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CHAPTER 1

INTRODUCTION

Ergodic theory is the measure theoretic study of dynamical systems and of group

actions. Irrational rotations of the circle present basic examples: Let T = R/Z be the

circle group; for any β ∈ R, we have a transformation Tβ :T→ T: t 7→ t+ β. The iterates

(Tβ)n (n ∈ Z) of Tβ form a dynamical system (with discrete time). If β is irrational, it

is well known that every orbit of this dynamical system is uniformly distributed in T—

which is essentially what it means to say the dynamical system is “ergodic”. Considering

T as the quotient space R/Z, we see a natural family of generalizations: Let G be a

connected Lie group and Γ a closed subgroup; any element g ∈ G acts by translation Tg

on the homogeneous space Γ\G (namely Tg: Γ\G→ Γ\G: Γx 7→ Γxg). We will assume the

homogeneous space Γ\G has finite volume; such examples include the classical geodesic

and horocycle flows on a compact surface of constant negative curvature. The research of

several authors culminated in 1981 in a joint paper of J. Brezin and C. C. Moore [3] where,

among other things, it was determined which of these translations are ergodic. But much

remains to be done; many basic properties of these examples still need to be investigated.

This paper deals with the so-called isomorphism question: Which translations are

isomorphic? What are the isomorphisms between them? More concretely, consider ergodic

translations Tg and Th on finite-volume homogeneous spaces Γ\G and Λ\H of connected Lie

groups G and H. When is there a measure preserving Borel isomorphism ψ: Γ\G→ Λ\H
with Tgψ = ψTh? (Note that the author habitually writes his actions and maps on the

right.)

If G and H are abelian, the answer to this question has been known for a long

time: Suppose ψ is an isomorphism of Tg with Th. Then the Lie groups Γ\G and Λ\H
are isomorphic, and ψ (perhaps after being adjusted on a set of measure zero) is the

composition of a translation with a Lie group isomorphism Γ\G ∼= Λ\H. Thus ψ is an

affine map (a.e.). In short, two ergodic translations on abelian groups are not measure

theoretically isomorphic unless it is obvious from the algebraic setting that this is the case.

In 1971, W. Parry [17] proved a similar result for the case where G and H are nilpotent,

and M. Ratner [19], in 1982, proved a theorem when G = H = SL2(R). But Ratner needed

to restrict the translations allowed—in her theorem it is necessary to assume g and h are

unipotent matrices (i.e., 1 is the only eigenvalue). In fact this is the best possible result;

every two-by-two matrix of determinant one is either semisimple (i.e., diagonalizable) or

1



2

unipotent (or the negative of a unipotent matrix), and it had been shown by D. Ornstein

and B. Weiss [16] in 1973 that any ergodic translation by a semisimple element is isomorphic

to a so-called Bernoulli shift. In this paper we do not try to extend the work of Ornstein

and Weiss, but we unify the theorems of Parry and Ratner to a general result valid for all

connected Lie groups. For simplicity we state a slightly restricted version here (the general

result appears in 10.1).

(1.1) Definition. An element u of a Lie group G is said to be unipotent if AdGu is a

unipotent linear transformation of the Lie algebra of G.

(1.2) Definition. A homogeneous space Γ\G of a Lie group G is faithful if Γ contains no

nontrivial normal subgroup of G.

(1.3) Main Theorem. Let Γ\G and Λ\H be faithful finite-volume homogeneous spaces

of connected real (finite dimensional) Lie groups G and H, and suppose Tu and Tv are er-

godic translations on Γ\G and Λ\H by unipotent elements u and v of G and H respectively.

If ψ: Γ\G→ Λ\H is a measure preserving Borel map which satisfies Tuψ = ψTv a.e., then

ψ is an affine map (a.e.), i.e., there is a continuous homomorphism G → H:x 7→ x̃ and

some h ∈ H such that Γxψ = Λh · x̃ for a.e. Γx ∈ Γ\G.

We can often construct ergodic actions of a connected Lie group G by embedding it

in some other Lie group H: then G acts by translations on any finite-volume homogeneous

space Λ\H of H. This construction is especially important when G is semisimple, because

modifications of this supply all the known ergodic actions of G on manifolds. The original

goal of this research was to settle the isomorphism question for these natural actions. The

Main Theorem does this, and has other interesting consequences.

Application 1. Suppose G,H1, H2 are connected Lie groups, and let Λi\Hi be a faithful

finite-volume homogeneous space of Hi. Embed G in H1 and H2. Assume G is connected,

semisimple with no compact factors, and acts ergodically on Λ1\H1. Then any measure

theoretic isomorphism from the G-action on Λ1\H1 to the G-action on Λ2\H2 is an affine

map (a.e.).

Definition. A discrete subgroup Γ of a Lie group G is a lattice if the homogeneous space

Γ\G has finite volume.

Application 2. Suppose G,Hi,Λi are as in the preceding application, and let Γ be a lattice

in G. Then any measure theoretic isomorphism of the Γ-actions on Λ1\H1 and Λ2\H2 is

affine (a.e.).

Though little is known about the possible actions of a noncompact semisimple group

on a manifold, the Main Theorem implies that the natural actions on a homogeneous space

Λ\H can be picked out by the action of a single unipotent element:
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Application 3. Let G and H be connected semisimple Lie groups, and Λ be a lattice in H.

Assume each simple factor of G has real rank at least two. Suppose G acts measurably on

Λ\H in an arbitrary way that preserves the finite measure. If some unipotent element of

G acts by an ergodic translation of Λ\H, then all elements of G act by translations (a.e.).

Entropy is an important (perhaps the most important) measure theoretic invariant

of transformations preserving a finite measure. Since the translation by any unipotent

element has zero entropy, it is natural to try to extend the Main Theorem to arbitrary

translations of zero entropy. (Translation by g ∈ G has zero entropy iff all eigenvalues

of Adg have absolute value one.) Unfortunately, an isomorphism of zero entropy ergodic

translations need not be an affine map (a.e.). For example, certain nonabelian (solvable)

groups give rise to the same translations as abelian groups; the isomorphism cannot be

an affine map because the groups are not isomorphic. Even so, the methods of this paper

should be sufficient to settle the isomorphism question for zero entropy ergodic translations

on finite-volume homogeneous spaces of connected Lie groups.



CHAPTER 2

PRELIMINARIES IN LIE THEORY

The reader will need some familiarity with Lie theory and with algebraic groups

defined over R; as references the author suggests [22] and [11]. Save explicit mention to

the contrary, all Lie groups and Lie algebras are real (and finite-dimensional).

(2.1) Notation. For a closed subgroup X of a Lie group G, we use CG(X), NG(X), and

X◦, respectively, to denote the centralizer, normalizer, and identity component (in the

Hausdorff topology) of X. Thus

CG(X) = { g ∈ G | gx = xg for all x ∈ X } and NG(X) = { g ∈ G | gX = Xg }.

We use Z(G) to denote the center of G, i.e., Z(G) = CG(G). We use a corresponding script

letter A,B,C, . . . to denote the Lie algebra of a Lie group A,B,C, . . .. As is customary, we

identify the Lie algebra of a subgroup of G with the corresponding subalgebra of G.

(2.2) Definition. Two Lie groups G and H are locally isomorphic if they have isomorphic

Lie algebras or, equivalently, if the universal cover of G◦ is isomorphic to the universal

cover of H◦ (cf. [22, §2.8, pp. 72–74]).

(2.3) Definitions. A real algebraic group is a Lie group which is a subgroup of finite index

in the real points of an algebraic group defined over R. A Lie group is locally algebraic if

it is locally isomorphic to some real algebraic group.

(2.4) Definitions. An element u of a Lie group G is unipotent if AdGu is a unipotent linear

transformation on G. A subgroup U of G is unipotent if each element of U is unipotent.

(2.5) Caution. The theory of algebraic groups provides a notion of unipotence for ele-

ments of a real algebraic group. To avoid hopeless confusion with the preceding definition,

we refer in this context to elements (or subgroups) as being algebraically unipotent. (In a

real algebraic group, every algebraically unipotent element is unipotent, but the converse

fails if Z(G) is not algebraically unipotent.)

(2.6) Remark. Any unipotent subgroup of a Lie group G is nilpotent (cf. Engel’s Theorem

[11, §V.2, pp. 63–67]). As a partial converse, any nilpotent normal subgroup of G is

unipotent.
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(2.7) Definitions. For any connected Lie group G, we let radG (the radical of G) be the

largest connected solvable normal subgroup of G, and nilG (the nilradical of G) be the

largest connected nilpotent normal subgroup of G. Obviously nilG ⊆ radG.

(2.8) Lemma. Any Lie group G whose radical is nilpotent is locally isomorphic to an

essentially unique connected real algebraic group whose radical and center are algebraically

unipotent.

Proof. The proof of [11, Theorem XVIII.1.1, p. 250] shows G is locally isomorphic to

a connected real algebraic group whose radical and center are algebraically unipotent.

It follows from (the proof of) [11, Theorem XVIII.2.2, p. 252] that a local isomorphism

between any two such groups comes from an isomorphism of real algebraic groups.

(2.9) Definition. Suppose G is a Lie group whose radical is nilpotent. If Ĝ is the universal

cover of G, then there are covering homomorphisms π: Ĝ→ G and πa: Ĝ→ Ga, where Ga
is a connected real algebraic group which is locally isomorphic to G, and Z(Ga) · nilGa

is algebraically unipotent. A subset X of G is Zariski closed if X is a union of connected

components (in the Hausdorff topology) of Cπ−1
a π, where C is a closed subvariety of Ga.

(2.10) Lemma. Let M be any finite-dimensional real or complex S-module, where S is

a connected Lie group locally isomorphic to SL2(R). Let A be a split Cartan subgroup

of S, and choose a maximal unipotent subgroup U of S normalized by A. The selection

of U corresponds to an ordering of the weights of S (w.r.t. A), and this determines a

decomposition M = M− ⊕M0 ⊕M+ of M into the direct sum of its negative, zero, and

positive weight spaces. Then:

(a) CM (U) ⊆M0 +M+;

(b) Any U -submodule of M contained in M− +M0 is contained in CM (S) ⊆M0.

Proof. Weyl’s Theorem asserts M is completely reducible, so, by projecting to irreducible

summands, we may assume M is irreducible. Any non-zero vector centralized by U is a

maximal vector (cf. [12, §20.2, p. 108]). Since the highest weight of M is non-negative,

this proves (a).

Any U -submodule contains a maximal vector of M . If the submodule is contained in

M− + M0, this implies the highest weight of M is 0. Because an irreducible S-module is

determined by its highest weight, we conclude that M is trivial, and (b) follows.

(2.11) Definition. A Lie algebra L is perfect if it coincides with its derived algebra, i.e., if

L = [L,L]. This is equivalent to the assertion that L has no nonzero abelian (or solvable)

homomorphic images.

(2.12) Definitions. A Borel subalgebra of a complex Lie algebra H is a maximal solvable

subalgebra, and any subalgebra containing a Borel subalgebra is said to be parabolic. A
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subalgebra P of a real Lie algebra G is parabolic if its complexification P ⊗C is parabolic

in G ⊗C. For a connected Lie group G, the normalizer NG(P) of any parabolic subalgebra

of G is said to be a parabolic subgroup of G.

(2.13) Lemma. For any Lie algebra G, we have CG(radG) ⊆ Z(G) + [G,G].

Proof. Let L be a Levi subalgebra of G. Since L is semisimple, Weyl’s Theorem asserts

every L-module is completely reducible. Hence we may write CG(radG) = Z ⊕ V , where

Z = Z(G) is the centralizer of L in CG(radG), and V is a sum of nontrivial irreducible

L-modules, so V = [L, V ] ⊆ [G,G].

(2.14) Lemma. If P is a parabolic subalgebra of a real or complex Lie algebra G, then

(i) For any finite-dimensional G-module V , we have H0(P, V ) = H0(G, V ). In

particular, Z(P) = Z(G);

(ii) [G,G] ∩ Z(G) = [P,P] ∩ Z(P).

Proof. (i) We may assume G is a complex Lie algebra and P is Borel. Letting L be a Levi

subalgebra of G, note that P ∩L is Borel in L. Since H0(P, V ) = H0(P ∩ L, H0(radG, V ))

and H0(G, V ) = H0(L, H0(radG, V )), we may assume G = L is semisimple. In this case,

Weyl’s Theorem asserts V is completely reducible, so we may assume V is irreducible.

Let T be a maximal toral subalgebra of G contained in P. Then the Borel subalgebra P
determines an ordering of the weights of G (w.r.t. T ). Letting λ be the maximal weight

of V , we have H0(nilP, V ) = Vλ. If H0(P, V ) 6= 0, we conclude that λ = 0, and hence

V is the trivial G-module.

(ii) Let G = G/[radG, radG]. Then radG is abelian, so [G,G] = [G,L] for any Levi

subalgebra L of G. Since [G,L] is the sum of the nontrivial irreducible L-submodules of

G, then L has trivial centralizer in [G,G]. Therefore [G,G] ∩ Z(G) = 0, which implies

[G,G] ∩ Z(G) ⊆ [radG, radG].

(2.15) Definition. A subgroup X of a Lie group G is reductive in G if the adjoint repre-

sentation of X on G is completely reducible.

(2.16) Definition. Suppose U and U− are maximal connected unipotent subgroups of

a Lie group G whose radical is nilpotent. We say U− is opposite to U if (NG(U−) ∩
NG(U))/ radG is reductive in G/ radG.

(2.17) Definition. An involutive automorphism θ of a connected semisimple Lie group G

is a Cartan involution if the fixed point set of θ is a maximal compact subgroup of G.

(2.18) Proposition (Mostow [18, §2.6, p. 11]). An algebraic subgroup X of a connected

semisimple real algebraic group G is reductive in G if and only if there is a Cartan invo-

lution (∗) of G with X∗ = X.
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(2.19) Corollary. If U is a maximal connected unipotent subgroup of a connected semi-

simple real algebraic group G and (∗) is a Cartan involution of G, then U∗ is opposite to

U .

Proof. Since U is connected, its normalizer is an algebraic subgroup of G, and the same

goes for U∗. This means NG(U∗) ∩ NG(U) is an algebraic subgroup invariant under (∗).
Therefore it is reductive.

(2.20) Definition. Suppose g is an element of a Lie group G. Then

{x ∈ G | g−nxgn → e as n→ +∞}

is a subgroup of G, called the horospherical subgroup associated to g.

