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It is well known that a linear transformation can be defined to have any desired 
action on a basis. From this fact, one can show that every group homomorphism 
from l̂ to Ed extends to a homomorphism from R* to I@, and we will see other 
examples of discrete subgroups H of connected groups G, such that the homomor- 
phisms defined on H can ("almost") be extended to homomorphisms defined on all 
of G. First, let us see that this is related to a very classical topic in geometry, the 
study of linkages. 

1. Rigidity of Linkages 

Informally, a linkage is an object in 3-space that is constructed from some finite 
set of line segments (called "rods," or "edges") by attaching endpoints of some of 
the rods to endpoints of some of the other rods. (That is, a linkage naturally has 
the structure of a 1-dimensional simplicia1 complex.) It is assumed that the rods are 
rigid (they can neither stretch nor bend), but that the joints that connect the rods 

2000 Mathematics Subject Classification. Primary 22E40; Secondary 20-02, 52C25. 
This article is based on a talk given in various forms at  several different universities, and at  an 

MAA Mathfest. It  was written during visits to  the University of Chicago and the Tata Institute 
of Fundamental Research in Mumbai, India; I would like to  thank both of these institutions for 
their generous hospitality. I would also like to thank David Fisher and an anonymous referee for 
their comments on a preliminary version. The writing was partially supported by a research grant 
from the National Science and Engineering Research Council of Canada. 

a2009 American Mathematical Society 



190 DAVE WITTE MORRIS 

are entirely flexible - they allow the rods to rotate freely, as long as the endpoints 
remain attached. 

1.1. EXAMPLE (Hinge). Construct a linkage with four vertices (or "joints") 
A, B, C, D by putting together two different triangles ABC and BCD with the 
same base BC, as in Figure l(a). The angle between the two triangles can be varied 
continuously, so the object has some flexibility - it is not rigid. (For example, the 
hinge can be opened wider, as in Figure l(b).) This linkage can reasonably be 
called a "hinge? 

FIGURE 1. The hinge is not rigid, because the angle between the 
two triangles can be varied continuously, without changing the 
lengths of the rods in the linkage. 

1.2. EXAMPLE (Tetrahedron). Construct a linkage with four vertices A, B, C, D 
by joining every pair of vertices with an edge, as in Figure 2. This object is rigid 
- it cannot be deformed. 

FIGURE 2. A tetrahedron cannot be deformed; it is rigid. 

1.3. EXAMPLE (Double tetrahedron). Add a small tetrahedron BCDE to the 
bottom of the tetrahedron ABCD, as in Figure 3. The resulting object has no 
deformations, so it is rigid. 

However, this double tetrahedron does not have the property that is called 
global rigidity.  Namely, suppose: 

(1) We label each end of each rod with the name of the vertex that joins it 
to other rods, and then dismantle the linkage. This results in a collection 
of 9 rods, which are pictured in Figure 4. 

(2) We then assemble these rods into a linkage, by joining together all vertices 
that have the same label. 
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FIGURE 3. Two tetrahedra with a common face form a rigid structure. 

Unfortunately, the resulting linkage may not be the one we started with; as illus- 
trated in Figure 5, the small tetrahedron could be inside the larger one, instead of 
outside. 

A- B 
B- c 
B-E 

A- C 
B- D 

C-E 

A- D 
c- D 
D-E 

FIGURE 4. The double tetrahedron is made up of 9 rods (6 long 
ones and 3 short ones). 

FIGURE 5. The double tetrahedron is not globally rigid: if it has 
been taken apart, it can be reassembled incorrectly, even if the 
gluing instructions are followed correctly. 

In summary: 
0 The double tetrahedron has no small perturbations. In other words, if it is 

reassembled, and every rod is close to its correct position, then every rod 
is in exactly the correct position. So the object is rigid, or, more precisely, 
'locally rigid? 

a On the other hand, the double tetrahedron is not rigid in a global sense 
- we say that it is not globally rigid - because it can be reassembled 
incorrectly if we do not assure that the rods are near their correct position. 

1.4. EXAMPLE. A tetrahedron is globally rigid: its geometric structure is com- 
pletely determined (up to congruence) by the combinatorial data that specify which 
of the rods are to be joined together. 

Rigidity and global rigidity are important concepts in geometry, and also in 
the real world: 
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Scaffolds, shelving units, bridges, and many other structures can be viewed 
as linkages, and they must be designed not to collapse: they must be 
(locally) rigid. 

e Furniture and other bulky objects are sometimes shipped in pieces that 
are to be assembled at the destination, by following instructions of the 
type "insert tab A in slot B." Unless the object is globally rigid, the 
instructions will be insufficient to guarantee proper assembly. 

Thus, it should not be hard to imagine that an analogous notion in other fields 
would have significant interest to researchers in that area. We will focus on the 
case of group theory. 

