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Abstract. This minicourse will present a very brief introduction to Bruhat-Tits
buildings, and describe several applications in group theory that are of geometric
or topological interest. The simplest buildings are trees, and can be used to prove
Ihara’s Theorem that every torsion-free discrete subgroup of SL2�Qp� is free. In
general, these buildings are metric spaces of non-positive curvature that provide
p-adic analogues of Riemannian symmetric spaces.

Lecture 1. Naive applications of Bruhat-Tits buildings

Let � be a countably infinite group (with the discrete topology). By definition,
the cohomology of � is determined by the topology of any K�� ;1� space:

H��� ;M� � H�
�
K�� ;1�;M

�
� H�

�
X=� ;M

�
;

where X is any contractible space on which � acts properly discontinuously
(assuming, for simplicity, that � is torsion free1). Therefore, to study this
cohomology (and for other purposes), it is very helpful to have a nice space that
can be used as X.

When � is linear (i.e., isomorphic to a subgroup of SLn�C�, for some n), we will
see that such a space can often be constructed from certain simplicial complexes
known as “Bruhat-Tits buildings.”2 For example, the following theorem is an easy
consequence of basic facts about these objects.

Theorem (Serre, 1971 [16, Thm. 5]). Every finitely generated, torsion-free
subgroup � of SLn�Q� has finite cohomological dimension. That is, there is some k0,
such that Hk�� ;M� � 0 for all k > k0 and every � -module M .

It is necessary to assume that � has no torsion in Serre’s Theorem, because
every group with a nontrivial element of finite order has infinite cohomological
dimension [5, Cor. 8.2.5, p. 187]. On the other hand, a well-known theorem of

1Since the action is properly discontinuous, the stabilizer of every point is finite. Since � is
torsion free, this implies that the stabilizers are trivial. I.e., the action is free. So � � �1�X=��
and, since X is contractible, X=� is a K�� ;1�.

2Warning. Bruhat-Tits buildings (also known as “Euclidean” buildings, or “affine” buildings) are
not the same as Tits buildings (also known as “spherical buildings”). However, they are related by
the fact that the link of a vertex in a Bruhat-Tits building is a Tits building. (Also, a Bruhat-Tits
building can be compactified by adding a sphere at1, and this boundary sphere has the structure
of a Tits building.) These lectures will not make any attempt to describe the theory or applications
of any type of building other than Bruhat-Tits buildings.
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Selberg tells us that every finitely generated subgroup of SLn�C� has a torsion-
free subgroup of finite index (see [14, Thm. 6.11], for example). Therefore, we can
restate the theorem as follows:

Theorem (Serre). Every finitely generated subgroup � of SLn�Q� has finite virtual
cohomological dimension. That is, there is some k0, and some finite-index
subgroup � 0 of � , such that Hk�� 0;M� � 0 for all k > k0 and every � 0-module M .

If we make the stronger assumption that the matrix entries are integers, not
just rational, then there is no need for buildings in the proof, because it suffices
to use only a symmetric space. Namely, let

�1 � SLn�Z�; G1 � SLn�R�; K1 � SO�n�;

so �1 is a discrete subgroup of the Lie group G1, and K1 is a (maximal) compact
subgroup of G1. It is therefore obvious that �1 acts properly discontinuously
on the “symmetric space” X1 � G1=K1. As a consequence of the “Iwasawa
decomposition” G1 � K1A1N1, it is well known that X1 is contractible. Since
X1 is a manifold (hence, finite-dimensional), we conclude that every torsion-free
subgroup of �1 has finite cohomological dimension. More precisely, we may take

k0 � dimX1 � dimG1 � dimK1 � �n2 � 1�� n�n� 1�
2

� n�n� 1�
2

� 1:

Bruhat-Tits buildings are analogues of symmetric spaces that are constructed
by using p-adic numbers.3

Notation. Let
� p be a prime number,
� Qp be the field of p-adic numbers, and
� Gp � SLn�Qp�.

(More generally, Gp can be any semisimple algebraic group over Qp.)

Recall.
� p-adic norm on Q: ka=bkp � 0 if a is divisible by a large power of p (and
p ö b).