(2.21) Remark. Any horospherical subgroup is unipotent. As a partial converse, any

connected unipotent subgroup of a semisimple Lie group is contained in a horospherical

subgroup.

(2.22) Theorem [24]. Any path-connected subgroup of a Lie group is an immersed Lie

subgroup.

(2.23) Corollary. Suppose P is a parabolic subgroup of a connected Lie group G with

R-rank(G/ radG) = 1. If V1 is any one-parameter subgroup of G not contained in P , then

〈P ◦, V1〉 = G.

Proof. The Lie algebra of P is a parabolic subalgebra of G. Since R-rank(G/ radG) = 1,

this implies P is a maximal subalgebra of G. Because V1 6⊆ P, therefore 〈V1,P〉 = G.

Hence 〈V1, P
◦〉 = G.

(2.24) Corollary. Suppose U and U− are opposite maximal connected unipotent sub-

groups of a connected semisimple group G, and K is the maximal compact factor of G.

Then G = 〈U,U−,K〉.

(2.25) Technical Lemma. Let K be a closed subgroup of a connected real Lie group G

whose radical is nilpotent. Assume there is a closed normal subgroup N of G contained in

K such that K projects to an Ad-precompact subgroup of G/N , and that K is normalized

by the identity component P ◦ of a parabolic subgroup of G. Then K is a normal subgroup

of G.

Proof. Passing to a quotient of G, we may assume K contains no normal subgroup of G.

This implies K ∩Z(G) = e, and K is compact. Since AdG(K) (resp. AdG(radG)) consists

only of semisimple (resp. unipotent) elements, we have K ∩ radG = e. Since K and radG

normalize each other, this implies [K, radG] = e.
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Case 1. G is semisimple with trivial center.

Proof. Note that G is (isomorphic to) a real algebraic group [25, Proposition 3.1.6, p. 35].

Since Z(G) = e and K is a closed Ad-precompact subgroup, K is compact, and hence K is

an algebraic subgroup of G (cf. [25, p. 40]). Thus K is a reductive algebraic subgroup

of G. This means there is a Cartan involution (∗) of G with K∗ = K (2.18). Then

NG(K) = NG(K)∗. Since P ◦ ⊆ NG(K), then NG(K) ⊇ 〈P ◦, (P ◦)∗〉 = G.

Case 2. K is connected.

Proof. We wish to show [G,K] ⊆ K. Since K is reductive in G and [K, radG] = 0, it

suffices to show [G,K] ⊆ K + radG. Thus there is no loss in passing to the maximal

semisimple quotient of G with trivial center. Then Case 1 applies.

Case 3. The general case.

Proof. Case 2 implies K◦ is normal in G, which implies K is discrete. Hence, showing

K is normal is equivalent to showing K is central in G. We already know K centralizes

radG. Since K is reductive, then we need only show K centralizes G/ radG. Thus we may

assume G is semisimple (with trivial center), and Case 1 applies.



CHAPTER 3

ISOMORPHISMS OF PARABOLIC SUBALGEBRAS

An isomorphism of parabolic subalgebras may or may not extend to an isomorphism of

the ambient Lie algebras. (Proposition 3.1 shows that an extension, if it exists, is unique.)

In this section we give a series of results which culminate in a criterion (Theorem 3.6) for

the existence of an extension, under the assumption that one of the ambient Lie algebras

is perfect. The section closes with a technical result (to be employed in the proof of the

Main Theorem) on Lie algebras which are “perfect modulo the center.”

(3.1) Proposition. Let P be a parabolic subalgebra of a real or complex Lie algebra G.

Suppose σ, π:G → H are Lie algebra epimorphisms with the same restriction to P, i.e.,

σ|P = π|P . Then σ = π.

Proof. Let L be a Levi subalgebra of G, so it suffices to show σ|L = π|L. Set H =

H/[radH, radH]. Since Lπ and Lσ are Levi subalgebras of H, they are conjugate via an

inner automorphism α ∈ Exp(ad radH) [22, Theorem 3.14.2, p. 226 (and Exercise 3.30,

p. 252)]. Note that α centralizes (L ∩ P)π. (For p ∈ L ∩ P, we have pπ − pπα ∈ Lσ
because pπ = pσ ∈ Lσ and pπα ∈ Lπα = Lσ. On the other hand, α ∈ Exp(ad radH)

implies pπ − pπα ∈ radH. Therefore pπ − pπα ∈ Lσ ∩ radH = 0.) Since radH is

abelian and α ∈ Exp(ad radH), we know that α also centralizes radH. Thus α centralizes

(L ∩ P)π + radH = Pπ. Writing α = Exp(ad r) with r ∈ radH, we conclude that r is in

the center of the parabolic subalgebra Pπ of H, and hence r is in the center of H (see 2.14).

Therefore α is trivial, and hence Lπ = Lσ, i.e.,

Lπ + [radH, radH] = Lσ + [radH, radH].

By induction on dimH, we conclude π|L = σ|L as desired.

Perhaps a word should be said about the base case—when H is semisimple. By

complexifying if necessary, we may assume G and H are complex Lie algebras, and then

replacing P by a subalgebra if necessary, we may assume P is a Borel subalgebra of G. It’s

easy to show radG ⊆ kerπ = kerσ, so the result follows from Chevalley’s Theorem [12,

Theorem 13.2, p. 75] on existence and uniqueness of extensions of isomorphisms of Borel

subalgebras of semisimple Lie algebras.

(3.2) Lemma (Wallach). If B is parabolic in a real or complex semisimple Lie algebra L,

and if V is a finite-dimensional L-module with no trivial submodules, then the first Lie

algebra cohomology group of B with coefficients in V vanishes, i.e., H1(B, V ) = 0.

9
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Proof. Weyl’s Theorem asserts that any L-module is completely reducible, so we may

assume V is irreducible. Since B is parabolic in a semisimple Lie algebra, it is almost

algebraic, in the sense that there is a subalgebra M complementary to the nilradical N
of B, and M is reductive in L. We now apply the Hochschild-Serre spectral sequence

[10, Exercise VIII.9.3, p. 305] to the decomposition B = M + N to determine H1(B, V ).

In the E2 term, there are two relevant groups: E0,1
2 = H0(M, H1(N , V )) and E1,0

2 =

H1(M, H0(N , V )). We will show both of these groups vanish, for then the spectral sequence

immediately yields H1(B, V ) = 0.

The M-module structure of H1(N , V ) is known [13, Theorem 5.14, p. 362]. A part

of this structure is the fact that the highest weight α of any irreducible M-submodule of

H1(N , V ) is of the form

α = (λ+ δ)wβ − δ,

where δ is one-half the sum of the positive roots, λ is the highest weight of V , and wβ is the

reflection corresponding to a simple root β. In particular, notice that 0 is not the highest

weight of anyM-submodule. (Since δwβ − δ = −β = βwβ [12, Corollary to Lemma 10.2B,

p. 50], (λ + δ)wβ − δ = 0 would imply λ = −β, and hence <λ, β> < 0. This would

contradict the fact that λ, the highest weight of a finite-dimensional module, is dominant.)

This means the trivial representation of M does not occur in H1(N , V ). In other words,

H0(M, H1(N , V )) = 0, as desired.

Since M is reductive, we may write it as a direct sum M = S ⊕ A of a semisimple

and an abelian Lie algebra. We will apply the Hochschild-Serre spectral sequence to this

decomposition to show H1(M, H0(N , V )) = 0. There are two relevant groups in the E2

term: E0,1
2 = H0(A, H1(S,X )) and E1,0

2 = H1(A, H0(S,X )), where X = H0(N , V ). Since

Whitehead’s Lemma asserts H1(S,X ) = 0, we need only consider the latter of these two

groups. Now

H0(S,X ) = H0(S, H0(N , V )) = H0(S +N , V ).

Since V is a nontrivial irreducible L-module and B is parabolic, we have H0(B, V ) = 0

(2.14(i)). Therefore H0(S+N , V ) has no trivial A-submodules. Since A ⊆M is reductive

in L, this implies H0(S +N , V ) is a direct sum of nontrivial irreducible A-modules. Since

A is abelian, it is then easy to see H1(A, H0(S +N , V )) = 0.

(3.3) Lemma. Let B be a parabolic subalgebra of a real or complex semisimple Lie algebra

L. Suppose V and W are any finite dimensional L-modules. If σ:V → W is a B-module

homomorphism, then σ is L-equivariant.

Proof. By Weyl’s Theorem, we may assume V and W are irreducible L-modules. By

complexifying, we may assume L is a complex Lie algebra and B is Borel. Let T ⊆ B be

a Cartan subalgebra of L. The Borel subalgebra B determines an ordering of the weights

of L w.r.t. T . Let λV and λW be the maximal weights of V and W respectively; and let
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λ−V and λ−W be the maximal weights of V and W under the opposite ordering (the ordering

associated to the opposite Borel B−). Note that µ is a weight of V if and only if it and all

its conjugates µw under the Weyl group of L satisfy µw � λ−V [12, Proposition 21.3, p. 114]

(the inequality is reversed because λ−V is maximal with respect to the opposite ordering).

Since σ is T -equivariant, it maps Vµ into Wµ, for any weight µ of V . We may assume

σ 6= 0. Since Vλ−
V

generates V as a B-module, this implies Wλ−
V
6= 0, and hence λ−V � λ

−
W .

Of course λV is a weight of V , so it and all its conjugates λV w satisfy λV w � λ−V . By

transitivity, then λV w � λ−W , and hence λV is a weight of W . Therefore λV ≺ λW .

Let U = nilB. For some weight µ of V , we must have Vµσ 6= 0 and VµUσ = 0. This

implies VµσU = 0, so µ = λW . Thus λW is a weight of V , and hence λV � λW .

The preceding two paragraphs jointly imply λV = λW , and hence V and W are

isomorphic L-modules. Now let v ∈ Vλ−
V

(with v 6= 0). Then the unique B-equivariant

map (namely σ) taking v to vσ is L-equivariant.

(3.4) Lemma. Suppose G and H are real forms of a semisimple complex Lie algebra L.

If P = G ∩ H is a (real) parabolic subalgebra of both G and H, then H = G.

Proof. Let U = nilP (so P = NG(U) = NH(U)). By Engel’s Lemma there is a series of

real vector subspaces G0,G1, . . . ,Gk of G with CG(U) = G0 ⊂ G1 ⊂ . . . ⊂ Gk = G and

[Gj ,U ] ⊆ Gj−1. We will show by induction on j that

H ∩ (Gj ⊗C) ⊆ G.

For j = k this implies H = G as desired.

The base case. Choose a maximal R-split toral subalgebra T of P. There is a (real)

parabolic subalgebra P− of G (resp. Q− of H) which contains T and is opposite to P;

let U− = nilP− and V− = nilQ−. Now U− ⊗ C and V− ⊗ C are the sum of the same

root spaces of L w.r.t. T ⊗C (namely the negatives of the roots occurring in U ⊗C), so

V− ⊗C = U− ⊗C. Therefore

H = V− + P ⊆ (V− ⊗C) + P = (U− ⊗C) + P = G + iU−.

Since G0 = CG(U) ⊆ P, then we have

H ∩ (G + iG0) ⊆ (G + iU−) ∩ (G + iP) = G.

This implies H ∩ (G0 ⊗C) ⊆ G as desired.

The induction step. Let v ∈ H ∩ (Gj ⊗C). Thus v = x+ iy with x, y ∈ Gj . For all u ∈ U :

H 3 [v, u] = [x, u] + i[y, u] ∈ Gj−1 ⊗C.

By induction [x, u] + i[y, u] ∈ G. Hence [y, u] = 0. Since this holds for all u ∈ U , we have

y ∈ CG(U) = G0, so v ∈ H ∩ (G + iG0). We showed in our proof of the base case that

H ∩ (G + iG0) ⊆ G.
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(3.5) Lemma. Suppose G and H are semisimple real or complex Lie algebras. Let P
and Q be parabolic subalgebras of G and H respectively, and let σ:P → Q be a Lie algebra

isomorphism. Then σ extends to an isomorphism of Lie algebras G ∼= H.

Proof. Suppose first that G and H are complex Lie algebras. Let B ⊆ P be a Borel

subalgebra of G. The restriction σ|B is an isomorphism of B with a maximal solvable

subalgebra of Q, i.e., with a Borel subalgebra of H. Thus one knows that σ|B extends

uniquely to an isomorphism π:G → H [12, Theorem 14.2, p. 75]. It suffices to show

σ = π|P . To this end, let T ⊂ B be a Cartan subalgebra of G. Now Pσ and Pπ are the

sum of the same weight spaces of H w.r.t. T σ, because σ|T = π|T . So Pσ = Pπ and

hence σ and π|P are isomorphisms P → Pσ that extend σ|B. Since Proposition 3.1 asserts

this extension is unique we conclude σ = π|P . This completes the proof for complex Lie

algebras.

We may now assume G and H are real Lie algebras. The previous paragraph shows

there is an extension πC:G ⊗C → H ⊗C in the complexified setting. Then GπC and H
are real forms of H ⊗ C, and GπC ∩ H contains the real parabolic subalgebra Pσ = Q.

Therefore Lemma 3.4 asserts GπC = H, and hence the restriction of πC to G is the desired

extended isomorphism π:G → H.

(3.6) Theorem. Let G and H be real or complex Lie algebras. Let P and Q be parabolic

subalgebras of G and H respectively, and suppose σ:P → Q is a Lie algebra isomorphism

such that (radG)σ = radH. If G is perfect, then σ extends to a Lie algebra isomorphism

π:G → H.

Proof. First recall the general fact that if X is a subalgebra of any nilpotent Lie algebra

R, with X + [R,R] = R, then X = R. Suppose, to the contrary, that X < R, and let M
be a maximal proper subalgebra of R which contains X . Since R is nilpotent, we have

M < NR(M), so the maximality ofM implies NR(M) = R. ThereforeM is an ideal inR.

SinceM is maximal, dimR/M = 1, so R/M is abelian. Therefore [R,R] ⊆M. Since also

X ⊆M, this contradicts the assumption that X + [R,R] = R.

Using this fact, we can show that, for any Levi subalgebra L of G, the L-module

radG has no trivial submodules. Since G = [G,G] = L + [G, radG], we have radG =

[G, radG]. As [G, radG] ⊆ nilG [22, Theorem 3.8.3(iii), p. 206] this implies radG = nilG
is nilpotent. Since radG = [G, radG] = [L, radG] + [radG, radG], this implies radG =

[L, radG]. Because every L-module is completely reducible this implies radG has no trivial

L-submodules, as desired.