2. The Analogous Notion in Group Theory 

Informally, saying that a linkage X is globally rigid means that if Y is any 
linkage that is constructed from rods of the same lengths by using the same com- 
binatorial rules, then Y is congruent to X. Here is a more formal definition: 

2.1. DEFINITION. To say that a linkage X in the Euclidean space E3 is globally 
rigid means that if 

Y is any linkage in E3, and 
e f : X -+ Y is a combinat.oria1 isomorphism (i.e., f is a Injection that maps 

each rod in X isometrically onto a rod in Y), 

then f extends to an isometry ?of. W. 

The same idea can easily be adapted to other categories of mathematical ob- 
jects. For example, a group theorist would replace E3 with a group G, and replace X 
and Y with subgroups H and K of G. An automorphism of G is the group-theoretic 
analogue of an isometry of E3, so the following example shows that Z is globally 
rigid as a subgroup of i: 

2.2. EXAMPLE. R is a group (under addition), and Z is a subgroup. If 
K is a subgroup of R, and 
y. Z -+ K is an isomorphism, 

then p extends to an automorphism (p of 1. 

PROOF. Let c = p(1) and define (p: IR -> i by 

ip(x) = ex. 

Then: 
a It is obvious that (p is a homomorphism. 
a Since y is injective, we know 

so ip is biject,ive. 
e For any n E Z, we have 

f(n} = cn (definition of (p) 

= n . p(1) (definition of c) 

= ;(n) (p  is a homomorphism). 

So $3 extends p. 
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Thus, @ is an automorphism of R that extends p. 0 

In the above example: 
(1) The group R is also a topological space, and the group operations of 

addition and negation are compatible with the topology (that is, they are 
continuous); thus, R is a topological group. 

(2) The subgroup 2 is discrete in R (i.e., has no accumulation points); so we 
say that Z is a discrete subgroup of 1. 

(3) The homomorphism f5 is continuous. 
Thus, the discrete subgroup Z is globally rigid in R, even when we take into account 
the topological structure of R: 

2.3. DEFINITION. Let H be a discrete subgroup of a topological group G. Saying 
H is globally rigid in G means that if 

* K is any discrete subgroup of (7, and 
* p: H -+ K is any isomorphism, 

then y extends to a continuous automorphism @ of C. 

3. Definition of Superrigidity 

In the definition of global rigidity (2.3), the map p is assumed to be an iso- 
morphism, and its image K is assumed to be contained in the same group G that 
contains H. "Superrigidity" is a notion that removes these restrictions. Here is a 
very elementary example of this that generalizes Example 2.2: 

3.1. EXAMPLE. Suppose i,o is any group homomorphism from @ to @. (That 
is, p is a function from Z to Rd, and we have y(m + n) = 9i.m) + ~(n).) Then p 
extends to a continuous homomorphism (p: Rk -+ Rd. 

PROOF. Let el,  eg,. . . , efe be the standard basis of Rk. so {el, 6 2 , .  . . ,en.} is a 
generating set for the subgroup if'. A linear transformation can be defined to have 
any desired action on a basis, so there is a linear transformation f>: R L  Rd, such 
that 

y(e,) = pfe,) for i = 1,2,. . . , k .  (3.2) 
Then: 

Since fi is linear, it is continuous. 
0 Because 9 is a linear transformation, it respects addition; that is, it is a 

homomorphism from IB̂  to IRd. 
* From (3.21, we know that y and v> agree on e ~ , e y , .  . . . ek. Thus, since 

{el, ea, . . . , efe} generates 25% the two hornomorphisins agree on all of zk. 
In other words, @ extends p. 

So is a continuous automorphism that extends p. D 

In short: 
Every group homomorphism from zk to Rd 
extends to a contznuous homomorphism from Rk t o  I%*̂ . (3.3) 

However, because this observation deals only with abelian groups, it is rather trivial. 
A superrigidity theorem is a result of similar flavor that deals with groups that 
are more interesting. Namely, instead of only homomorphisms into the abelian 
group Rd, it is much more interesting to look at homomorphisms into matrix groups. 
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(Any such homoinorphism is called a group representation, and the study of these 
representations is a major part of group theory.) 

Let us be more precise: 

3.4. NOTATION. GL(d, R) = { d x d invertible matrices with real entries 1. 
It is important to note that GL(d, R) is a group under multiplication. Further- 

more, K  ̂ is a subgroup of GL(d, R) (if d > k ) .  For example. 

So any homomorphism into Rd can be thought of as a homomorphism into the 
matrix group GL(d + 1, K). 

Unfortunately, (3.3) does not remain valid if we replace Rd with GIJ(d, I ) :  

3.5. EXAMPLE. Suppose if is a group homomorphism from Z to GL(d, I ) .  That 
is, ip is a function from Z to GL(d. R), and we have 

It need not be the case that ip extends to a continuous homomorphism from K. to 
GL(d, R). 

