 

reduces the proof of Theorem 5.1 to the case when His conjugate to a cocompact subgroup 

of SO(1,n) or L5. 

Theorem 5.2. Let G = SO(2, n) with n > 3. Let H be a closed connected subgroup of AN 

such that neither H nor G/H is compact. Suppose that dim H 2 2 and that there is no 

nontrivial connected subgroup L of AN such that dim L > dim H and L c CHC for some 

compact subset C of G. Then one of the following holds: 

(1) H is conjugate to SO(1,n) n AN; 

(2) H is conjugate to Ls n AN; 

(3) n is even and H is conjugate to HB; 

(4) n is odd, dim H = n-1 , and SU(1, (n - 1)/2) c CHC for some compact subset C 

of G. 

Sketch of proof. For each closed connected subgroup H of SO(2, n), [Owl] gives explicit 

functions f i  and fz such that p(H) w [fl ( ~ ~ h ~ ~ ) , f ~ ( ~ ~ h ~ ] ) ] .  This provides the means to check 

whether there is a compact set C such that L c CHC for a given subgroup L. For example, 

we have p(SU(1, Ln/2J)) w [ ~ ~ h ~ ~ 2 ,  llhl12]. Thus, if p(H) is of the form p(H) Ã [-, llh]12], then 

there is a compact subset C of G such that SU(1, [n/2j) c CHC. 

The result is obtained by inspection of the list of subgroups that are not Cartan- 

decomposition subgroups and by comparing their Cartan projections (see [OW21 for 

details). 
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While the homogeneous space SO(2, n)/  SO(1, n) for even n does have a compact 

Clifford-Klein form, the following result of Kulkarni says that the situation is different 

for odd n. 

Proposition 5.3 (see [Kul, Corollary 2.101). The homogeneous space SO(2,2rr+l)/ SO(1, 

2m + 1) does not have a compact Clifford-Klein form. 

To finish the proof of Theorem 5.1, we now only need to exclude the case where 

H is conjugate to L5 n AN. 

Proposition 5.4 (see [Oh, Example 5.61). The subgroup L5 is a (G, K)-tempered subgroup 

for G = S0(2,3). 

I t  easily follows that 1-5 is a (G, K)-tempered subgroup of G = SO(2,n) for any 

n > 3. Hence, by combining this proposition with Theorem 3.2, we obtain the following 

corollary, which concludes the proof of Theorem 5.1. 

Corollary 5.5. Let G = SO(2, n )  with n > 3. Then G/Ls does not have a compact Clifford- 

Klein form. 

6 Finite-volume Clifford-Klein forms 

Let H be a closed connected subgroup of G such that G/H has a G-invariant regular 

Borel measure. (Because G is unimodular, this means that H is unimodular (see [Rag, 

Lemma 1.41) .) 

Definition 6.1 (cf. [Kbl,  Definition 2.21). We say that G/H has a finite-volume Clifford- 

Klein form if there is a discrete subgroup r of G such that r acts properly on G/H, and 

there is a Borel subset 3 of G/H such that 3 has finite measure and FS" = G/H. 

Unfortunately, the study of finite-volume Clifford-Klein forms does not usually 

reduce to the case where H c AN, because the subgroup H' of Proposition 3.5 is usually 

not unimodular. 

Theorem 6.2 (see [OWZ]). Let G = SO(2,n) with n > 3. Let H be a closed connected 

subgroup of G. If G/H has a finite-volume Clifford-Klein form, then one of the following 

holds: 

(1) H has a cocompact normal subgroup of G that is conjugate under O(2,n) to 

the identity component of SO(l,n), SU(1, ln/2J), or L5 (see Section 5 for 

notation); 

(2) d(H) 5 1; 
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It seems natural to conjecture that S 0 ( 2 , 2 m  + 1)/ SU(1 ,m) and SO(2, n) /L5 do 

not have finite-volume Clifford-Klein forms, and that G/H does not have a finite-volume 

Clifford-Klein form when d(H) = 1. 
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