Automorphisms of direct products of some circulant graphs

Dave Morris
University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Abstract. The direct product of two graphs X and Y is denoted $X \times Y$. This is a natural construction, so any isomorphism from X to X^{\prime} can be combined with any isomorphism from Y to Y^{\prime} to obtain an isomorphism from $X \times Y$ to $X^{\prime} \times Y^{\prime}$. Therefore, the automorphism group Aut $(X \times Y)$ contains a copy of (Aut $X) \times($ Aut $Y)$. It is not known when this inclusion is an equality, even for the special case where $Y=K_{2}$ is a connected graph with only 2 vertices.

Recent work of B. Fernandez and A. Hujdurović solves this problem when X is a "circulant" graph with an odd number of vertices (and $Y=K_{2}$). We will present a short, elementary proof of this theorem.

Graph products

Given two graphs X and Y, construct a new graph $X * Y$.
Most important: Cartesian \square, strong \boxtimes, direct \times. (wreath ८)

- commutative: $X * Y \cong Y * X$ (not wreath)
- associative: $(X * Y) * Z \cong X *(Y * Z)$

Definition (Cartesian product $X \square Y$)

Horizontal copies of

$$
X=
$$

Vertical copies of

$$
Y=K_{2}=\emptyset
$$

Cartesian product $X \square Y$:

 horizontal copies of X, vertical copies of $Y=K_{2}$Has many \square rectangles, and each rectangle has two diagonals区

Definition (strong product $X \mathbb{\otimes} Y$)

 $X \square Y+$ diagonals of all \square rectangles.
$X \boxtimes Y=X \square Y+$ diagonals of all \square rectangles

Definition (direct product $X \times Y$)

only has the diagonals

$$
\left(x_{1}, y_{1}\right) \stackrel{X \times Y}{\underline{(}}\left(x_{2}, y_{2}\right) \quad \Leftrightarrow \quad x_{1} \xrightarrow[X]{x} x_{2} \text { and } y_{1} \xrightarrow[Y]{y_{2}} y_{2}
$$

Note. $X \times K_{2}$ is bipartite.

Canonical bipartite double cover of X.

no edges

Exercise

Choose a graph product $(\square, \boxtimes, \times)$ and call it $*$. Show that every (finite) graph X has a prime decomposition for $*$:

- $X \cong X_{1} * X_{2} * \cdots * X_{n}$.
- No X_{i} can be written as $Y_{1} * Y_{2}$ (with Y_{1}, Y_{2} smaller than X_{i}).

Theorem (Sabidussi-Vizing 1960/1963, Dörfler-Imrich 1970)

Assume X connected. (There is a path of edges from any vertex to any other vertex.) Then the prime decomposition is unique for \square and \boxtimes.
(up to permutation of the factors and isomorphism)
Fact. Prime decomposition is not unique for $\times \Delta \Delta \times \underset{\sim}{\Delta} \cong \Delta \times I$
Rem. Prime decomp is not unique for \square if graphs not connected:
$\left(1+x+x^{2}\right)\left(1+x^{3}\right)=\left(1+x^{2}+x^{4}\right)(1+x)$ in $\mathbb{Z}^{+}[x]$
is a non-unique prime factorization.
Let $x=K_{2}$ (a graph). (+ is disjoint union and $x^{n}=x \square x \square \cdots \square x$)
$\square, \boxtimes, \times$ are natural graph-theoretic constructions:

$$
X \stackrel{\alpha}{\cong} X^{\prime}, Y \stackrel{\beta}{\cong} Y^{\prime} \Rightarrow X * Y \stackrel{\alpha \propto \beta}{\cong} X^{\prime} * Y^{\prime} .
$$

So $\operatorname{Aut} X \times \operatorname{Aut} Y \subseteq \operatorname{Aut}(X * Y)$.

Exercise

Aut $X \times$ Aut $Y=\operatorname{Aut}(X * Y) \quad \Rightarrow \quad X$ relatively prime to Y for $*$.
Theorem (Sabidussi-Vizing 1960/1963)
Converse is true for $\square . \quad$ (if X and Y are connected)

Also for \boxtimes, but need an additional technical condition.

Bad news

Converse is not true for \times : we do not understand $\operatorname{Aut}(X \times Y)$, even if $Y=K_{2}=\bullet \bullet$.