PROOF BY CONTRADICTION. Suppose there is a continuous homomorphism 
$: R -> GL(d, R), such that y0 = p(n), for all n ? Z. 

Consider the composition det of. Note that: 
* Since the determinant of any invertible matrix is nonzero. we see that 

det o$ is a function from R to R x  (where V is the set of nonzero real 
numbers). 

0 Since homomorphisms map the identity element of the domain group to 
the identity element of the image, we have p(0) = 1 (the identity matrix). 
Hence, 

det (y(0)) = det(I) = 1 > 0. 
Since the composition of continuous functions is continuous, and the con- 
tinuous image of a connected set is continuous, we know det(ij5(~)) is 
connected. 

Therefore, det (f( )) is a connected subset of W  ̂ that contains the number 1. So 
det(@(I)) C R"*". In particular, det($(l)) > 0. Therefore 

det [y(l)) = det (@(l)) > 0. 

But p is an arbitrary homomorphism from Z to GL(d,I). and it need not be the 
case that det(y(l)) > 0. (Namely, for any A E GL(d,K), we may let y(n) = A". 
If det A < 0, then det (y(1)) = det A < 0.) This is a contradiction. 0 

The above counterexample is based on the possibility that det(y(1)) < 0. 
However. for any n, we have 

2 
det (p(2n)) = det(p(n + a)) = det(p(n) . ,;(n)) - (det (p(n))) > 0. 

Thus, this obstacle does not arise if we restrict our attention to even numbers. That 
is, in defining the extension $3, which interpolates a nice curve through the given 
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FIGURE 6. It may be necessary to ignore the values at odd nuin- 
bers when interpolating. 

values at points of Z, we may have t,o ignore the values at  odd numbers, and only 
match the values of p at even numbers. An illustration of this is in Figure 6. 

One can imagine that, analogously, there might be situations where it is nec- 
essary to restrict attention, not to multiples of 2. but to multiples of some other 
integer N .  A group theorist may observe that 

{multiples of N} is a subgroup of Z that has finite index. 

Thus, in group-theoretic terms, the upshot of the preceding discussion is that we 
may need to restrict our attention to a finite-index subgroup. 

The need to pass to a finite-index subgroup happens so often in the theory of 
infinite groups that there is a name for it: a property holds virtually i f  it becomes 
true when our attention is restricted to a finite-index subgroup. 

3.6. EXAMPLE. 
(1) To say that G is virtually abelian means that some finite-index subgroup 

of G is abelian. 
(2) If G is a topological group, then, to say that G is virtually connected 

means that some finite-index subgroup of G is connected. 

3.7. EXERCISE. What does it mean to say that G is virtually finite? 

In this vein. we make the following definition: 

3.8. DEFINITION. Suppose 
e H is a discrete subgroup of a topological group G, 
e y El -+ GL(d, IR) is a homomorphism, and 
e (p: G + GL(d, R) is a continuous homornorphism. 

We say @ virtually extends p if there is a finit.e-index subgroup H' of H ,  such that 
i,?(h} = y(h},{oi a11 heH'. 

Although the proof is not obvious, it turns out that homomorphisms defined 
on. Z do virtually extend to be defined on all of lk: 

3.9. PROPOSITION. Suppose ip is a group homomo'rphism from if- to GL(d,Jl%) 
Then y virtually extends to a continuous homomorphism G -+ GGL(d, 1). 

Unfortunately, this result is usually not useful, because it does not tell us 
anything about the image of i,? (other than that it is contained in GL(d,R)). In 
practice, if all of the matrices in y ( ~ ^ )  have some nice property, then it is important 
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to know that the matrices in (p(K^) also have this property. That is, if we have 
control on the image of p ,  then we would like to have control on the image of (p. 

3.10. EXAMPLE. 

(1) If all of the matrices in p ( z k )  have determinant 1, then all of the matrices 
in @(I@) should have determinant 1. 

(2) If all of the matrices in p ( z k )  commute with some particular matrix A, 
then all of the matrices in @(R) should commute with A. 

(3) If all of the matrices in p ( z k )  fix a particular vector v, then all of the 
matrices in (?(EXk) should fix v. 

["I 0 0 *1 
(1) Let R = 1 1 2 R3. If p ( ~ 9  c R, then it should be the case 

0 0 0 11 
that (p(Rk) c R. One needs to know this in order to derive Example 3.1 
as a corollary of a result like Proposition 3.9. 

3.11. REMARK. The problem that arises here is illustrated by the classical 
theory of Lagrange interpolation. This theorem states that if 

are any n + 1 points in the plane (with xi # x j  whenever i # j), then there is a 
polynomial curve 

y = f (x) = unxn + an-lxn-I + . . . -I- a-0 

of degree n that passes through all of these points. (It is easy to prove.) Unfor- 
tunately, however, even if the specified values yo, yl, . . . , yn of f (x) at the points 
XO, x i ,  . . . , xn are well controlled (say, all are less than 1 in absolute value), it may 
be the case that f (x)  takes extremely large values at other values of x that are 
between xo and xn, as illustrated in Figure 7. 