Next we prove any two subalgebras complementary to radG in P are conjugate. To

this end, set B = L ∩ P, a parabolic subalgebra of L, and let B′ be any other comple-

ment to radG in P. We conclude from the preceding paragraph and Lemma 3.2 that

H1(B,W ) = 0 for every L-submodule W of radG. Setting G = G/[radG, radG], we con-



13

clude H1(B, radG) = 0. Therefore B is conjugate to B′ (via an inner automorphism of

P). After replacing B′ by a conjugate if necessary, we may then assume B = B′, i.e.,

B+ [radG, radG] = B′ + [radG, radG]. As L+ [radG, radG] is a perfect proper subalgebra

of G, we conclude by induction on dimG that B is conjugate to B′ as desired.

Via the isomorphism σ, we conclude that any two subalgebras of Q complementary

to radH are conjugate. In particular Bσ is conjugate to M∩ Q, where M is any Levi

subalgebra of H (and B = L ∩ P as above). Replacing M by a conjugate if necessary, we

may assume Bσ =M∩Q is contained in M.

Now Lemma 3.5 implies σ|B extends to an isomorphism σ1:L →M. If we identify L
with M under σ1, then the restriction of σ to radG is B-equivariant. Hence Lemma 3.3

asserts it is L-equivariant. Therefore the linear map

π:G → H: l + r → lσ1 + rσ (l ∈ L, r ∈ radG)

is a Lie algebra isomorphism.

(3.7) Remark. The assumption that (radG)σ = radH cannot be omitted. For example,

if P is a proper parabolic subalgebra of a (perfect) Lie algebra G, the isomorphism P ∼= P
obviously does not extend to an isomorphism of G with P.

(3.8) Corollary. Suppose P and Q are parabolic subalgebras of real or complex Lie al-

gebras G and H respectively, and assume [H,H] +Z(H) = H. Then, for any isomorphism

σ:P → Q with (radG)σ = radH, there is an isomorphism π:G → H, such that π and σ

agree on [P,P], and pπ ∈ pσ + Z(H) for all p ∈ P.

Proof. Let Z be complementary to [P,P] ∩ Z(P) in Z(P); then Zσ is complementary to

[Q,Q]∩Z(Q) in Z(Q). Lemma 2.14 shows Z (resp. Zσ) is complementary to [G,G]∩Z(G)

inZ(G) (resp. to [H,H]∩Z(H) inZ(H)). By hypothesis,H = [H,H]⊕Zσ. Writeσ = σ⊕σZ ,

where Gσ = [H,H] and GσZ = Zσ.

Since [G,G]∩Z = 0, we can choose a subalgebra G complementary to Z in G. Letting

GπZ = 0 and zπZ = zσ for z ∈ Z, we obtain a homomorphism πZ :G → Zσ which agrees

with σZ on [P,P] + Z.

The kernel of σ is precisely Z (i.e., gσ ∈ Zσ iff g ∈ Z), so σ factors through to an

isomorphismσ′ fromP∩G ontoQ∩[H,H]. Now [H,H] is perfect, becauseH = [H,H]+Z(H),

so Theorem 3.6 asserts σ extends to an isomorphism π′:G → [H,H]. Extend this to a

homomorphism π:G → [H,H] by setting Zπ = 0.

The desired isomorphism π:G → H is π = π ⊕ πZ .



CHAPTER 4

THE ALGEBRAIC STRUCTURE OF HOMOGENEOUS SPACES

By exploiting the structure theory for real algebraic groups, we now prove a number of

technical results on finite-volume homogeneous spaces Γ\G (see [18] for an introduction to

this subject). We work with two main ingredients: (1) Dani’s theorem (4.4) on stabilizers

of measures on homogeneous spaces, which we view as a powerful generalization of the

Borel Density Theorem [18, Theorem 5.26(vi), pp. 87–88]; and (2) the method of splitting

theorems and almost algebraic hulls, utilized so effectively by Auslander [1] in his study of

homogeneous spaces of solvable groups. In particular, we show (by reducing to a known

case) that every finite-volume homogeneous space is admissable; “the crux of this condition

is that it allows us in some sense to decompose the analysis of [Γ\G] into two pieces, one

where G is semi-simple, the other where G is solvable” [3, p. 587].

We are mainly interested in the case where there is an ergodic translation on Γ\G.

We therefore often assume Γ projects densely into the maximal compact semisimple factor

of G:

(4.1) Theorem [3, Theorem 5.5(1)]. Suppose there is an ergodic translation on the finite-

volume homogeneous space Γ\G of the connected Lie group G. Then Γ projects densely

into the maximal compact semisimple factor of G.

(4.2) Definitions. Let Γ\G be a finite-volume homogeneous space of a Lie group G. We

say Γ\G is faithful (resp. a presentation) if Γ contains no (resp. no connected) nontrivial

normal subgroup of G.

Since one could mod out any normal subgroup contained in Γ, it usually causes no

essential loss of generality to assume Γ\G is faithful. However, we often assume only that

Γ\G is a presentation, so that we may also assume G is simply connected.

(4.3) Definition. A discrete subgroup Γ of a Lie group G is a lattice if Γ\G has a finite

G-invariant measure.

(4.4) Theorem [8, Corollary 2.6]. Suppose Γ∗ is an algebraic subgroup of a real algebraic

group G∗, and let ν be a finite measure on Γ∗\G∗. Set

G∗ν = { g ∈ G∗ | the g-action on Γ∗\G∗ preserves ν }

and

N∗ν = {g ∈ G∗ | sg = s for all s ∈ supp ν }.

14
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Then G∗ν and N∗ν are algebraic subgroups of G∗, and N∗ν is a cocompact normal subgroup

of G∗ν .

(4.5) Corollary. Suppose Γ\G is a finite-volume homogeneous space of a Lie group G,

and π:G → GLn(R) is a finite-dimensional representation of G. Let G∗ and Γ∗ be the

Zariski closures of Gπ and Γπ, respectively, in GLn(R). Then Γ∗\G∗ has finite volume.

Hence Γ∗ contains a cocompact normal algebraic subgroup of G∗. In particular, Γ∗ contains

every algebraically unipotent element of G∗.

Proof. The G-invariant probability measure µ on Γ\G pushes to a Gπ-invariant measure

ν = π∗µ on Γ∗\G∗. Since Gπ is Zariski dense, and because G∗ν is algebraic, we must have

G∗ν = G∗. Hence ν is a finite G∗-invariant measure on Γ∗\G∗.
The support of the G∗-invariant probability measure ν is obviously all of Γ∗\G∗; hence

N∗ν ⊆ Γ∗. Any compact real algebraic group (e.g., N∗ν \G∗ν) has no algebraically unipotent

elements. Since G∗ν = G∗, this implies N∗ν contains every algebraically unipotent element

of G∗.

(4.6) Corollary. Suppose Γ\G is a finite-volume homogeneous space of a Lie group G.

Then every unipotent element of G normalizes (resp. centralizes) every connected subgroup

of G normalized (resp. centralized) by Γ. In particular, nilG ⊆ NG(Γ◦).

Proof. If Γ normalizes a connected subgroup N , then AdGΓ stabilizes the Lie algebra of N .

Hence the Zariski closure Γ∗ of AdGΓ does so as well. If u is unipotent, the preceding

corollary asserts AdGu ∈ Γ∗, so we conclude that u normalizes N .

(4.7) Corollary. Suppose there is an ergodic unipotent translation on the finite-volume

homogeneous space Γ\G of the Lie group G. Then Γ◦ is normal in G.

Proof. Let u be an ergodic unipotent translation. Replacing u by a conjugate if necessary,

we may assume Γ〈u〉 is dense in G. Since Γ ⊆ NG(Γ◦) and because the preceding corollary

asserts u ∈ NG(Γ◦), we have Γ〈u〉 ⊆ NG(Γ◦). Since Γ〈u〉 is dense, this implies G = NG(Γ◦).

(4.8) Corollary. Let Γ\G be a finite-volume homogeneous space of a connected Lie group

G, and assume Γ projects densely into the maximal compact factor of G. If H is a real

algebraic group, and π:G → H is a continuous homomorphism, then the Zariski closure

Γ∗ of Γπ contains every Levi subgroup of the Zariski closure G∗ of Gπ in H.

Proof. We may assume H = G∗. Since any two Levi subgroups are conjugate by an element

of the unipotent radical of G∗, and Corollary 4.5 implies Γ∗ contains the unipotent radical,

it suffices to find just one Levi subgroup of G∗ contained in Γ∗. It therefore suffices to

show Γ∗ · radG∗ = G∗, so, passing to G∗/ radG∗, we may assume H = G∗ is semisimple.

Then radG ⊆ kerπ, so we may assume G is semisimple. Since connected semisimple
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Lie subgroups of an algebraic group are algebraic [11, Theorem VIII.3.2, p. 112], we

have Gπ = G∗. Now Γ is closed and contains both Γπ and a cocompact normal subgroup

of G∗, so, since Γ projects densely, we must have Γ∗ = G∗.

(4.9) Corollary. Suppose Γ\G is a finite-volume homogeneous space of a connected Lie

group G whose radical is nilpotent, and assume Γ projects densely into the maximal compact

semisimple factor of G. Then any closed connected subgroup of G normalized (resp. cen-

tralized) by Γ is normal (resp. central) in G. If Γ is discrete, this implies Γ ·Z(G) is closed

in G.

Proof. Since radG is nilpotent, Corollary 4.6 asserts the subgroup (call it N) is normal-

ized (or centralized) by radG. In addition, it follows from Corollary 4.8 that every Levi

subgroup of G normalizes (or centralizes) N . The Levi subgroups, together with radG,

generate G.

Let H be the closure of Γ ·Z(G) in G. Clearly H ⊆ NG(Γ). Hence H◦ is a connected

subgroup of G which normalizes Γ. If Γ is discrete, this implies Γ centralizes H◦, and hence

H◦ ⊆ Z(G). We conclude H◦ = Z(G)◦, from which it follows that Γ · Z(G) is closed.

(4.10) Definition. Following [3, §4], we say that a finite-volume homogeneous space Γ\G
is admissable if there is some connected closed solvable subgroup A of G, containing radG

and normalized by Γ, such that ΓA is closed.

(4.11) Lemma. Suppose Γ\G is a finite-volume homogeneous space of a Lie group G, and

N is a closed normal subgroup of G contained in Γ. If the homogeneous space (Γ/N)\(G/N)

is admissable, then Γ\G is admissable.

Proof. There is a connected closed solvable subgroup A1/N of G/N , containing rad(G/N)

and normalized by Γ/N , such that ΓA1 is closed in G. Since A1/N is solvable, we have

A1 = N radA1, and hence Γ radA1 = ΓA1 is closed in G. Setting A = radA1, we see that

Γ\G is admissable.

(4.12) Theorem (Auslander [18, Theorem 8.2.4, p. 149]). If Γ is a lattice in a Lie

group G, then Γ\G is an admissable finite-volume homogeneous space.

(4.13) Corollary. Every finite volume homogeneous space Γ\G of any Lie group G is

admissable.

Proof. Let Γ\G be a non-admissable finite-volume homogeneous space which is “minimal”

in the following sense:

(1) dimG◦ is minimal; and

(2) dim Γ◦ is maximal, subject to (1).

Claim. The minimality of Γ\G implies:

(1) Γ\G is a presentation; and



17

(2) If N is a connected closed solvable subgroup of G normalized by Γ, with ΓN

closed in G, then N ⊆ Γ.

Proof. (1) If Γ contains a connected normal subgroup N of G, then the minimality

of dimG◦ implies (Γ/N)\(G/N) is admissable. Hence Lemma 4.11 asserts Γ\G is ad-

missable; a contradiction.

(2) If N 6⊆ Γ, then dim(ΓN)◦ > dim Γ◦, so the maximality of dim Γ◦ implies (ΓN)\G is

admissable. Hence there is a connected closed solvable subgroup A1 of G, containing radG

and normalized by ΓN , such that ΓNA1 is closed. Since N normalizes A1, and each of N

and A1 is a solvable subgroup normalized by Γ, the product NA1 is solvable and normalized

by Γ. Setting A = NA1, we easily deduce that Γ\G is admissable; a contradiction.

We now return to the proof of the corollary. Since Γ/Γ◦ is discrete, Auslander’s

theorem (together with Lemma 4.11) asserts Γ\NG(Γ◦) is admissable; there is a connected

closed solvable subgroup N of NG(Γ◦), containing radNG(Γ◦) and normalized by Γ, such

that ΓN is closed. Part 2 of the claim asserts N ⊆ Γ. Therefore radNG(Γ◦) ⊆ Γ. Since

Corollary 4.6 asserts nilG ⊆ NG(Γ◦), and because Γ\G is a presentation (part 1 of the

claim), we conclude nilG = e. Hence radG = e. So Γ\G is a non-admissable finite-volume

homogeneous space of the semisimple group G. This is preposterous! (Let A = e.)

(4.14) Corollary. Let Γ be a lattice in a connected real Lie group G, and assume Γ

projects densely into the maximal compact semisimple factor of G. Then:

(1) Γ ∩ radG is a lattice in radG; and

(2) Γ ∩ nilG is a lattice in nilG.

Proof. (1) Corollary 4.8 implies N = Γ · radG
◦

is normal in G. Since N is solvable

(cf. Corollary 4.13), we conclude N = radG. Therefore Γ projects discretely into G/ radG,

and hence Γ ∩ radG is a lattice in radG [18, Theorem 1.13, p. 23].

(2) Given (1), [18, Theorem 3.3, p. 46] implies Γ ∩ nilG is a lattice in nilG.

(4.15) Definition. Let G be a simply connected Lie group. The Zariski closure (AdG)∗

of AdG in Aut(G) has a Malcev decomposition (AdG)∗ = (L∗ × T ∗)U∗, where U∗ is the

unipotent radical, T ∗ is a torus (reductive in G∗), and L∗ is a Levi subgroup of (AdG)∗.

Let π be the map one gets by composing Ad with the projection of (AdG)∗ onto T ∗,

and set T = Gπ. Because G is simply connected, we can identify AutG with Aut(G)

and hence view T as a group of automorphisms of G. The resulting semi-direct product

G] = T [G] is the big almost algebraic hull of G. Note that G] has the (semidirect product)

decomposition G] = (L × T )[nilG]], where L is a Levi subalgebra, and T is a (reductive)

torus. Hence G] is “almost algebraic.” (This presentation is based on [3, §2]. For a more

complete discussion, see [2].)

