Flows that are sums of hamiltonian cycles	group, we determine precisely which hows on A can be
in abelian Cayley graphs	the degree of X is at least 5, and X has an even number
	of vertices, then it is precisely the even flows, that is, the
	flows f, such that $\sum_{\alpha \in E(X)} f(\alpha)$ is divisible by 2. On the
	other hand, there are infinitely many examples of degree 4
Joy Morris	in which not all even flows can be written as a sum of
University of Lethbridge	hamiltonian cycles. Analogous results were already known 10 years ago, from work of Brian Alsnach, Stephen Locke
morris@cs.uleth.ca	and Dave Witte, for the case where X is cubic, or has an
morribeob.aroun.oa	odd number of vertices.
David Petrie Moulton	
Center for Communications Research	Beferences
moulton@idaccr.org	Telefences
0	B. Alspach, S. C. Locke, and D. Witte:
Dave Witte [*]	Discrete Math 82 (1990) 113–126
Oklahoma State University	
dritte@meth_alatete_adu	S. C. Locke and D. Witte:
dwittewmath.okstate.edu	r lows in circulant graphs of odd order are sums of Hamilton
$\texttt{http://www.math.okstate.edu/}{\sim}\texttt{dwitte}$	Discrete Math. 78 (1989) 105–114.

Circulant graph. Circ (12; {3, 4}): • $V(X) = \mathbb{Z}_{12}$ • edge $x - x \pm s$ for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 1 - 2 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 3 + 5 for $s \in \{3, 4\}$. • 10 - 3 + 5 for s = 1 f

Recall. Any flow in any graph is a sum of cycles. Thm (Alspach, Locke, Witte, 1990). Every flow in any abelian Cayley graph X = sum of hamiltonian cycles $(unless X \cong C_{odd} \Box K_2)$ (mod 2).Thm (Locke, Witte, 1989). Every flow in any abelian Cayley graph X = sum of hamiltonian cyclesif X has odd order $(unless X \cong K_3 \Box K_3).$

Abstract

If X is any connected Cayley graph on any finite abelian

Locke-Witte also settled the cubic graphs.

Remains: graphs of even order, with degree ≥ 4 . X has even order \Rightarrow every ham cyc is **even** flow, i.e., $\sum_{e \in E(X)} f(e)$ is even.

So sum of ham cycs is always an even flow.