FIGURE 7. The 6 given points all lie in a small band around the x- 
axis, but the quintic curve that interpolates between them travels 
far from the x-axis. 

Linear interpolation does not suffer from this defect; all of the points of the 
interpolating curve will lie in the convex hull of the given points. 

In order to guarantee that having control on the values of ip will guarantee 
that we have control 011 the values of (p, we will require @ ( H )  to be contained in a 

certain subgroup ?? of GL(d, R) that is closely related to p(H). (This subgroup is 
called the "Zariski closure" of ip(H).) 
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The formal definition of the Zariski closure ft of a subgroup H of GL(d, K) is 
not important for our purposes, if one simply accepts that it is, in a certain precise 
sense, the smallest natural, closed, virtually connected subgroup of GL(d, R) that 
contains H .  It can be thought of as the group-theoretic analogue of a convex hull. 
(For the interested reader. a precise definition is given in $3.1 below.) 

3.12. DEFINITION. Let H be a discrete subgroup of a t.opologica1 group G. 
Saying H is strictly superrigid in G means, for all d, that if y :  H -+ GL(d,R) 
is any homomorphism, then i f  virtually - extends to a continuous automorphism - 
ip: G + GL(d, R), such that $(G) c ifW. 

We have the following example: 

3.13. PROPOSITION. Z* is strictly superr igid in Rkd 

PROOF (optional). For simplicity, let us assume k = 1; thus, we wish to show 
Z is strictly superfigid in R. - - 

Given a homomorphism ip: Z -+ GL(d:R), let Y = y(Z), and let Yo be the 
connected component of Y that contains e (so Yo is a closed subgroup of Y ) .  Since 
the Zariski closure Y has only finitely many connected components, there is some 
nonzero m E Z, such that p ( m )  E Yo. 

Since y(Z) is abelian, it is not difficult to see that its Zariski closure is also 
abelian. So Y o  is a connected, abelian group of matrices; therefore, the universal 
cover YÂ of Yo is (isomorphic to) a simply connected, abelian group of matrices. 
One can show that this implies YÂ is isomorphic to Rn. for some n. So there is no 
harm in assuming that YÂ is actually equal to 23%. 

* Let TT: R" Ã‘ Yo be the covering map with ~ ( 0 )  = e, so w is a continuous 
homomorphism. 

* Choose some 7 E Kn: such that ~~(jj') = ift(m). 

Define @: IR -+ Rn by 

* Let ip: lR 4 Yo be the composition w o q. 
Then: 

(p is a composition of continuous homomorphisms, so it is a continuous 
homomorphism. 

e We have 

so (p is equal to if on the entire cyclic subgroup generated by m. Since 
m # 0, this is a finite-index subgroup of Z. 
We have 

Thus. 9 is a continuous homomorphism that virtually extends y,  such t%hat @(I!?) C - - 
Y(Z)* il 
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3.1. Definition of the Zariski closure. The concept of Zariski closure is 
taken from algebraic geometry. In that field, one works only with polynomials (and 
rational functions), not with more general continuous functions, and the notion of 
Zariski closure is a reflection of this. For the reader who wants details, we provide 
the full definition; others are welcome to skip ahead to the following section. 

3.14. REMARK. In linear algebra, one works only with linear functions. and the 
definition of linear span is a reflection of this: 

* A subset V of R is a linear subspace if it is the set of solutions of a 
collection of linear equations; more precisely, this means there are linear 
functionals A, : Rd -+ I, such that 

v e V +=+ A&) = 0, for all z. 

The linear span { S )  of a subset S of iRd is the unique smallest linear 
subspace of Rd that contains S.  

The Zariski closure is perfectly analogous, replacing "linear functional on R*' with 
'polynomial function on GL(d, R)." 

* The collection Matdxd(K) of all d x d matrices can naturally be identified 
with Kd2. A function P :  Matdxd(I) + K is said to be a polynomial if 
becomes a polynomial (in d2 variables) on R"^ after making this identifi- 
cation. 

* The group GL(d, R) is open, not closed, in Matdxd( ) But we can think 
of it as a closed subgroup of the group SL(d + 1, R) of (d + 1) x (d + 1) 
matrices of determinant 1, via the embedding p :  GL(d,I) -+ SL(di-1, I ) ,  
defined by 

r 

A function f :  GL(d, R) -  ̂R is said to be a polynomial if there exists a 
polynomial P : Mat(d+i) (d+i) (K) -" R, such that 

for all g E GL(d, R) . 
* A subset V of GL(d, R) is Zariski closed if it is the set of solutions of a 

collection of polynomial equations; more precisely, this means there are 
polynomial functions f, : GL(d, I )  -+ R, such that 

* The Zariaki closure 7 of a subset V of Gii(d,R) is the unique smallest 
Zariski closed subset of GL(d, R) that contains V.  