(4.16) Remark. If radG admits a lattice, then T = Gπ is closed in T ∗.
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Proof. Since any Levi subgroup of G is contained in the kernel of π, we have Gπ = (radG)π.

Thus we may assume G is a solvable group, for which case we refer to [3, Corollary 2.3,

p. 578].

(4.17) Lemma. Let Γ be a lattice in a connected Lie group G that projects densely into

the maximal compact semisimple factor of G. Then Γ ∩ (LEVI · nilG) is a lattice in

LEVI · nilG for any Levi subgroup LEVI of G. (Since LEVI · nilG is normal in G, this is

equivalent to the assertion that Γ projects to a lattice in G/(LEVI · nilG).)

Proof. Set Z = Z(nilG). Since nil(LEVI · CG(Z)/Z) = (nilG)/Z, the result will follow

by induction on the nilpotence class of nilG if we show Γ ∩ (LEVI · CG(Z)) is a lattice in

LEVI · CG(Z). Equivalently, we will prove LEVI · CG(Z) · Γ is closed in G.

We may assume G is simply connected, so Z, being a simply connected abelian group,

is isomorphic to a Euclidean space Rn. Thus the action of G by conjugation on Z yields

a representation π:G → GLn(R). Since the kernel of π is precisely CG(Z), we need only

show (LEVI · Γ)π is closed in GLn(R).

For any subgroup X of G, we write X∗ for the Zariski closure of Xπ in GLn(R).

From nilG ⊆ CG(Z), it follows that (radG)∗ is abelian, and LEVI∗ centralizes (radG)∗.

Therefore LEVI∗ is the only Levi subgroup of G∗, and [LEVI,LEVI]∗ = [G,G]∗. Since

Corollary 4.8 asserts LEVI∗ ⊆ Γ∗ ⊆ G∗, we have

LEVI∗ = [LEVI,LEVI]∗ ⊆ [Γ,Γ]∗ ⊆ [G,G]∗ = LEVI∗.

We conclude that Γπ ∩ LEVI∗ is Zariski dense in LEVI∗.

There is no loss in assuming the isomorphism Z ∼= Rn to be taken so that Γ ∩ Z
corresponds to Zn ⊆ Rn. As Γ normalizes Γ∩Z, this implies Γπ ⊆ GLn(Z). (In particular,

Γπ is discrete.) So the preceding paragraph implies LEVI∗ contains a Zariski-dense set of Z-

points, which in turn implies LEVI∗ is defined over Q. Because LEVI∗ is semisimple, then a

theorem of Borel and Harish-Chandra [18, Theorem 13.28, p. 214 ] asserts GLn(Z)∩LEVI∗

is a lattice in LEVI∗. It follows that LEVI∗ · GLn(Z) is closed in GLn(R) (cf. proof of

[18, Theorem 1.13, p. 23]). Since LEVIπ is of finite index in LEVI∗ and Γπ ⊆ GLn(Z), we

conclude that LEVIπ · Γπ is closed.

(4.18) Proposition. Suppose Γ is a lattice in a simply connected Lie group G which

projects densely into the maximal compact semisimple factor of G. Let G] = T [G] =

(L× T )[M ] be the big almost algebraic hull of G, and let π:G] → T be the natural homo-

morphism with kernel LM . Then Γπ is closed (and discrete) in T .

Proof. Corollary 4.14 asserts Γ1 = Γ ∩ radG is a lattice in radG, and it follows from

Lemma 4.17 that Γ2 = Γ∩(L·nilG) projects to a lattice in G/ radG. Therefore Γ0 = Γ1 ·Γ2

is a lattice in G. Replacing Γ by a subgroup of finite index (namely Γ0), we may assume

Γ = Γ1 · Γ2. Then Γπ = (Γ1π) · (Γ2π) = Γ1π, since Γ2 ⊂ L · nilG ⊆ LM = kerπ. Now Γ1

is a lattice in the solvable group radG, so [3, Theorem 2.1, p. 576] asserts Γ1π is discrete.
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(4.19) Theorem. Suppose Γ is a lattice in a connected Lie group G. If there is an ergodic

unipotent translation on Γ\G, then radG is a unipotent subgroup of G. Hence G is locally

algebraic.

Proof (cf. [3, Corollary 2.5, p. 578]). We may assume G is simply connected. Let G] =

(L × T )[M ] be the big almost algebraic hull of G, and let π:G] → T be the natural

homomorphism with kernel LM . Replacing the ergodic unipotent translation u by a

conjugate if necessary, we may assume Γ〈u〉 is dense in G. Since u ∈ kerπ, this implies

Γπ is dense in Gπ. But Gπ is connected, and Γπ is discrete (see 4.18), so we must have

Gπ = Γπ = 1. Since Gπ = T , this implies T = 1, which means R is a nilpotent subgroup

of G.

(4.20) Proposition. Let Γ be a lattice in a connected Lie group G. If (radG) · Γ is

closed, and [G,G] · Γ is dense in G, then G = [G,G] · Z(G).

Proof. In the notation of Proposition 4.18, we know Γπ is descrete in T . On the other

hand, since [G,G] ⊆ kerπ, it follows that Γπ is dense in Gπ, which is connected. We

conclude that T = e, and hence radG is nilpotent.

The Lie algebra R of radG is isomorphic to a Euclidean space Rn, and thus the

adjoint representation of G on R yields a representation π:G→ GLn(R). We may assume

G is simply connected, so that radG is a simply connected nilpotent group, and hence

the exponential map is a homeomorphism of R with radG. Since Γ ∩ radG is a lattice

in radG, then the Z-span of Exp−1(Γ ∩ radG) is a lattice in the vector space R (cf. [18,

Theorem 2.12, p. 34]). There is no loss in assuming the isomorphism R ∼= Rn to be taken

so that this lattice is identified with Zn ⊆ Rn. Since Γ normalizes Γ ∩ radG, this implies

Γπ ⊆ GLn(Z).

As radG is nilpotent, we know G is locally algebraic, and hence Gπ is Zariski closed

in GLn(R). Because Γ is a lattice in G and Γπ ⊆ GLn(Z), we conclude that Γπ is an

arithmetic lattice in Gπ. Hence Γπ ∩ [Gπ,Gπ] is a lattice in [Gπ,Gπ], and therefore

([G,G] ·Γ)π is closed in GLn(R). Since [G,G] ·Γ is dense in G, this implies ([G,G] ·Γ)π =

Gπ, so CG(radG) · [G,G] · Γ = G because kerπ = CG(radG). As G is connected, we

must have CG(radG)◦ · [G,G] = G. Lemma 2.13 shows CG(radG) ⊆ Z(G) · [G,G], so we

conclude Z(G) · [G,G] = G as desired.

(4.21) Definition. If a lattice Γ in a semisimple Lie group G projects densely into G/N ,

for every closed noncompact normal subgroup N of G, then Γ is irreducible.

(4.22) Proposition [18, Theorem 5.22 (and 5.26(vii))]. Let Γ be a lattice in a connected

semisimple Lie group G, and suppose Γ projects densely into the maximal compact factor

of G. Then there are closed normal subgroups G1, G2, . . ., Gn of G such that:
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(1) The product homomorphism

G1 × · · · ×Gn → G: (g1, . . . , gn) 7→ g1g2 . . . gn

is surjective and has finite kernel;

(2) Γ ∩Gi = Γi is an irreducible lattice in Gi; and

(3)
∏n

1 Γi is a subgroup of finite index in Γ.

(4.23) Lemma. Any faithful lattice in a connected Lie group has a torsion-free subgroup

of finite index.

Proof. Any lattice Γ in a connected Lie group G is finitely generated [18, Remark 6.18,

pp. 99–100]. Therefore AdGΓ is a finitely generated subgroup of the linear group AdG,

and hence AdGΓ has a torsion-free subgroup of finite index [18, Theorem 6.11, p. 93]. If

Γ is faithful, we have Γ ∼= AdGΓ, so Γ, like AdGΓ, has a torsion-free subgroup of finite

index.

(4.24) Lemma [5, Lemma 2.1, p. 258]. Let Γ be a lattice in a connected Lie group G.

If CPCT is any compact subset of Γ\G, then no small element of G has a fixed point in

CPCT. (More precisely, there is a neighborhood B of e in G such that g−1Γg ∩ B = ∅
whenever Γg ∈ CPCT.)



CHAPTER 5

PRELIMINARIES ON AFFINE MAPS

(5.1) Definitions. Let Γ\G and Λ\H be finite-volume homogeneous spaces of Lie groups

G and H. Suppose g ∈ G, h ∈ H, and ψ: Γ\G → Λ\H is measure preserving. We say ψ

is affine for g (via h) if, for a.e. s ∈ Γ\G, we have sgψ = sψh. If ψ: Γ\G→ Λ\H is affine

for g via h, and Λ\H is faithful, then the element h is uniquely determined by g. In note

of this we often write h = g̃. Set

AffG(ψ) = { g ∈ G | ψ is affine for g }.

We often say ψ is affine for X when X is a subset of AffG(ψ).

(5.2) Lemma. Suppose ψ: Γ\G→ Λ\H is measure preserving, and Λ\H is faithful. Then

AffG(ψ) is an immersed Lie subgroup of G, and the function ∼: AffG(ψ)→ H: g 7→ g̃ is a

continuous homomorphism (where AffG(ψ) is given its Lie group topology).

Proof. It’s instructive to view AffG(ψ) from another perspective: Let F (Γ\G,Λ\H) be the

space of measurable functions Γ\G → Λ\H, two functions being identified if they agree

almost everywhere. Convergence in measure defines a topology on F (Γ\G,Λ\H) which

is metrizable by a complete separable metric, and it is easy to check that G × H acts

continuously on F (Γ\G,Λ\H) via the action (x)[ζ · (g, h)] = xg−1ζh for ζ ∈ F (Γ\G,Λ\H),

g ∈ G, h ∈ H. (The above is excerpted from [25, §3.3, pp. 49–50].) Letting Stab(ψ) be

the stabilizer of ψ ∈ F (Γ\G,Λ\H) under this action of G×H, we see that Stab(ψ) is the

graph of (∼).

Since stabilizers are closed, Stab(ψ) is a closed subgroup of G×H, and hence is a Lie

group. The projection G×H → G restricts to an immersion of Stab(ψ) into G whose range

is the domain of (∼), i.e., whose range is AffG(ψ). Therefore AffG(ψ) is an immersed Lie

subgroup. Lifted to Stab(ψ), the function ∼: Stab(ψ)→ H is simply the restriction of the

projection G×H → H. This is a continuous homomorphism.

(5.3) Definition. Suppose Ω is a g-invariant Borel subset of Γ\G, where g ∈ G. We say

ψ: Γ\G → Λ\H is strictly affine for g (via g̃) on Ω if sgψ = sψg̃ for every s ∈ Ω (not just

a.e.).

(5.4) Remark. The map ψ: Γ\G→ Λ\H can be modified on a null set to become strictly

affine for AffG(ψ) on a conull subset of Γ\G [25, Proposition B.5, p. 198]. More precisely
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there is a conull AffG(ψ)-invariant subset Ω of Γ\G and a measurable ψ0: Γ\G → Λ\H
such that ψ = ψ0 a.e. and ψ0 is strictly affine for each g ∈ AffG(ψ) on Ω. In particular if

AffG(ψ) = G, then ψ0 is an affine map.



CHAPTER 6

PRELIMINARIES IN ERGODIC THEORY

(6.1) Lemma [6, p. 136]. Let g be a translation on Γ\G, where Γ is a lattice in the

connected Lie group G. Then the translation has zero entropy iff all eigenvalues of Adg

have absolute value one.

(6.2) Theorem (“The Mautner Phenomenon” [15, Theorem 1.1, p. 156]). Let Γ be a lat-

tice in a connected Lie group G. For any connected subgroup M of G, let N be the smallest

connected normal subgroup of G such that M projects to an Ad-precompact subgroup of

G/N . Then any M -invariant measurable function on Γ\G is N -invariant.

(6.3) Lemma. Let Γ be a lattice in a connected Lie group G whose radical is nilpotent,

and assume Γ projects densely into the maximal compact semisimple factor of G. Suppose

ψ is a measurable function on Γ\G which is N -invariant, for some normal subgroup N of

G. Then there is a normal subgroup N1 of G containing N , such that ψ is N1-invariant,

and N1Γ is closed in G.

Proof. Let N0 be the identity component of the closure of NΓ. Since N0 is a connected

subgroup of G normalized by Γ, Corollary 4.9 implies N0 is normal in G. Now ψ cor-

responds to a function ψ′ on G which is (essentially) left-invariant under NΓ, so ψ′ is

left-invariant under N0. Because N0 is normal, then ψ′ is also right-invariant under N0,

so ψ is N0-invariant. Set N1 = NN0.

(6.4) Corollary. Suppose Γ is a lattice in a connected Lie group G whose radical is

nilpotent, and assume Γ projects densely into the maximal compact semisimple factor of G.

For V a connected unipotent subgroup of G, let N be the smallest closed normal subgroup of

G containing V and such that NΓ is closed. Then the N -orbits are the ergodic components

of the action of V by translation on Γ\G.

Proof. Since Γ\G/N is countably separated, it suffices to show any V -invariant measurable

function on Γ\G is (essentially) N -invariant. To this end, let f be a V -invariant measurable

function. The Mautner Phenomenon (6.2) implies f is essentially N0-invariant, where N0

is the smallest normal subgroup of G such that V projects to an Ad-precompact subgroup

of G/N0. Since V is unipotent, this implies V projects to a central subgroup of G/N0, and

hence V N0 is normal in G. Since V N0 stabilizes ψ, Lemma 6.3 asserts N stabilizes ψ.
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(6.5) Corollary (“Moore Ergodicity Theorem”, cf. [25, Theorem 2.2.6, p. 19]). Suppose

Γ is an irreducible lattice in a connected semisimple Lie group G. If X is a connected

subgroup of G, then either X is Ad-precompact, or X is ergodic on Γ\G.

(6.6) Corollary (cf. [3, Theorem 6.1, p. 601]). Suppose Γ is a lattice in a connected

Lie group G. If X is a connected subgroup of G which is ergodic on both the maximal

solvmanifold quotient and the maximal semisimple quotient of Γ\G, then X is ergodic on

Γ\G.

(6.7) Lemma. Suppose Λ is a faithful lattice in a connected locally algebraic group H.

If h is an ergodic translation on Λ\H, then CH(h) is essentially free on Λ\H. I.e. there is

a conull CH(h)-invariant subset Ω ⊆ Λ\H such that if sc = s with s ∈ Ω and c ∈ CH(h),

then c = e.