Defn. X is stable if $\operatorname{Aut}\left(X \times K_{2}\right)=$ Aut $X \times \operatorname{Aut} K_{2}$.

Exercise (an obvious cause of instability)

Aut $\left(X \times K_{2}\right) \neq$ Aut $X \times$ Aut K_{2} if X has "twin" vertices. even if connected
Hint: Assume neighbours of $a=$ neighbours of b. ("twins")
Then $(a, 1)$ and $(b, 1)$ are twins in $X \times K_{2}$.
$(a, 1) \quad(b, 1)$
There is an automorphism that interchanges $(a, 1)$ and $(b, 1)$,
but fixes all other vertices.
Converse is not true. (Lots of counterexamples that are connected.)
Theorem (Fernandez-Hujdurović, 2020+)
Converse is true if X is "circulant" graph with odd number of vertices.
Generalization (Morris, 2020+)
X can be a "Cayley graph" on an abelian group of odd order. (Defn. Circulant graph = Cayley graph on a cyclic group.)

Remark (Hujdurović-Mitrović, 2020+)

Cannot delete "abelian."
(Computer found counterexample with 21 vertices.)

Thm. If X is a Cayley graph on an abelian group of odd order, then $\operatorname{Aut}\left(X \times K_{2}\right)=$ Aut $X \times \operatorname{Aut} K_{2} . \quad$ (Assume X is connected and twin-free.)

For any abelian group G, and $S \subseteq G \backslash\{0\}$: ヨ Cayley graph Cay $(G ; S)$.

Example

$\operatorname{Cay}\left(\mathbb{Z}_{12} ;\{3,4\}\right)$
(\mathbb{Z}_{12} cyclic: this is a circulant graph.)
vertices: elements of \mathbb{Z}_{12}
edges: $v-v \pm 3 \& v-v \pm 4$

Example

$\operatorname{Cay}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{2} ;\{(1,0),(0,1)\}\right)$.
vertices: elements of $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ edges: $v-v \pm(1,0) \& v-v \pm(0,1)$

Theorem (Morris 2020+)

$X=\operatorname{Cay}(G ; S)$ with G abelian of odd order (connected, twin-free) $\Rightarrow \quad \operatorname{Aut}\left(X \times K_{2}\right)=\operatorname{Aut} X \times \operatorname{Aut} K_{2}$.

Lemma (will prove later)

$X=\operatorname{Cay}(G ; S)$ with G abelian. Assume

$$
\forall s_{1}, s_{2} \in \pm S: \quad s_{1} \neq s_{2} \Longrightarrow 2 s_{1} \neq 2 s_{2}
$$

Then $\operatorname{Aut} \operatorname{Cay}(G ; S) \subseteq \operatorname{Aut} \operatorname{Cay}(G ; 2 S) \quad$ where $2 S=\{2 s \mid s \in S\}$.
Proof of Theorem. $X \times K_{2}=\operatorname{Cay}\left(G \times \mathbb{Z}_{2} ; S \times\{1\}\right)$. (can take as definition)

$$
2\left(s_{1}, 1\right)=2\left(s_{2}, 1\right) \Rightarrow\left(2 s_{1}, 0\right)=\left(2 s_{2}, 0\right) \Rightarrow 2 s_{1}=2 s_{2} \Rightarrow s_{1}=s_{2} .
$$

Aut $\operatorname{Cay}\left(G \times \mathbb{Z}_{2} ; S \times\{1\}\right)$

```
\subseteqAut Cay (G\times\mp@subsup{\mathbb{Z}}{2}{};2(S\times{1}))
= Aut Cay (G\times 䟡; 2S }\times{0}
\subseteq \mp@code { A u t C a y ~ ( G \times ~ 跅 ; ~ 2 }
= Aut Cay (G\times \mathbb{Z}}2;S\times{0}) (choose 2 2 \equiv1(mod |G|)
```

So restriction to bottom layer is in Aut $X: \alpha(x, 0)=(\varphi(x), 0)$. Since there are no twins: $\alpha(x, 1)=(\varphi(x), 1) . \quad$ (Exercise)

Lemma

$X=\operatorname{Cay}(G ; S)$ with G abelian. Assume

$$
\forall s_{1}, s_{2} \in \pm S: \quad s_{1} \neq s_{2} \Longrightarrow 2 s_{1} \neq 2 s_{2}
$$

Then $\operatorname{Aut} \operatorname{Cay}(G ; S) \subseteq \operatorname{Aut} \operatorname{Cay}(G ; 2 S) \quad$ where $2 S=\{2 s \mid s \in S\}$.