3.16. REMARK. 

(1) If V is a subgroup of GL(d, K). then 7 is also a subgroup of GL(d. 1 ) .  
(2) 7 is a closed subset of GL (d, I ) .  - 
(3) V has only finitely many connected components. 



WHAT IS A SCPERRIGID SUBGROUP? 199 

The first two of these observations are not difficult to prove. The third is rather 
difficult, but it is a generalization of the obvious fact that a one-variable polynomial 
/ ( a ; )  can have only finitely many zeroes. 

4. Examples of Superrigid Subgroups 

Proposition 3.13 tells us that Zk is strictly superrigid in Rk, and we will now 
see other examples of superrigid subgroups. 

Let us first specify the type of group G that will be considered: 

4.1. DEFINITION. We say G is a Lw group if it is a closed, connected subgroup 
of GL(d,R), for some d. 

4.2. EXAMPLE. Rd is (isomorphic to) a Lie group. 

4.3. WARNING. Other authors have a less restrictive definition of "Lie group," 
but this will suffice for our purposes. 

Now we wish to describe the subgroups H of G that complete the analogy 

Here are the basic properties of zk: 
(1) Zk is a discrete subgroup of Rk. 
(2) The quotient space Rk/Zk is compact. (Indeed, Rk/Zk is the k-torus TI*, 

which is well known to be compact.) 

The second of these properties can be restated as the assertion that there is a 
compact subset of IRk that contains a representat.ive of every coset of Zk. Thus, Zk 
is a (cocornpact) lat.tice, in the following sense: 

4.4. DEFINITION. Suppose H is a discrete subgroup of a Lie group G. We say 
H is a (cocompact) lattice in G if there is a compact subset of G that contains a 
representative of every coset of I I .  

4.5. REMARK. Cocompact lattices suffice for most of our purposes, but we will 
sometimes allow H to satisfy the condition that some set of coset representatives 
has finite measure. Since every compact set has finite measure, but not every set 
of finite measure is compact, this is a more general condition. 

For the moment, let us assume that G is solvable: 

4.6. DEFINITION. Let G be a connected subgroup of GL(d,C). We say G is 
solvable if and only if it is upper triangular 

or can be made so by a change of basis. 
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4.7. REMARK. The following example is the base case of an inductive proof 
that if we restrict our attention only to connected groups, then the above definition 
agrees with the usual definition of solvable groups in terms of chains of normal 
subgroups with abelian quotient groups. 

4.8. EXAMPLE. All a.belian groups are solvable. 

PROOF. It is well known that every matrix can be triangularized over any 
algebraically closed field, such as C. (That is, there is a change of basis that makes 
the matrix upper triangular.) This implies that every cyclic group is solvable. 

More generally, it is not difficult to show that any collection of pairwise com- 
muting matrices can be simultaneously triangularized. (That is. there is a single 
change of basis that makes all of the matrices upper triangular.) This implies that 
every abelian group is solvable. 

4.9. EXAMPLES. 
(1) Let 

Then: 
* f i  Z Z3 and GI Z R3, so it is clear that f i  is a lattice in GI. 
* We have already seen that .Hi i s  strictly superrigid in - GI. 
e GI is the obvious connected group containing .Hi, so -Hi = GI. 

(2) Let 

Then: 
Â 

Â 

Â 

(3) Let 

It is not difficult to see that Hi is a lattice in G2. Namely, if we let 
I  = [O, 11 be the unit interval then 

1 I I I  I!;;] 
is a compact set that contains a representative of every coset. 
Our main result, to be stated below, will show that -Ha is strictly 
superrigid in Gy,- - 

G2 is the obvious connect.ed group containing Hz, so H^ = G2. 

Then: 
* It is not difficult to see that Hy is a lattice in G3. Indeed, H3 E Z3 c 

R3 G3. 
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We know that Hy is strictly superrigid in G3. - 
0 Gs is the obvious connected group containing Hs, so = G3. 

Unlike our previous examples, the matrix entries of elements of GI cannot be chosen 
independently of each other: the (l,2)-entry of any element of GI uniquely deter- 
mines its (3,3)-entry. However, the relation between these entries is defined by a 
transcendental function, not a polynomial, so, as far as an algebraic geometer is 
concerned, these entries have no correlation at all. This means that in the Zariski 
closure of GI, these entries become decoupled and can be chosen independently. 
Thus, 

4.10. EXAMPLE. Let 

When the (1,2)-entry t of an element of GI is an integer, the (3,3)-entry e27"t 
is 1, so we see that HI c GI. In fact, it is not difficult to see that HI is a lattice 
in GI. 