Proof. For each λ ∈ Λ − {e}, set [λ] = {x ∈ H|x−1λx ∈ CH(h) }. Since CH(h) is free off

the union of the countably many sets Λ[λ] ⊆ Λ\H, it suffices to show each [λ] is a null set.

Now [λ] is a countable union of Zariski closed subsets of H (since CH(h)◦ is Zariski closed),

so if non-null, we have [λ] = H. Then every conjugate of λ belongs to CH(h), so CH(h)

contains a closed normal subgroup N of H that intersects Λ. Now CH(N) is a normal

subgroup of H that is ergodic on Λ\H (since h ∈ CH(N)). Therefore ΛCH(N) is dense in

H. Because ΛCH(N) normalizes Λ∩N , this implies Λ∩N is normal in H—contradicting

the assumption that Λ is a faithful lattice.



CHAPTER 7

POLYNOMIAL DIVERGENCE OF ORBITS

(7.1) Notation. Suppose Γ is a lattice in a Lie group G. Choose a left-invariant topological

metric d on G, and project to a metric on Γ\G: for x, y ∈ G we have

d(Γx,Γy) = min
γ∈Γ

d(x, γy).

If T is a compact subgroup of G, we may assume d is T -invariant. Then we have a metric

on G/T :

d(xT, yT ) = min
t∈T

d(x, yt).

(7.2) Notation. If Ga is a real algebraic group, then there is a non-negative polynomial

function Ga → R: g 7→ ‖g‖ such that the ‖ · ‖-balls form a basis for the Hausdorff topology

at e. For example, we could embed Ga in some special linear group SLn(R) and let ‖g‖
be the sum of the squares of the coordinates of g − Id considered as a vector in n2-space.

We now present a similar construction when G is a simply connected locally algebraic

Lie group. Let Ga be a connected real algebraic group locally isomorphic to G (with nilGa

algebraically unipotent), and let π:G→ Ga be a covering map. Abusing notation, we write

‖g‖ for ‖gπ‖ when g ∈ G. Since the ‖ · ‖-balls form a basis in Ga, there is a neighborhood

B of e in G small enough that the family of sets { g ∈ G: ‖g‖ < ε } ∩ B forms a basis for

the topology at e in G.

(7.3) Remark. Suppose u is a unipotent element of a connected locally algebraic group

G. Any unipotent element of the real algebraic group AdG ∼= G/Z(G) lies in a unique one-

parameter unipotent subgroup, so there is a one-parameter unipotent subgroup vr (r ∈
R) of G such that v1 ∈ u · Z(G). Furthermore, if vr is any other such subgroup, then

vr ∈ vr · Z(G) for all r ∈ R. So, for y, c ∈ G and r ∈ R, the expression v−ryvr[vr, c] does

not depend on the choice of the one-parameter subgroup vr. Thus, given x, y ∈ G, even

though u itself may not lie in a one-parameter subgroup, there is no ambiguity when we

write an expression such as d(xur, yur[ur, c]), for r ∈ R.

(7.4) Remark. For convenience, we often write dp(x, y) for ‖x−1y‖. The non-metric dp
is useful to showcase the polynomial divergence of orbits: if ur is a unipotent element of

G, then for any fixed x, y, c ∈ G, dp(xu
r, yur[ur, c]) is a polynomial function of r. Notice

the degree of the polynomial is bounded by a constant which is independent of x, y,
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and c—the bound depends only on the unipotent element u. This is because the matrix

entries of a one-parameter unipotent subgroup of a real algebraic group are polynomial

[25, Proposition 3.4.1, p. 53] and dp(a, b) is a polynomial function of the matrix entries of

a and b.

(7.5) Lemma. Suppose T is a connected compact subgroup of a real algebraic group H.

Then H/T is a quasi-affine variety, so there is a polynomial H/T → R:hT 7→ ‖h‖T such

that the ‖ · ‖T -balls form a basis for the Hausdorff topology at the point eT in H/T .

Proof. Since T is compact, it is an algebraic subgroup of H [25, p. 40]. Thus there is an

R-representation π:H → GL(V ) of H such that T is the stabilizer of a one-dimensional

subspace Rv of V . A connected compact group has no R-characters, so T centralizes Rv.

Therefore T is the centralizer of v in H, and hence the variety H/T is isomorphic to the

orbit of v in V , which is a locally closed subset of V . Put any inner product on V , and let

‖h‖T be the square of the norm of hv − v.

(7.6) Remark. Let DEG be a natural number. The collection of (real) polynomials of

degree at most DEG which satisfy |r · f(r)| ≤ 1 for all r ∈ [0, 1] is a compact set. So

there is a constant M = M(DEG) such that each of these polynomials satisfies |f(r)| ≤M
on [0, 1]. By translation and rescaling, we see that if f is any polynomial of degree at

most DEG which satisfies |r · f(r)| ≤ ε for r ∈ [R,R + δ] (some R ∈ R and ε, δ > 0),

then |f(r)| ≤ Mε/r0 for r ∈ [R,R + δ], where M is a constant depending only on DEG.

In the sequel, arguments like this will be referred to as by compactness. Such results are

important because any one-parameter unipotent flow has polynomial divergence of orbits.

(7.7) Definition. The upper density of a set E of positive reals is

lim sup
A→∞

µ(E ∩ [0, A])

A
.

The lower density is a similar lim inf.

(7.8) Notation. We use the physicist’s notation “
.
= ” for “close to”; i.e., x

.
= y if d(x, y) <

ε for some implicitly assumed ε > 0. A statement P (n) is true for most integers n if

{n ∈ Z | P (n) is true } has lower density > 1/2.

(7.9) Lemma (“Ratner Covering Lemma”). Suppose {E1, E2, . . . } is a collection of sub-

sets of the real line, I is an interval on the line, D is a natural number, and β > 0. Assume

the following conditions are satisfied:

(1) Each Ei has ≤ D connected components.

(2) The union of the sets E1, E2, . . . has relative measure greater than β on I.

(3) The sets (2D/β) · E1, (2D/β) · E2, . . . are pairwise disjoint, where

ρ · E =
⋃
{ [a− ρw, a+ ρw] | [a− w, a+ w] ⊆ E }.
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Then some set (2D/β) · Ei0 covers the whole interval I.

Proof (cf. [19, Lemma 2.1]). Let µ be Lebesgue measure on I (thus µ(E) = µ(E ∩ I) for

any subset E of R). We may assume I is bounded (so µ(I) < ∞). The union of the

Ei has relative measure greater than β on I and the sets (2D/β) · E1, (2D/β) · E2, . . .

are pairwise disjoint, so there is some E = Ei0 with µ((2D/β) · E) < µ(E)/β. Let J

be the largest component of E ∩ I, so µ(J) ≥ µ(E)/D. If (2D/β) · J does not cover I,

then µ((2D/β) · J) ≥ (D/β)µ(J). Hence µ((2D/β) · E) ≥ µ((2D/β) · J) ≥ (D/β)µ(J) ≥
(D/β)µ(E)/D = µ(E)/β. This is a contradiction.



CHAPTER 8

THE MAIN LEMMA: AFFINE FOR THE RELATIVE CENTRALIZER

(8.1) Definition. Given an element x and a subgroup Y of a Lie group G. For δ > 0, we

set

CG(x, Y ; δ) = { c ∈ G | d(e, c) < δ, [xn, c] ∈ Y for all n ∈ Z }.

The descending chain condition on connected Lie subgroups of G implies there is some

δ0 > 0 such that 〈CG(x, Y ; δ)〉◦ = 〈CG(x, Y ; δ0)〉◦ whenever 0 < δ < δ0. We set CG(x, Y ) =

〈CG(x, Y ; δ0)〉◦, and call this the centralizer of x relative to Y in G. This terminology is

motivated by the fact that if Y is normal in G (and connected), then CG(x, Y )/Y is the

identity component of the centralizer of xY in G/Y .

(8.2) Lemma (“Affine for the Relative Centralizer”). Suppose Γ (resp. Λ) is a lattice in

a connected real Lie group G (resp. H) whose radical is nilpotent. Let u be an ergodic

unipotent element of G and assume ψ is affine for u via a unipotent element ũ of H. If

U is any connected unipotent subgroup of G contained in AffG(ψ), then ψ is affine for

CG(u, U).

The remainder of this section constitutes a proof of Lemma 8.2.

(8.3) Assumption. Let us assume Ũ is a unipotent subgroup of H. (Proposition 8.4

will eliminate this hypothesis.)

Notation. Let CPCT be a large compact subset of Λ\H (say µ(CPCT) > .9), and choose

some ε0 > 0 so small that if d(h, λh) < 2ε0, with λ ∈ Λ and Λh ∈ CPCT, then λ = e

(see 4.24). In the notation of §7, choose ε1 > 0 so small that the component of { y ∈
H | ‖y‖ < ε1 } containing e has diameter less than ε0, and choose ε2 > 0 so that the

ball of radius ε2 about e is contained in { y ∈ H | ‖y‖ < ε1 }. The homomorphism

∼:U → Ũ is a polynomial (since U and Ũ are unipotent), and the ũ-flow has polynomial

divergence of orbits (see 7.4), so there is a constant DEG such that, for any x, y ∈ H and

c ∈ CG(u, U ; 1), there is a polynomial f of degree ≤ DEG such that dp(xũ
r, yũr ˜[ur, c]) =

f(r). By compactness (see 7.6) there is some ε3 > 0 such that if x, y ∈ H and c ∈
CG(u, U ; 1) with dp(xũ

r, yũr ˜[ur, c]) ≤ ε3 for all r in some interval E on the real line, then

dp(xũ
r, yũr ˜[ur, c]) < ε1 for r ∈ (8DEG) ·E. If, in addition, d(xũr, yũr ˜[ur, c]) < ε2 for some

r ∈ E, this implies d(xũr, yũr ˜[ur, c]) < ε0 for all r ∈ (8DEG) · E. Choose ε4 so small that
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if d(x, y) < ε4 and c ∈ CG(u, U ; ε4), then dp(xũ
r, yũr ˜[ur, c]) < ε3 for r ∈ [0, 1]. Since

ũ−(R+r)x−1yũR+r ˜[uR+r, c] = ũ−r(ũ−Rx−1yũR ˜[uR, c])ũr ˜[ur, c],

it follows that, for any R ∈ R, if d(xũR, yũR ˜[uR, c]) < ε4 and c ∈ CG(u, U ; ε4), we have

d(xũr, yũr ˜[ur, c]) < ε3 for r ∈ [R,R + 1]. By Lusin’s Theorem [19, Lemma 3.1] there is a

large compact set CONT (say µ(CONT) > .9) on which ψ is uniformly continuous. Then

there is some δ > 0 such that if s, t ∈ CONT and d(s, t) < δ, then d(sψ, tψ) < ε4. There

is no loss in assuming (CONT)ψ ⊆ CPCT.

Fix c ∈ CG(u, U ; min(δ, ε4)); we will prove ψ is affine for c. This suffices because the

collection of all such elements c generates CG(u, U).

Step 1. For any s ∈ Γ\G and n ∈ Z with sun, sunc ∈ CONT, we have sψũn, scψũn ˜[un, c] ∈
CPCT and d(sψũn, scψũn ˜[un, c]) < ε4.

Proof. Because sun
.
= sunc = scun[un, c] (namely c is so small that d(sun, scun[un, c]) < δ)

and ψ is uniformly continuous on CONT it follows that

sψũn = sunψ
.
= scun[un, c]ψ = scψũn ˜[un, c].

The other conclusion follows from (CONT)ψ ⊆ CPCT.

Step 2. For a.e. s ∈ Γ\G there is some cs ∈ H with scψ = sψcs and [ũ, cs] = ˜[u, c].
Proof. Since µ(CONT) > .9, the Pointwise Ergodic Theorem implies that, for almost any

s ∈ Γ\G, both sun and sunc belong to CONT, for most n ∈ Z. Fix any such s. Choose

x, y ∈ H with sψ = Λx and scψ = Λy. For each λ ∈ Λ, set

E′λ = { r ∈ R | dp(xũr, λyũr ˜[ur, c]) < ε3 },

and let Eλ be the union of those components of E′λ which contain an integer n such that

both sun and sunc are in CONT. Let us verify the hypotheses of the Ratner Covering

Lemma (7.9) for this family (with I = R, D = DEG, and β = 1/2). First note that each

Eλ has at most DEG components, since there is a polynomial f of degree ≤ DEG such

that dp(xũ
r, λyũr ˜[ur, c]) < ε3 iff f(r) < ε3. Secondly, Step 1 implies the union of the Eλ

covers most of the real line because dp(Λxũ
r,Λyũr ˜[ur, c]) < ε3 for r ∈ [R,R+ 1] whenever

d(ΛxũR,ΛyũR ˜[uR, c]) < ε4. Finally we show that if (4DEG) ·Eλ1 ∩ (4DEG) ·Eλ2 6= ∅, then

λ1 = λ2. Let Ei (i = 1, 2) be components of Eλi
, and suppose (4DEG) ·E1∩(4DEG) ·E2 6=

∅. We may assume without loss that E1 is at least as long as E2, so E2 ⊆ (8DEG) · E1.

Choose n ∈ E2 ∩ Z with sun, sunc ∈ CONT. Now ε3 is so small that n ∈ (8DEG) · E1

implies d(xũn, λ1yũ
n ˜[un, c]) < ε0. Hence λ1yũ

n ˜[un, c]
.
= xũn

.
= λ2yũ

n ˜[un, c]. Namely
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d(λ1yũ
n ˜[un, c], λ2yũ

n ˜[un, c]) < ε0 + ε4 < 2ε0. But 2ε0 is so small that this implies λ−1
2 λ1 =

e as desired.

We may now apply the Ratner Covering Lemma (7.9) to conclude there is some λ ∈ Λ

with (4DEG) · Eλ = R. Hence d(e, ũ−rx−1λyũr ˜[ur, c]) < ε0 for all r ∈ R, which means

the polynomial R → Ha: r 7→ ũ−rx−1λyũr ˜[ur, c] is bounded and therefore constant. So

[ũr, x−1λy] = ˜[ur, c]. Set cs = x−1λy.

Step 3. ψ is affine for c.

Proof. We have shown that for a.e. s ∈ Γ\G, there is some cs ∈ H with scψ = sψcs and

[ũ, cs] = ˜[u, c]. We wish to prove cs is independent of s. Since [ũ, cs] = ˜[u, c] is independent

of s, we have cs(ct)−1 ∈ CH(ũ) for s, t ∈ Γ\G. Because

suψcsu = sucψ = scψũ ˜[u, c] = sψcsũ ˜[u, c] = sψũcs = suψcs

and CH(ũ) acts essentially freely on Λ\H (see 6.7), we must have csu = cs for a.e. s.