Proof. Let $\#_{2}(x, y)=\#$ paths of length 2 from x to y.
Edge: $x-x+s$ (with $s \in \pm S$).
Path of length 2: $x-x+s_{1}-x+s_{1}+s_{2}$ (with $s_{1}, s_{2} \in \pm S$).
\{paths of length 2 from x to $y\} \leftrightarrow\left\{\left(s_{1}, s_{2}\right) \mid x+s_{1}+s_{2}=y\right\}$.
These come in pairs $\left(s_{1}, s_{2}\right)$ and $\left(s_{2}, s_{1}\right)$ unless $s_{1}=s_{2}: y=x+2 s$.
Note: s is unique (if it exists) because $s_{1} \neq s_{2} \Longrightarrow 2 s_{1} \neq 2 s_{2}$
So $\#_{2}(x, y)$ is odd $\Leftrightarrow x \underline{2 S} y$.
Any automorphism of $\operatorname{Cay}(G ; S)$ must preserve $\#_{2}$ and must therefore preserve the edges in $\operatorname{Cay}(G ; 2 S)$.

Remark

Can replace 2 with any $k \in \mathbb{Z}^{+}$, but proof is a bit more complicated.

Bad news

We do not understand $\operatorname{Aut}(X \times Y)$, even if $Y=K_{2}=\bullet$.

Good news

The problem only arises for graphs that are bipartite.

Theorem (Dörfler 1974)
$\operatorname{Aut}(X \times Y)=$ Aut $X \times$ Aut Y if X and Y are connected, twin-free, and not bipartite and X is \times-coprime to Y.

Exercise

Assume X and Y are bipartite
(and have more than one vertex).
(1) Show $X \times Y$ is not connected.
(2) Show Aut $(X \times Y) \neq \operatorname{Aut} X \times \operatorname{Aut} Y$ if Aut X and Aut Y are nontrivial.

- both X and Y not bipartite: good
- both X and Y bipartite: bad

Open case: X is not bipartite and Y is bipartite.

The simplest nontrivial bipartite graph is K_{2}.
That is one reason why it is important to study $\operatorname{Aut}\left(X \times K_{2}\right)$. (Another reason: $X \times K_{2}$ is the canonical double cover.) But it is not just a special case - it is the main case:

Proposition (classical?)

Assume $\operatorname{Aut}\left(X \times K_{2}\right)=$ Aut $X \times$ Aut K_{2}. (and X is not bipartite) Then $\operatorname{Aut}(X \times Y)=\operatorname{Aut} X \times \operatorname{Aut} Y$
if X is coprime to Y in an appropriate sense.

Eg., If X and Y are abelian Cayley graphs, then suffices to assume

$$
\operatorname{gcd}(|V(X)|,|V(Y)|)=1
$$

References

Products of graphs

R.Hammack, W.Imrich, and S. Klavžar:

Handbook of Product Graphs, 2nd ed.
CRC Press, Boca Raton, FL, 2011.
MR 2817074, https://www.routledge.com/9781138199088
Wikipedia: Bipartite double cover. https://en.wikipedia.org/wiki/Bipartite_double_cover

$\operatorname{Aut}\left(X \times K_{2}\right)$ when X is a circulant graph

S. Wilson,

Unexpected symmetries in unstable graphs.
J. Combin. Theory Ser. B 98 (2008), no. 2, 359-383.

MR 2389604, doi:10.1016/j.jctb.2007.08.001
Y.-L. Qin, B. Xia, and S. Zhou:

Stability of circulant graphs,
J. Combin. Theory Ser. B 136 (2019) 154-169.

MR 3926283, doi:10.1016/j.jctb.2018.10.004
B. Fernandez and A.Hujdurović:

Canonical double covers of circulants
(preprint, 2020). https://arxiv.org/abs/2006.12826
D. W. Morris,

Stability of Cayley graphs on abelian groups of odd order (preprint, 2020). https://arxiv.org/abs/2010.05285