On the other hand, we have H' = Hs c G3, so HI is also a lattice G3. Fur- 
thermore, we have - - - - 

H 1 = z = G 3 # G ' .  

GI={[;  0 0 ; e27rit S ]  

These observations can be used to show that H' is not strictly superrigid in GI, 

1 Z Z + Z i  t-}md*l=L ; 1 .  

4.11. PROPOSITION. HI is not strictly superrigid in GI. 
In particular, the inclusion map y :  HI 'Ã‘ GL(3, C) does not extend to a con- - 

tinuous homomorphism ip: GI 4 H'. 

PROOF. Note that - - - 
H- = G3 

is abelian. Therefore, ip must be trivial on the entire commutator subgroup [GI, GI] 
of GI. We have 

so the supposed extension (p is trivial on some nontrivial elements of H'. This 
contradicts the fact that y, being an inclusion, has trivial kernel. 

H3 is a strictly superrigid lattice in G3, but we constructed GI by adding 
some rotations to G3 that H3 knows nothing about. A homomorphism 
defined on H3 will extend to G3, but it need not be compatible with the 
additional rotations that appear in GI. 
One can show that the above example is typical: it is always the case that 
if # ??, then some of the rotations associated to elements of G do not 
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come from rotations associated to H .  Roughly speaking, the concept of 
"associated rotation" can be defined by 

In general, if # z, then the natural connected subgroup containing H is 
not G, but some other group; there are parts of G that have nothing to do with H. 
A homomorphism defined on H cannot be expected to know about the structure in 
this part of G, so there is no reason to expect the homomorphism to be compatible 
with this additional structure. 

The above considerations might lead one to believe that if ?? # E, then H 
is not strictly superrigid in G. This conclusion is correct in spirit, but there is a 
technical complication1 that leads to the fine print in the statement of the following 
result. The reader is invited to simply ignore this fine print. 

4.13. PROPOSITION. I f  H i s  strictly superrigid in G. then ?? = (modZSG)). 

By passing to the universal cover, let us assume that G is simply connected. 
Then the converse of the above proposition is true for solvable groups: 

4.14. THEOREM. A lattice H in a simply connected, solvable Lie group G is 
strictly superrigid if and on& ifH = 3 (modZ(G)). 

This theorem provides a complete characterization of the strictly superrigid 
lattices in the solvable case. 

4.1. Brief discussion of groups that are not solvable. An extensive 
structure theory has been developed for Lie groups. Among other things, it is 
known that these groups can be classified into three basic types: 

* solvable (e.g.. IRk), 
0 semisimple (e.g.. SL(k, R)), or 
o a combination of the above (e.g., G = Rk x S L ( k , l ) ) ,  

In the preceding section, we constructed lattices in solvable groups by taking 
the integer points in G. For example, Zk is a lattice in R .  (One might note that, 
in the case of ffs, we used Gaussian integers, not only the ordinary integers.) It 
turns out that the same construction can be applied to many groups that are not 
solvable. For example, SL(k, Z) is a lattice in SL (k. I). 

It is known that if G is a combination of a solvable group and a semisimple 
group, then. roughly speaking, any lattice in G also has a decomposition into a 
solvable part and a semisimple part. For example, 1̂ x SL(k, Z) is a lattice in 
I@ x SL(fe,R). 

The following theorem shows that deciding whether or not H is superrigid 
reduces to the same question about its semisimple part: 

4.15. THEOREM. A lattice H in a simply connected Lie group G is s w m i q i d  
i f a n d o n l y i f  

the semisimple part of H is  superrigid, and 

A given group G can usually be embedded into GL(d, R) in many different ways, and may - 
be equal to G for some of these embeddings, but not others. The canonical matrix representation 
that can be used is the so-called "adjoint representation," which is not an embedding: its kernel 
is the center Z(G),  and the Zariski closure should be calculated modulo this kernel. 
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= G (rnodZ(G). K ,  where K is a compact, normal subgroup of G). 

Although the problem for semisimple groups has not yet been settled in com- 
plete generality, a fundamental theorem of the Fields Medallist G .  A. Margulis set- 
tled most cases. In particular: 

4.16. THEOREM (Margulis Superrigidity Theorem). If k > 3, then all lattices 
in SL(k, R) are superrigid. 

(1) The assumption that k > 3 is necessary: no lattice in SL(2.R) is super- 
rigid. For example, if we let H be any finite-index subgroup of SL(2, Z), 
then H is a lattice in SL(2, R). However, it is possible to choose H to be a 
free group, in which case H has countless hon~omorphisms into SL(2,R). 
Some of these homomorphisms have kernels that are infinite, but the ker- 
nel of any nontrivial homomorphism defined on SL(2,K) must be finite. 

(2) The work of G. A. Margulis establishes the superrigidity of lattices not only 
in SL(fe,R), but also in any simple Lie group G satisfying the technical 
condition that R-rank G > 2. 