Because u is ergodic on Γ\G, this implies s 7→ cs is essentially constant, as desired.

This completes the proof of Lemma 8.2 modulo the assumption that Ũ is unipotent.

(8.4) Proposition. We may assume Ũ is unipotent.

Proof. After a pair of preliminary reductions, the argument is similar to that in 8.3.

Step 1. It suffices to find some δ > 0 such that ˜[ur, c] is unipotent for all r ∈ R and all

c ∈ CG(u, U ; δ).

Proof. Set U0 = 〈[ur, c] | r ∈ R, c ∈ CG(u, U ; δ)〉. Then CG(u, U0) = CG(u, U), and Ũ0

is a connected unipotent subgroup of H (because Ũ0 is a connected nilpotent subgroup

generated by unipotent elements of H).

Step 2. We may assume H is semisimple with trivial center (and hence H is a real algebraic

group).

Proof. Since radH is unipotent (see 4.19), any connected subgroup of H that projects to a

unipotent subgroup of H/ radH is itself a unipotent subgroup of H. Hence we may replace

H by the semisimple group H/ radH. (Recall that Corollary 4.14 asserts Γ projects to

a lattice in H/ radH.) Similarly (cf. 4.9), we may furthermore replace H by H/Z(H),

a group with trivial center. Any connected semisimple Lie group with trivial center is

(isomorphic to) a real algebraic group [25, Proposition 3.1, p. 35].

Notation. Since Ũ is a connected nilpotent group, its Zariski closure can be written in the

form V × T , where V is unipotent and T is an algebraic torus. Because each element of

Ũ has zero entropy, T is compact (see 6.1). Let T̂ be the universal cover of T (thus T̂ is
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a (unipotent) abelian real algebraic group, and let exp: T̂ → T be the covering homomor-

phism. We may choose ε1 > 0 so small that if f :R → T̂ is any nonconstant polynomial

and h ∈ H, then the upper density of { r ∈ R | d(h, exp[f(r)]) < ε1 } on R is less than

1/(2|Λ : Λ′|), where Λ′ is a torsion-free subgroup of finite index in Λ (4.23).

Let CPCT ⊆ Λ\H be a large compact set (say µ(CPCT) > .9). Since Λ′ is torsion-free

and T is compact, Λ′ acts properly discontinuously on H/T . Indeed we may assume ε1 is

so small that if d(hT, λhT ) < 2ε1, with λ ∈ Λ′ and Λh ∈ CPCT, then λ = e.

There is a constant DEG satisfying: for any y ∈ H and c ∈ CG(u, U ; 1), there is a poly-

nomial f of degree ≤ DEG such that ‖ũ−ryũr ˜[ur, c]‖T = f(r). By compactness (see 7.6)

there is some ε2 > 0 such that if y ∈ H and c ∈ CG(u, U ; 1) with ‖ũ−ryũr ˜[ur, c]‖T ≤ ε2 for

all r ∈ [R,R+ δ], then d(T, ũ−ryũr ˜[ur, c]T ) < ε1 for r ∈ [R,R+ 8|Λ : Λ′|DEG · δ]. Choose

ε3 > 0 (with ε3 < ε1) so that d(e, h) < ε3 implies ‖h‖T < ε2. There is some ε4 > 0 so small

that if d(x, y) < ε4 and c ∈ CG(u, U ; ε4), then d(xũr, yũr ˜[ur, c]) < ε3 for r ∈ [0, 1]. By

Lusin’s Theorem [19, Lemma 3.1] there is a large compact set CONT (say µ(CONT) > .9)

on which ψ is uniformly continuous. Then there is some δ > 0 such that if s, t ∈ CONT

and d(s, t) < δ, then d(sψ, tψ) < ε4. We may assume (CONT)ψ ⊆ CPCT.

Step 3. For c ∈ CG(u, U ; min(δ, 1)), we have ˜[ur, c] ∈ V for all r ∈ R.

Proof (cf. Steps 1 and 2 of 8.3). Fix any s ∈ Γ\G such that, for most integers n, both sun

and sunc are in CONT (this is true for a.e. s ∈ Γ\G). Since the natural map Λ′\H → Λ\H
is a covering map with fibers of cardinality |Λ : Λ′|, there are x and y in H, with sψ = Λx

and scψ = Λy, such that the upper density of

{n ∈ Z | d(Λ′xũn,Λ′yũn ˜[un, c]) < ε3 and Λxũn,Λyũn ˜[un, c] ∈ CPCT }

on Z is greater than 1/(2|Λ : Λ′|). For each λ ∈ Λ′, set

E′λ = { r ∈ R | ‖x−1λyũr ˜[ur, c]‖T < ε2 },

and let Eλ be the union of those components of E′λ that contain some n ∈ Z such that

both sun and sunc are in CONT.

As in Step 2 of 8.3, we verify the hypotheses of the Ratner Covering Lemma (7.9) for

this family (with I = R, D = DEG, and β = 1/(2|Λ : Λ′|)). Note that each Eλ has at most

DEG components, and the union of the Eλ has relative measure greater than 1/(2|Λ : Λ′|)
on the real line. Finally, if r ∈ Eλ1

∩ (8|Λ : Λ′|DEG) ·Eλ2
, with Λxũr,Λyũr ˜[ur, c] ∈ CPCT,

then λ1yũ
r ˜[ur, c]T

.
= xũrT

.
= λ2yũ

r ˜[ur, c]T—namely d(λ1yũ
rT, λ2yũ

rT ) < 2ε1. But ε1 is

so small that this implies λ−1
2 λ1 = e as desired.

We may now apply the Ratner Covering Lemma (7.9) to conclude there is some

λ0 ∈ Λ′ with (4|Λ : Λ′|DEG) · Eλ0
= R. Hence d(T, ũ−rx−1λ0yũ

r ˜[ur, c]T ) < ε1 for
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all r ∈ R. Writing ˜[ur, c] = ˜[ur, c]V · ˜[ur, c]T with ˜[ur, c]V ∈ V and ˜[ur, c]T ∈ T , this

implies the polynomial R→ H: r → ũ−rx−1λ0yũ
r ˜[ur, c]V is bounded and hence constant.

This means the element cs = x−1λ0y of H satisfies ũ−rcsũr ˜[ur, c]V = cs for all r ∈ R.

Furthermore d(csT, T ) < ε2, and sψcs = scψ.

Suppose λ ∈ Λ′ such that there is some r ∈ R with d(xũr, λxcsũr ˜[ur, c]) < ε3 and

Λxũr,Λxcsũr ˜[ur, c] ∈ CPCT. Then xũrT
.
= λxcsũr ˜[ur, c]T = λxũrcsT

.
= λxũrT . (More

precisely d(xũrT, λxũrT ) < 2ε1.) Now ε1 is so small that this implies λ = e. Hence

{ r ∈ R | d(Λ′xũr,Λ′yũr ˜[ur, c]) < ε3 and Λxũr,Λyũr ˜[ur, c] ∈ CPCT }

⊆ { r ∈ R | d(xũr, xcsũr ˜[ur, c]) < ε3 }

= { r ∈ R | d((cs)−1, (cs)−1ũ−rcsũr ˜[ur, c]) < ε3 }

= { r ∈ R | d((cs)−1, ˜[ur, c]T ) < ε3 }.

The first of these is known to have upper density greater than 1/(2|Λ : Λ′|) on R. Since

ε3 < ε1, this implies the map R → T : r 7→ ˜[ur, c]T is constant. Therefore ˜[ur, c]T = e for

all r ∈ R. This completes the proof.



CHAPTER 9

THE RATNER PROPERTY

(9.1) Theorem (“The Ratner Property”). Let u be an unipotent element of a Lie group

G. Given any neighborhood Q of e in CG(u), there is a compact subset ∂Q of Q−{e} such

that: For any ε > 0 and M > 0, there are α = α(u,Q, ε) > 0 and δ = δ(u,Q, ε,M) > 0

such that, for any lattice Γ in G, if s, t ∈ Γ\G with d(s, t) < δ, then either s = tc for some

c ∈ CG(u) with d(e, c) < δ, or there are N > 0 and q ∈ ∂Q such that d(sun, tunq) < ε

whenever N ≤ n ≤ N + max(M,αN).

Essentially this statement of the Ratner property was suggested by Marina Ratner in

a discussion with the author. The simplicity of the proof is obscured by the notation. The

basic idea is as follows: Consider two points s, t ∈ Γ\G that are close together and suppose

their orbits are not parallel (i.e., there is no small c ∈ CG(u) with s = tc). Then the two

points wander apart. The first thing to show is that s and t move apart much faster in the

direction of the CG(u)-orbits than in other directions. Therefore, letting ∂Q be the unit

sphere in CG(u), it follows that s passes near t · ∂Q as the points wander apart. Secondly,

polynomial divergence implies the points disperse slowly. So there is some q ∈ ∂Q such

that s spends a long time near tq. (Where “a long time” is a duration proportional to the

length of time required for s to approach tq.) Pass to the Lie algebra of G to make the

argument precise.

We now proceed to the details.

(9.2) Lemma. Suppose T is a nilpotent endomorphism of a finite dimensional vector

space V , let π:V → kerT be any projection onto the kernel of T , and let π∗ = Id − π be

the complementary projection. Given compact neighborhoods Bρ and Bε of 0 in V . For all

sufficiently large N > 0, if w is any element of V with wExp(rt)π ∈ Bρ for all r ∈ [0, N ],

then wExp(rT )π∗ ∈ Bε for all r ∈ [0, N ].

Proof. Put an inner product on V and assume without loss that Bρ and Bε are balls about

0 in this metric. Thus ‖wExp(rT )π‖ ≤ ρ for r ∈ [0, N ]. Letting n be minimal with

Tn+1 = 0, we have

wExp(rT )π = wrnTn/n! + lower order terms.

By compactness (see 7.6) this implies

‖wTn‖ ≤ C/Nn

33
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where C = C(n, ρ) is independent of w and N . Writing w = v + w′ with v ⊥ kerTn and

w′ ∈ kerTn, we therefore have

‖v‖ ≤ C ′/Nn

where C ′ is independent of w and N .

It follows from the inequalities above that if N is sufficiently large (independent of w),

then

‖vExp(rT )π∗‖ ≤ ε

and

‖w′ Exp(rT )π‖ ≤ ‖wExp(rT )π‖+ ‖vExp(rT )π‖ ≤ ρ+ (C/n! + 1) = ρ′.

By induction on n, the latter implies ‖w′ Exp(rT )π∗‖ ≤ ε for N sufficiently large. Therefore

‖wExp(rT )π∗‖ ≤ ‖vExp(rT )π∗‖+ ‖w′ Exp(rT )π∗‖ ≤ 2ε.

(9.3) Proposition. Let T be a nilpotent endomorphism of a finite dimensional vector

space V , and put any norm on V . Given ρ, ε,M > 0, there are α = α(T, ρ, ε) > 0 and

δ = δ(T, ρ, ε,M) > 0 such that if v 6∈ kerT and ‖v‖ < δ, then there are N > 0 and q ∈ kerT

with ‖q‖ = ρ such that ‖vExp(rT )− q‖ < ε whenever N ≤ r ≤ N + max(M,αN).

Proof. Choose n with Tn = 0. By compactness (see 7.6) there is α = α(n, ρ, ε) > 0

such that if f is a polynomial of degree at most n, with |f(r)| < ρ for r ∈ [0, N ], then

|f(r)− f(N)| < ε for r ∈ [N/(1 + α), N ].

For v ∈ V , set

N = N(v) = inf{ r ∈ [0,∞) | ‖vExp(rT )π‖ = ρ },

with π as in Lemma 9.2. Let δ = δ(T, ρ, ε,M) be so small that N = N(v) is “sufficiently

large” (see Lemma 9.2) and satisfies αN > M , whenever ‖v‖ < δ.

Put q = vExp(NT )π. Then, for r ∈ [N/(1 + α), N ], we have ‖vExp(rT ) − q‖ ≤
‖vExp(rT )− vExp(NT )‖+ ‖vExp(NT )π∗‖ ≤ ε+ ε.

(9.4) Proof of the Ratner Property. Consider coordinates in a neighborhood of e in G

given by the exponential map from the Lie algebra G (so-called “canonical coordinates”).

Apply the proposition with T = adu, where Exp(u) = u, to conclude that there is a

topological metric d̄ in a neighborhood of e in G such that: Given ρ > 0 there is a

compact subset ∂Q of the ball of radius ρ in CG(u) with e 6∈ ∂Q and such that: For any

ε > 0 and M > 0 there are α = α(u, ρ, ε) and δ = δ(u, ρ, ε,M) such that if d̄(e, g) < δ

and g 6∈ CG(u), then there is N > 0 and q ∈ ∂Q such that d̄(u−rgur, q) < ε whenever

r ∈ [N,N + max(M,αN)]. This is a topological statement so it is also true with the

metric d in place of d̄. Projecting to the homogeneous space Γ\G, we deduce the Ratner

property.



CHAPTER 10

PROOF OF THE MAIN THEOREM

We are now prepared to commence the proof of this paper’s main result. The proof

consists of a sequence of results that occupy this entire section. For ease of reference, we

restate the theorem here.

(10.1) Main Theorem. Suppose Γ\G and Λ\H are finite-volume homogeneous spaces

of connected Lie groups G and H. If ψ: Γ\G → Λ\H is a measure preserving Borel map

which is affine for an ergodic unipotent translation on Γ\G, via a unipotent translation on

Λ\H, then ψ is affine for G.

(10.2) Lemma. We may assume Γ and Λ are lattices.

Proof. Passing to factor groups of G and H, we may assume Γ\G and Λ\H are pre-

sentations. Then, because there are ergodic unipotent translations on Γ\G and Λ\H,

Corollary 4.7 asserts Γ and Λ are lattices.

(10.3) Remarks. (1) Theorem 4.1 asserts Γ projects densely into the maximal compact

semisimple factor of G. Hence Γ ∩ radG is a lattice in radG (4.14). (2) Theorem 4.19

asserts radG is a unipotent subgroup of G, and hence G is locally algebraic.

(10.4) Notation. Let u be the ergodic unipotent translation for which ψ is known to

be affine (with ũ unipotent). Let U be the identity component of a maximal unipotent

subgroup of G containing u, and set P = NG(U), a minimal parabolic subgroup of G. Let

LEVI be a Levi subgroup of G.

(10.5) Theorem. ψ is affine for P ◦.

Proof. We set U0 = e and recursively define Ui+1 = CG(u, Ui) ∩ U . By induction on i,

Affine for the Relative Centralizer (8.2) implies ψ is affine for Ui for all i. Because 〈u, U〉 is

nilpotent, we have Ui = U when i is sufficiently large, so ψ is affine for U . Therefore Affine

for the Relative Centralizer (8.2) asserts ψ is affine for NG(U)◦ ⊆ CG(u, U), as desired.

(10.6) Corollary. (U ∩ LEVI)∼ is a unipotent subgroup of H.

Proof. There is some a ∈ P ◦ such that U∩LEVI is contained in the horospherical subgroup

associated to a (cf. 2.21). Then (U ∩ LEVI)∼ is contained in the horospherical subgroup

associated to ã, so (U ∩ LEVI)∼ is unipotent.
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(10.7) Proposition. We may assume every nontrivial connected unipotent subgroup of

LEVI is ergodic.

Proof. Assume the contrary.

Step 1. LEVI is a product LEVI = N1 · N2 of two of its nonergodic connected normal

subgroups.

Proof. We may assume LEVI is ergodic on Γ\G (else the assertion is obvious), and hence

the maximal solvmanifold quotient of Γ\G is trivial. Set G = G/ radG, so that Γ\G
is the maximal semisimple quotient of Γ\G. If V is a nontrivial connected nonergodic

unipotent subgroup of LEVI, then, since Γ\G has no solvmanifold quotient, we know V

must be nonergodic on Γ\G (see 6.6). Since V is not Ad-precompact, we conclude from

the Moore Ergodicity Theorem (6.5) that Γ is a reducible lattice in G. Therefore G can

be decomposed into a product of two nonergodic normal subgroups (cf. (4.22)).

Step 2. We may assume that if V is any connected unipotent nonergodic subgroup of

LEVI ∩ U , then ψ is affine for a nonergodic normal subgroup of G containing V .

Proof. The Mautner Phenomonen (6.4) implies the ergodic components of V are the orbits

of some normal subgroup N of G which contains V . Since Ṽ is unipotent, ψ maps N -

orbits to Ñ -orbits, where Ñ is some normal subgroup of G with closed orbits on Λ\G. By

induction on dimG, we may assume ψ is affine for N via Ñ on each N -orbit. So, for each

N -orbit θ, we have a (local) epimorphism σθ:N → Ñ . Since ψ is affine for P ◦, all the σθ

agree on (P ∩N)◦. Since P ∩N is parabolic in N , we conclude from Proposition 3.1 that

all the σθ are equal. Hence ψ is affine for N as desired.

Step 3. Completion of proof.

Proof. Since ψ is known to be affine for P ◦, it suffices to show ψ is affine for a cocompact

normal subgroup of LEVI. Thus it suffices to show ψ is affine for a cocompact normal

subgroup of each Ni in the decomposition of Step 1. Let V = Ni∩U , a maximal connected

unipotent subgroup of Ni. Since Ni is semisimple, any closed normal subgroup containing

V is cocompact. Thus Step 2 completes the proof.

(10.8) Corollary. We may assume R-rank(G/ radG) > 0 and the maximal solvmanifold

quotient of Γ\G is trivial.

Proof. Since ψ is affine for P ◦, we may assume G has a proper parabolic subgroup, which

means G/ radG is noncompact (i.e., R-rank(G/ radG) > 0). Therefore LEVI has a non-

trivial connected unipotent subgroup, which the Proposition asserts we may assume is

ergodic. Then LEVI is ergodic, and hence Γ\G has no solvmanifold quotient.
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(10.9) Corollary. We may assume that if X is any connected subgroup of G which does

not project to an Ad-precompact subgroup of G/ radG, then X is ergodic on Γ\G.

Proof. The Moore Ergodicity Theorem (6.5) asserts X is ergodic on the maximal semisim-

ple quotient of Γ\G. Since Γ\G has no solvmanifold quotient (10.8), then the Mautner

Phenomenon (6.6) implies X is ergodic on Γ\G.

(10.10) Lemma. We may assume R-rank(G/ radG) = 1.

Proof. Suppose, to the contrary, that R-rank(LEVI) ≥ 2. Thus the root system of LEVI

has (at least) two simple R-roots α and β. Then α− β is not a root (because it is neither

positive nor negative) so any element u0 ∈ U∩LEVI belonging to the root α centralizes any

element v0 of U−∩LEVI belonging to −β (where U− is an opposite unipotent subgroup of

G). Therefore Affine for the Relative Centralizer (8.2) asserts ψ is affine for v0 ∈ CG(u0, e).

Note that ṽ0 is unipotent, because it belongs to the horospherical subgroup associated to

some ã ∈ P̃ ◦. Then Theorem 10.5 (with v0 in the place of u and U− in the place of U)

asserts ψ is affine for NG(U−)◦. Hence AffG(ψ) ⊇ 〈U−, P ◦〉 = G.

(10.11) Lemma. We may assume that if g ∈ AffG(ψ) and g̃ = e, then g = e.

Proof. Let ker be the kernel of the homomorphism ∼: AffG(ψ) → H. We wish to show

that, by passing to a factor group of G, we may assume ker = {e}. Since ψ is (essentially)

ker-invariant, it will suffice to show ker is a normal subgroup such that ker ·Γ is closed in G.

Note that P ◦ normalizes ker, because P ◦ ⊆ AffG(ψ) and the kernel of a homomorphism is

normal. Since ker is precisely the essential stabilizer of ψ, the Mautner phenomenon (6.2)

implies there is a closed normal subgroup N of G contained in ker such that ker projects

to an Ad-precompact subgroup of G/N . Therefore Lemma 2.25 asserts ker is normal in

G. Now Lemma 6.3 implies ker ·Γ is closed in G.

(10.12) Lemma. Let CONT be a large compact set (say µ(CONT) > .9) on which ψ is

continuous, let u be an ergodic unipotent element of AffG(ψ), and let ∂Q be a compact

subset of CG(u)◦ − {e} as specified in the Ratner property (9.1). We may assume there is

some ε > 0 such that if s, t ∈ CONT with sψ = tψ, then d(s, tq) > ε for all q ∈ ∂Q.

Proof (cf. proof of [21, Theorem 3]). Let

GRAPH = { (s, sψ) ∈ Γ\G× Λ\H | s ∈ CONT }.

We may assume no non-identity element of CH(ũ) has a fixed point in (CONT)ψ (see 6.7),

and that q̃ 6= e for all q ∈ ∂Q (see 10.11). Thus q̃ has no fixed point in (CONT)ψ. For

q ∈ ∂Q this implies that if (s, sψ) ∈ GRAPH, then (sq, sψ) 6∈ GRAPH.

The group G acts continuously on Γ\G × Λ\H via (s, t) · g = (sg, t). The preceding

paragraph shows GRAPH and GRAPH · q are disjoint for any q ∈ ∂Q, so GRAPH and
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GRAPH · ∂Q are disjoint compact subsets of Γ\G × Λ\H. Thus there is some distance

between them: for s, t ∈ CONT and q ∈ ∂Q, we have d((s, sψ), (tq, tψ)) > ε. In particular

d(s, tq) > ε whenever s, t ∈ CONT with sψ = tψ.

(10.13) Theorem. We may assume there is a conull subset Ω of Γ\G such that, for each

t ∈ Λ\H, the fiber tψ−1 ∩ Ω is finite (and all these fibers are of the same cardinality).

Proof (cf. [20, Lemma 3.1]). It suffices to find a non-null set on which all fibers are count-

[20, Proposition 1.1]. To do this we will apply the Ratner property (9.1) to exhibit a

non-null set Ω ⊆ Γ\G and some δ > 0 such that if s, t ∈ Ω and sψ = tψ, then d(s, t) > δ.

Let ε > 0 be as specified by Lemma 10.12. By judicious application of the Ratner

property and the Pointwise Ergodic Theorem (see the proof of [20, Lemma 3.1]): there is

δ > 0 and a non-null set Ω ⊆ CONT such that if s, t ∈ Ω with d(s, t) < δ, then either

s = tc for some c ∈ CG(u)◦, or, for some n ∈ Z and some q ∈ ∂Q, we have d(sun, tunq) < ε

and sun, tun ∈ CONT.

We claim that if s, t ∈ Ω with sψ = tψ, then d(s, t) ≤ δ. Suppose not. Now sψ =

tψ, so if s = tc for some c ∈ CG(u)◦, then sψc̃ = tψc̃ = tcψ = sψ—contrary to the

assumption that no non-identity element of CH(ũ) has a fixed point in (CONT)ψ. Hence

the preceding paragraph implies there is some n ∈ Z and q ∈ ∂Q with sun, tun ∈ CONT

and d(sun, tunq) < ε. Since sψ = tψ, we have sunψ = tunψ, and therefore the choice of ε

implies d(sun, tunq) > ε. This is a contradiction.

(10.14) Theorem. For a certain closed subgroup Γ′ of G containing Γ, the translation

by g on Γ′\G is (measure theoretically) isomorphic to the translation by g̃ on Λ\H in such

a way that ψ corresponds (a.e.) to the natural G-map Γ\G→ Γ′\G.

The proof of this theorem consists of showing that the partition of Γ\G into fibers of

ψ is G-invariant (a.e.). More precisely we wish to show that, for each g ∈ G, there is a

conull subset Ω ⊆ Γ\G such that if s, t ∈ Ω with sψ = tψ, then sgψ = tgψ.

Perhaps we should offer an elaboration of the preceding paragraph. The so-called

measure algebra B(Γ\G) of Γ\G is the space of measurable subsets of Γ\G, two sets

being identified if they differ by a null set. The map ψ: Γ\G → Λ\H yields an injective

map ψ∗:B(Λ\H)→ B(Γ\G) whose image ψ∗B(Λ\H) is a closed Boolean sub-σ-algebra of

B(Γ\G). To prove the proposition it suffices to show ψ∗B(Λ\H) is an invariant subspace

of B(Γ\G) (see the remarks surrounding the statement of Theorem 8.1.4 in [25]). Thus

we wish to show ψ∗B(Λ\H) is g-invariant for each g ∈ G. Clearly it suffices to do so for

the elements g of a generating set for G. For any g ∈ G, the subalgebra ψ∗B(Λ\H) is

g-invariant if the partition of Γ\G into fibers of ψ is g-invariant (a.e.). This is because a

subset C ⊆ Γ\G belongs to ψ∗B(Λ\H) iff C is a union of fibers of ψ (modulo a null set).

Thus the remarks in the preceding paragraph are justified.
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Because ψ is affine for P ◦, we know the partition is also invariant under P ◦. We now

proceed to show that the partition of Γ\G is invariant under a one-parameter subgroup

not contained in P ◦. These subgroups generate G (2.23), so the theorem follows.

(10.15) Lemma. There is a one-parameter subgroup V1 of the intersection of LEVI with

a maximal connected unipotent subgroup U− opposite to U such that the partition of Γ\G
into fibers of ψ is invariant under V1 (a.e.).

Proof (cf. [20, Lemma 4.4]). Let U1 be a one-parameter subgroup of U ∩ LEVI and let V1

be any one-parameter unipotent subgroup of LEVI such that 〈U1, V1〉 is locally isomorphic

to SL2(R). For v ∈ V1, we will show there is a conull set Ω ⊆ Γ\G such that if s, t ∈ Ω

and sψ = tψ, then svψ = tvψ.

Since ψ has finite fibers (a.e.) there are pairwise disjoint subsets X1, X2, . . . , Xf

whose union is conull, such that each Xi intersects (almost) every fiber in a single point

(see the remarks following [20, Proposition 1.1]). Let πi: Γ\G → Xi be the projection,

viz. sψ = sπiψ for s ∈ Γ\G. (Here and in the rest of the proof we ruthlessly ignore null

sets—thus many statements are true only if s and t are restricted to some conull subset

of Γ\G.) We wish to show that if s, t ∈ Γ\G with sψ = tψ, then sv = tvπj for some j. It

suffices to do this for every sufficiently small v ∈ V1.

Let U− be the maximal connected unipotent subgroup of G containing V1, let A ⊆
NG(U) ∩ NG(U−) be the identity component of a maximal R-split torus in G, and let

A+ be the sub-semigroup of expanding automorphisms of U ∩ LEVI (so A+ contracts

U− ∩ LEVI; this means that if v ∈ U− ∩ LEVI and a ∈ A+, then a−nvan → e as n→∞).

Step 1. Given δ > 0 and any compact interval N ⊆ U1. If v ∈ V1 is sufficiently small,

then there are an unbounded subset [A+] ⊆ A+ and some πj satisfying: for each a ∈ [A+]

there is some xa ∈ G with sv = tvπjxa and such that d(ua, xaua) < δ for all u ∈ N .

Proof. By polynomial divergence of orbits and the Ratner Covering Lemma (see Step 2 of

the proof of Lemma 8.2), it suffices (after shrinking δ somewhat) to find [A+] and πj such

that, for each a ∈ [A+], the relative measure of {u ∈ N | d(svua, tvπjua) < δ } on N is

at least 1/(2f), where f is a constant independent of δ (namely f is the cardinality of the

fibers of ψ).

For any δ0 > 0, if v ∈ V1 is sufficiently small, then there is a map U1 → U1:u 7→ u

such that d(vua, ua) < δ0 for all u ∈ N and all sufficiently large a ∈ A+. (Namely, let

B be the ball of radius δ0/2 in V1A and choose u ∈ U1 with vu ∈ uB. Note that if v is

small, then the derivative of u 7→ u is very close to 1 for all u ∈ N .) Let CONT be a large

(say µ(CONT) > .9) compact set on which π1, . . . , πf are uniformly continuous. Since

A+ expands U1, the Pointwise Ergodic Theorem implies (for almost all t ∈ Γ\G) there is

an unbounded subset [A+] ⊆ A+ such that for each a ∈ [A+], we have tua, tvua ∈ CONT

for most u ∈ N . For each a and u, there is some i = i(a, u) with sua ∈ Xi. And for each
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a ∈ [A+], there is some j = ja such that the relative measure of

{u ∈ N | tua, tvua ∈ CONT and tvuaπi(ua)−1 ∈ Xj }

(where i = i(a, u)) on N is at least 1/(2f). Replace [A+] by an unbounded subset on

which ja is constant.