(3 )  The astute reader may have noticed that the modifier "strictly" is not 
being applied to "superrigid" in this section. The term "strictly" is used 
in Definition 2.3 to indicate that (p is required to be exactly equal to p (on 
a finite-index subgroup). Dropping this modifier means that we do not re- 
quire exact equality; instead, we allow an error that is uniformly bounded 
(on a finite-index subgroup of H ) .  That is, we require @(h) = y(h) 
(mod K), where K is some compact group. Although they are always 
superrigid, some lattices in SL(k, R) are not strictly superrigid. 

Superrigidity implies that there is a very close connection between H and G. 
In fact, the connection is so close that it provides quite precise information on how 
to obtain H from G. Namely, superrigidity implies that letting H be the integer 
points of G is often the only way to construct a lattice. 

4.18. DEFINITION. Suppose H is a lattice in G = SL(k,R). To avoid com- 
plications, let us assume H is not cocompact,. We say H is arithmetic if there 
is an embedding of G in SL(d, R), for some d, such that H is virtually equal to 
G n SLM Z). 

4.19. THEOREM (Margulis Arithmeticity Theorem). if k 2 3. then ever-y lattice 
TO SL(k, R) 2s arithmetic. 

For convenience, we stated the arithrneticity theorem only for SL(k, R), but it 
is valid for lattices in any simple Lie group G with R-rankG > 2. It is a truly 
astonishing result. 

5. Why Superrigidity Implies Arithmeticity 

It is not at all obvious that superrigidity has anything to do with arithmeticity, 
so let us give some idea of how the connection arises. We warn the reader in advance 
that our motivation here is pedagogical rather than logical - the main ideas in the 
proof of the Margulis Arithmeticity Theorem (4.19) will be presented, but there 
will be no attempt to be rigorous. 
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We are given a lattice H in G = SL(k,K.), with k > 3, and we wish to show 
that H is arithmetic. Roughly speaking, we wish to show H c SL(k, Z) . 

Here is a loose description of t-he 4 steps of the proof: 

(1) The Margulis Superrigidity Theorem (4.16) implies that every matrix en- 
try of every element of H is an algebraic number. 

(2) Algebraic considerations allow us to assume that these algebraic numbers 
are rational; that is, H c SL(k, Q). 

(3) For every prime p, a "p-adic" version of the Margulis Superrigidity The- 
orem provides a natural number Np, such that no element of 22 has a 
matrix entry whose denominator is divisible by p N p .  

(4) This implies that some finite-index subgroup H' of H is contained in 
SL(k, Z). 

Step 1. Every matrix entry of every element of H 2.9 an algebraic number. Suppose 
some A,,., is transcendental. Then, for any transcendental number a, there is a field 
automorphism <f> of C with d(7,.,) = a. Applying 4 to all the entries of a matrix 
induces an automorphism (p of SL(k, C). Let 

p be the restriction of d> to H ,  

so if is a homomorphism from H to SL(k, C). The Margulis Superrigidity Theorem 
(4.16) implies there is a continuous homomorphism f>: G + SL(k, C), such that 
(p = q on a finite-index subgroup of H.  (For simplicity, we have ignored the 
distinction between "superrigid" and "strictly superrigid.") Ignoring a finite group, 
let us assume (p = q on all of H .  

Since there are uncountably many transcendental numbers a, there are un- 
countably many different choices of 4, so there must be uncountably many differ- 
ent k-dimensional representations $ of G. However, it is well known from the the 
theory of "roots and weights" that G (or any connected, simple Lie group) has only 
finitely many non-isomorphic representations of any given dimension, so this is a 
contradiction. 

TECHNICAL REMARK. Actually, this is not quite a contradiction, because it is possible that 
two different choices of y  yield the same representation of H, up to isomorphism; that is, after 
a change of basis. The trace of a matrix is independent of the basis, so the preceding argument 
really shows that the trace of y (y )  must be algebraic, for every y  e H. Then one can. use some 
algebraic methods to  construct some other matrix representation if' of H, such that the matrix 
entries of if'(7) are algebraic, for every 7 G. H. 

Step 2. We have H c SLfk, Q). Let F be the subfield of C generated by the matrix 
entries of the elements of H ,  so H c SL(A;, F ) .  From Step 1, we know that this is 
an algebraic extension of . Furthermore, because it is known that H has a finite 
generating set, we see th  this field extension is finitely generated. Thus, F is 
finite-degree field extension of (in other words, F is an "algebraic number field"). 
This means that F is almost the same as Q, so it is only a slight exaggeration to 
say that we have proved H c SL(k, (1, 

Indeed, there is an algebraic technique, called "Restriction of Scalars" that 
provides a way to change F into Q: there is a representation p: G + SL(Â£ R), such 
that p(G f l  SL(k, 8')) c SL(t, Q). Thus, after changing to this new representation 
of G, we have the desired conclusion (without any exaggeration). 
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Step 3. For every prime p, there is a natural number Np, such that no  element 
o f  H has a rnatr-ix entry whose denomznator i s  divisible by p'^. The fields R 
and C are complete (that is, every Cauchy sequence converges), and they obviously 
contain Q. For any prime p, the p-adic numbers Qp are another field that has these 
same properties. 

The Margulis Superrigidity Theorem (4.16) deals with homomorphism into 
SL(d,F), where F = R, but Margulis also proved a version of the theorem that 
applies when F is a p-adic field. Now G is connected, but p-adic fields are to- 
tally disconnected, so every continuous homomorphism from G to SL(k, Qn) is 
trivial. Thus. superrigidity tells us that y is trivial. up to a bounded error (c.f. 
Remark 4.17(3)). In other words, the closure of p(IT) is con~pact in SL(A, Qp). 

This conclusion can be rephrased in more elementary terms, without any men- 
tion of the field Qn of p-adic numbers. Namely, it says that there is a bound on 
the highest power of p that divides any matrix entry of any element of H. This is 
what we wanted. 

Step 4. Some fimte-zndex subgroup H' o f  H is contained zn SL(k, Z). Let D c N 
be the set consisting of the denominators of the matrix entries of the elements of 
P(H). 

We claim there exists 3 ? N, such that every element of D is less than N .  
Since H is known to be finitely generated, some finite set of primes {p i , .  . . ,pr} 
contains all the prime factors of every element of D. (If p is in the denominator 
of some matrix entry of 7172, then it must appear in a denominator somewhere 
in either 71 or 7 2 . )  Thus, every element of D is of the form p y  - .pF1', for some 
mi,. . . . 6~ N. From Step 3, we know m, < A p ,  for every z. Thus, every element 
of D is less than p i 1  . -pr^. This establishes the claim. 

From the preceding paragraph, we see that H c & Matkxk(Z). Note that if 
iV = 1, then H c SL(A;, Z). In general. N is a finite distance from 1, so it should 
not be hard to believe (and it can indeed be shown) that some finite-index subgroup 
of H must be contained in SL(k, Z). D 

Further Reading 

1 J. Graver, B. Serv-atius, and H. Servatius: Combinatorial Rigidi ty .  American Mathematical 
Society, Providence, 1993. MR 1251062 (95b:52034) 

A study of the rigidity of linkages in n-space, including an annotated bibliography. 

[Z] J. E. Hurnphreys. Linear Algebraic Groups. Springer, New York5 1975. 
MR 0396773 (53 #633) 

A textbook on algebraic groups (including Zariski closures). 

[3] G.A. Margulis: Discrete Subgroups of Semisimple Lie Groups. Springer, New York, 1991. 
MR 1090825 (92h:22021) 

An encyclopedic and impressive monograph that includes proofs of the Margulis 
Superrigidity Theorem (4.16) and the Margulis Arithmeticity Theorem (4.19). 

141 D. W. Moms: Introduction to Anthmettc Groups (in preparation). 
http.//arxi~.org/abs/rnath/0106063 

Includes an exposition of a proof of the Margulis Supei rigidity Theorem (4.16). 

5 1  M. S. Raghunathan: Discrete Subgroups of Lte Groups. Springer, New York, 1972. 
MR 0507234 (58 #22394a) 

The place to  learn basic properties of lattices. 



206 DAVE WITTE MORRIS 

6 A. N. Starkov Rigidity problem for lattices in solvable Lie groups, Proc. Indian Acad. Sci. 
Math. Scz. 104 (1994) 495-514. MR 1314393 (96d:22017) 

A thorough study of global rigidity of lattices in solvable Lie groups. 

71 V. S Varadarajan: Lie Groups, Lie Algebras, and Thew Representations Springer, New 
York, 1984 MR 0746308 (85e:22001) 

A textbook on Lie groups. 

(81 D. Witte: Superrigidity of lattices in solvable Lie groups, Inventtones Math. 122 (1995) 
147-193. MR 1354957 (96k:22024) 

Includes a proof of Theorem 4.15. 

9 D. Witte: Superrigid subgroups and syndetic hulls in solvable Lie groups, in: M. Burger and 
A. lozzi, eds., Rigidity in Dynamics and Geometry. Springer. Berlin, 2002, pp. 441.457. 
MR 1919416 (2003g:22005) 

An exposition of the proof of the superrigidity theorem for solvable groups (4.14). 

[lo] R. J. Zimmer: Ergodic Theory and Semisimple Groups. Birkhauser, Boston, 1984. 
MR 0776417 (86j:22014) 

Includes proofs of the Margulis Superrigidity Theorem (4.16) and the Margulis 
Arithmeticity Theorem (4.19). Less intimidating than [3]. but still demanding. 