Now the following string of approximations establishes the desired conclusion if v is

sufficiently small:

svua
.
= sua (since vua

.
= ua)

= suaπi (where sua ∈ Xi)
= tuaπi (since the partition is invariant under u and a)
.
= tvuaπi (whenever tua, tvua ∈ CONT)
= tvπjua (whenever tvuaπi(ua)−1 ∈ Xj).

Step 2. Given ε > 0. If v ∈ V1 is sufficiently small, then there is some x ∈ CG(A) with

d(e, x) < ε and sv = tvπjx for some j.

Proof. Let N be a bounded neighborhood of e in U1. The Lie algebra G is a 〈U1, V1〉-
module, and thus G splits into a direct sum G− ⊕ G0 ⊕ G+ of negative, zero, and positive

weight spaces as in Lemma 2.10. Let B−,B0,B+ be compact convex neighborhoods of 0

in G−,G0,G+, respectively.

If v ∈ V1 is sufficiently small, then there exist [A+] and xa as in Step 1, corresponding

to the neighborhood Exp(B− + B0 + B+) of e in G: sv = tvπjxa and (ua)−1xaua ∈
Exp(B− + B0 + B+) for all u ∈ N and all a ∈ [A+].

We may assume the neighborhoods are small enough that Exp is one-to-one on B− +

B0 + B+. Thus there is a unique xa ∈ B− + B0 + B+ with Exp(xa) = xa, and

xa.(Adu) ∈ [B− + B0 + B+].(Ada−1) ⊆ G− + B0 + B+.

Therefore xa.(Adu)π ∈ B0 + B+, where π is projection onto G0 + G+. Since CG(u) ⊆
G0 + G+ (see Lemma 2.10(a)), the projection into CG(u) is even smaller. We conclude

from Lemma 9.2 that if N is large enough, then d(e, u−1xau) < ε for u ∈ N .

Letting u = e, in particular we have d(e, xa) < ε for all a ∈ [A+]. Because sv = tvπjxa
and no small element of G has a fixed point near s (see 4.24), this implies xa = x is

independent of a (if ε and v are sufficiently small). Thus x.(Adu) ∈ [B−+B0+B+].(Ada−1)

for all u ∈ N and all a ∈ [A+]. Letting a → ∞, we get x.(Adu) ∈ G− + B0 for all

u ∈ N . Hence x.(Adu) ∈ G− + G0 for all u ∈ U1 (since N is Zariski dense in U1). By

the structure of SL2(R)-modules (see Lemma 2.10(b)), this implies x ∈ G0. Therefore

x = Exp(x) ∈ CG(A)◦.
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Step 3. x = e.

Proof. The Pointwise Ergodic Theorem implies there is a sequence {an} → ∞ in A+

with san, svan, tan, tvan ∈ CONT. Since A+ contracts U−, we have d(sa, sva) → 0 as

a → +∞ in A+. Because ψ is uniformly continuous on CONT, then d(sanψ, svanψ) → 0

and d(tanψ, tvanψ) → 0 as an → +∞. We have svan = tvπjxan, so svanψ = tvanψx̃.

Hence

sanψ
.
= svanψ = tvanψx̃

.
= tanψx̃ = sanψx̃.

More precisely d(sanψ, sanψx̃) → 0 as an → +∞. Since (CONT)ψ is compact, then x̃

has a fixed point on (CONT)ψ. If ε is sufficiently small, this implies x̃ = e (see 4.24).

Therefore x = e (see 10.11).

This completes the proof of Theorem 10.14.

(10.16) Theorem. We may assume ψ is a Borel isomorphism.

Proof. We wish to show ψ: Γ\G → Λ\H is affine for G. By Theorem 10.14 it suffices to

prove the isomorphism Γ′\G→ Λ\H is affine for G. This establishes the desired reduction,

because Γ′ is a lattice in G. (The map Γ\G→ Γ′\G has finite fibers (see 10.13), so Γ has

finite index in Γ′. Thus Γ′, like Γ, is a lattice.)

(10.17) Lemma. There is a local isomorphism ∧:G → H such that p̂ = p̃ for all p ∈
[P ◦, P ◦] (in particular, for p ∈ U ∩ LEVI), and p̂ ∈ p̃ · Z(G) for all p ∈ P ◦.

Proof. We have shown that ψ is affine for P ◦, where P = NG(U) is a parabolic subgroup

of G (see 10.5). Since R-rank(G/ radG) = 1 (see 10.10), P ◦ is a maximal connected

subgroup of G, and hence we may assume AffG(ψ)◦ = P ◦. Similarly, since ψ is invertible

(see 10.16), we may assume AffH(ψ−1)◦ = Q◦, where Q is a parabolic subgroup of H.

Therefore ∼:P ◦ → Q◦ is a (local) isomorphism.

Since Γ\G has no solvmanifold quotient, we know [G,G] · Γ is dense in G. Therefore

Proposition 4.20 asserts G = [G,G] · Z(G). Hence Corollary 3.8 will imply the desired

conclusion if we show ˜radG = radH. Let KG and KH be the connected normal subgroups

of G and H, such that KG/ radG and KH/ radH are the maximal compact factors of

G/ radG and H/ radH, respectively. We will show KG is the unique maximal connected

nonergodic normal subgroup of P ◦. Of course, KH can then be similarly characterized

in Q◦, from which it follows that K̃G = KH . Since radKG = radG and radKH = radH,

this implies ˜radG = radH, as desired.

All that remains is to prove KG is the unique maximal connected nonergodic normal

subgroup of P ◦. So let K be some other such. Since K is nonergodic, it projects to an Ad-

precompact subgroup of G/ radG (10.9). Therefore K ·KG projects to an Ad-precompact

subgroup of G/ radG, and hence K ·KG is nonergodic. Then the maximality of K implies
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KG ⊆ K. Since K is normalized by P ◦ and projects to an Ad-precompact subgroup

of G/ radG, Lemma 2.25 asserts K is normal in G. Because KG ⊆ K and K/ radG is

Ad-precompact, this implies K = KG as desired.

(10.18) Theorem. There is a one-parameter subgroup V1 of the intersection of LEVI

with a maximal connected unipotent subgroup U− opposite to U such that ψ is affine for

V1.

Proof (cf. [19, Lemma 3.4]). The proof is very similar to that of Lemma 10.15 so we give

only a sketch of the argument. Let U1 be a one-parameter subgroup of U ∩LEVI and let V1

be any one-parameter unipotent subgroup of LEVI such that 〈U1, V1〉 is locally isomorphic

to SL2(R). Let U− be the maximal connected unipotent subgroup of G containing V1, let

A ⊆ NG(U) ∩ NG(U−) be the identity component of a maximal R-split torus in LEVI,

and let A+ be the sub-semigroup of expanding automorphisms of U ∈ LEVI. For every

sufficiently small v ∈ V1, we wish to show svψ = sψv̂ for a.e. s ∈ Γ\G.

Step 1. Given δ > 0 and any compact interval N ⊆ U1. If v ∈ V1 is sufficiently small, then

(for a.e. s ∈ Γ\G) there is an unbounded subset [A+] ⊆ A+ satisfying: for each a ∈ [A+],

there is some xa ∈ H with svψ = sψv̂xa such that d(ũã, xaũã) < δ for all u ∈ N .

Sketch of Proof. Let CONT be a large compact set (say µ(CONT) > .9) on which ψ is

continuous. There is a map U1 → U1:u 7→ u such that vua
.
= ua for all u ∈ N and all

sufficiently large a ∈ A+. Therefore v̂ũã
.
= ũã for all u ∈ N . (We have ũ = û, ũ = û, and

ã ∈ â · Z(G), so ã−1ũ
−1
v̂ũã = â−1û

−1
v̂ûâ = (a−1u−1vua)∧

.
= e.)

Thus

svψũã = svuaψ
.
= suaψ = sψũã

.
= sψv̂ũã

whenever svua, sua ∈ CONT. By polynomial divergence of orbits and the Ratner Covering

Lemma, this is sufficient to establish the claim.

Step 2 [see Step 2 of Lemma 10.15]. Given ε > 0. If v ∈ V1 is sufficiently small, then for

a.e. s ∈ Γ\G, we have svψ = sψv̂cs for some cs ∈ CH(Ã) with d(e, cs) < ε.

Step 3. cs = e.

Sketch of Proof. Since d(sa, sva)→ 0 as a→∞ in A+, we have

saψ
.
= svaψ = sψv̂csã = sψv̂ãcs

.
= sψãcs = saψcs

whenever sa, sva ∈ CONT. Therefore cs = e.

This completes the proof of Theorem 10.18.

We now know ψ is affine for P ◦ (see 10.15) and for a one-parameter subgroup V1 not

contained in P ◦ (see 10.18). Since 〈P ◦, V1〉 = G (see 2.23), we conclude that ψ is affine

for G. This completes the proof of the Main Theorem (1.3 or 10.1).



CHAPTER 11

APPLICATIONS TO ACTIONS OF SEMISIMPLE GROUPS

(11.1) Theorem. Suppose G,H1, H2 are connected Lie groups, and let Λi\Hi be a faith-

ful finite-volume homogeneous space of Hi. Embed G in H1 and H2. Assume G is semisim-

ple with no compact factors, and acts ergodically on Λ1\H1. Then any measure theoretic

isomorphism from the G-action on Λ1\H1 to the G-action on Λ2\H2 is an affine map

(a.e.).

Proof. Let πi be the embedding of G in Hi and let ψ: Λ1\H1 → Λ2\H2 be a measure

preserving Borel map which is affine for Gπ1 via Gπ2. The Moore Ergodicity Theorem

(6.5) implies there is some unipotent u ∈ G which acts ergodically on Λ1\H1 and Λ2\H2.

Because uπ1 and uπ2 are unipotent elements of H1 and H2 [25, Proposition 3.4.2, p. 54],

the Main Theorem asserts ψ is affine for H1.

(11.2) Corollary. Suppose G,Hi,Λi are as in the preceding corollary, and let Γ be a

lattice in G. Then any measure theoretic isomorphism of the Γ-actions on Λ1\H1 and

Λ2\H2 is affine (a.e.).

Proof. Let πi be the embedding of G in Hi, and let ψ: Λ1\H1 → Λ2\H2 be a measure

preserving Borel map that is affine for Γπ1. A straightforward check shows that the map

τ : Γ\G× Λ1\H1 → Γ\G× Λ2\H2: (Γg, s)→ (Γg, s(g−1π1)ψ · (gπ2))

is well-defined and that τ is affine for the image of the diagonal embedding of G in G×H1.

Apply the Main Theorem to conclude that τ is affine for G×H1. Then it is more-or-less

obvious (Fubini!) that ψ is affine for H1.

(11.3) Theorem. Let G and H be connected Lie groups, and Λ be a lattice in H. Assume

G is semisimple, and each of its simple factors has real rank at least two. Suppose G

acts measurably on Λ\H in an arbitrary way that preserves the finite measure. If some

unipotent element of G acts by an ergodic translation of Λ\H, then all elements of G act

by translations (a.e.).

Idea of Proof. Suppose u is a unipotent element of G that acts by an ergodic translation Tu
of Λ\H. (In particular, radH is nilpotent.) It will suffice to show that every c ∈ CG(u)◦

acts by a translation, because we can then use this “Affine for the Centralizer” property

43
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repeatedly to conclude that every element of g acts by a translation (see the proof of [23,

Theorem 4.1]). Now any c ∈ CG(u) acts by a transformation ψc of Λ\H that commutes

with Tu. Since Tu has zero entropy (unipotent elements of G must act with entropy 0 or

∞, and no translation has infinite entropy) and H is semisimple, one can prove a version of

the Main Theorem which asserts ψc is an affine map (a.e.) [23, Main Theorem 1.1]. Thus

c → ψc is a (continuous) homomorphism from CG(u) into the group Aff(Λ\H) of affine

transformations of Λ\H. The identity component of Aff(Λ\H) consists of translations

(because the automorphisms of H that stabilize Λ form a discrete subgroup of AutH), so

each c ∈ CG(u)◦ acts by a translation.

(11.4) Corollary. Let Γ (resp. Λ) be a lattice in a connected semisimple Lie group G

(resp. H) with trivial center and no compact factors. Assume the R-rank of every simple

factor of G is at least 2. Suppose Γ (resp. Λ) admits an injective homomorphism, with

dense range, into a connected compact semisimple Lie group K (resp. L), and thus Γ (resp.

Λ) acts ergodically (and essentially freely) by translations on any faithful homogeneous

space K/A (resp. L/B) of K (resp. L). If the Γ-action on K/A is orbit equivalent to

the Λ-action on L/B, then Γ ∼= Λ and, identifying Γ with Λ under this isomorphism, the

Γ-actions on K/A and L/B are isomorphic.

Sketch of Proof. Consider the action of G (resp. H) on the double coset space ∆(Γ)\K ×
G/A (resp. ∆(Λ)\L×H/B), where ∆(Γ) (resp. ∆(Λ)) is the diagonal embedding of Γ in

K ×G (resp. Λ in L×H). (These are the “induced” actions of G and H [25, Def. 4.2.21,

p. 75].) Because the Γ-action on K/A is orbit-equivalent to the Λ-action on L/B, one can

show the above actions of G and H on these double coset spaces are orbit-equivalent and

essentially free (cf. proof of [25, Corollary 5.2.2, p. 96]). Then the Zimmer Super-rigidity

Theorem [25, Theorem 5.2.1, p. 95] asserts G ∼= H and, after identifying G with H under

this isomorphism, the G−actions are isomorphic. Thus there is a G-equivariant Borel

isomorphism

ϕ: ∆(Γ)\K ×G/A→ ∆(Λ)\L×G/B.

In addition, there are G-equivariant projections:

π1: ∆(Γ)\K ×G→ ∆(Γ)\K ×G/A,
π2: ∆(Λ)\L×G→ ∆(Λ)\L×G/B,
σ1: ∆(Γ)\K ×G/A→ Γ\G,
σ2: ∆(Λ)\L×G/B → Λ\G.

The Main Theorem implies that the composition

π1ϕσ2: ∆(Γ)\K ×G→ Λ\G
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is affine (a.e.). The kernel of the homomorphism associated to the affine map π1ϕσ2 must

be K, which is also the kernel associated to

π1σ1: ∆(Γ)\K ×G→ Γ\G.

So ϕ induces a G-isomorphism ϕ̄: Γ\G→ Λ\G. Thus Γ ∼= Λ. The fiber of σ1 is the Γ-action

on K/A and (identifying Γ with Λ) the fiber of σ2 is the Γ-action on L/B. Thus these

Γ-actions are isomorphic.
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