� Qp � completion of Q under this norm = flimits of Cauchy sequencesg

�
(X1

i�v aip
i

����� v 2 Z;
ai 2 f0;1;2; : : : ; p � 1g

)
. (totally disconnected)

�
P1

i�v aipi

p � p�v if av � 0,

� kxykp � kxkp kykp,

3We consider only Qp for simplicity, but, for those with the appropriate background, the theory
generalizes in a straightforward way when Qp is replaced by any finite extension Qv of Qp, such
as Qv � Qp

�p
3
�

(if 3 does not have a square root in Qp). In fact, the local field Qv can have finite
characteristic.
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� kx �ykp �maxfkxkp;kykpg (“ultrametric inequality”)

� Q�
p � fpkg � fx j kxkp � 1 g � Z� compact

Note that

Gp � fdiagonal matricesg � �Q�
p�n�1 � Zn�1 � compact � Zn�1:

Since Hn�1�Zn�1; R� � Hn�1�Tn�1; R� � R � 0, this implies that it is not possible
for Gp to act properly on any contractible simplicial complex of dimension less
than n� 1. Surprisingly, this bound can be attained:

Theorem (Goldman-Iwahori,4 Iwahori-Matsumoto, Bruhat-Tits, �1965). There is a
simplicial complex Xp, called the Bruhat-Tits building of Gp, such that:

(1) there is a continuous action of Gp on Xp, by simplicial automorphisms, and
this action is proper,

(2) Xp is contractible,
(3) Xp is finite-dimensional (more precisely, dimXp � n� 1 � rankQp Gp), and
(4) Xp is locally finite (i.e., each simplex is adjacent to only finitely many other

simplices).

Corollary (Ihara, 1966 [10]). Every torsion-free, discrete subgroup � of SL2�Qp� is
free.

Proof. Since � is discrete, it is a closed subgroup of SL2�Qp� � Gp, so (1) tells
us that � acts properly discontinuously on Xp. Since � is torsion-free and Xp is
contractible (2), this implies that � � �1�Xp=��. However, (3) tells us that

dim�Xp=�� � dimXp � n� 1 � 2� 1 � 1;

which means that the simplicial complex Xp=� is 1-dimensional — it is a graph.
Therefore, �1�Xp=�� is a free group. �

Proof of Serre’s Theorem. To simplifiy, let us assume p is the only prime that
occurs in the denominator of any element of � . I.e., � � SLn

�
Z�1=p�

�
� �p.

The inclusions Z�1=p� > R and Z�1=p� > Qp provide embeddings of �p in two
different groups:

�p
’1
> G1 and �p

’p
> Gp:

Unfortunately, �p is not a discrete subgroup of G1 or Gp. (In fact, it is dense in
both groups, because Z�1=p� is dense in both R and Qp.) However, we can take
the product embedding

’ : �p
’1�’p

-! G1 �Gp defined by ’�� �
�
’1��;’p��

�
:

4Goldman-Iwahori provided an explicit construction of the space Xp for Gp � SLn�Qp� (our
standing assumption). This was generalized to split groups by Iwahori-Matsumoto, and to all
reductive p-adic groups by Bruhat-Tits.
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The image of this embedding is discrete. (Exercise: Z�1=p� is discrete in R�Qp.)
Since G1 and Gp act properly on X1 and Xp, respectively, the product G1 �

Gp acts properly on the Cartesian product X � X1 � Xp. So the discrete
subgroup’��p� acts properly discontinuously on this space, which is contractible
and finite-dimensional (since each factor of the two factors is contractible and
has finite dimension). Therefore, every torsion-free subgroup of �p has finite
cohomological dimension. �

Exercise. Z�1=p1; : : : ;1=pk� is a discrete subring of R�
Lk
i�1 Qpi .

Remark. The above proof made a simplifying assumption. In general, the product
defining X may need to include several Bruhat-Tits buildings. Namely, if we let
���� be the set of distinct primes that occur in the denominators of the matrix
entries of the elements of any (finite) generating set for � , then the product will
need to include a Bruhat-Tits building for each p 2 ����:

X � X1 �
Y

p2����
Xp:

Since � acts properly discontinuously on this contractible space, the above proof
shows that we may take

k0 � dimX � n�n� 1�
2

� #���� � �n� 1� � 1:

The statement of Serre’s Theorem requires the matrix entries of all the elements
of � to be rational numbers. However, a standard “Restriction of Scalars”
argument allows this hypothesis to be weakened:

Corollary. Suppose � is a finitely generated, torsion-free subgroup of SLn�C�. If
all the matrix entries of the elements of � are algebraic numbers, then � has finite
cohomological dimension.

Proof. Let F be the field extension of Q that is generated by the matrix entries of
the elements of � . This is a finite extension of some degree d, since � is finitely
generated. By definition of F , we have � � SLn�F�. Since Fn � Qdn as a vector
space over Q, we can identify � with a subgroup of SLdn�Q�, so Serre’s Theorem
applies. �

The following example provides a counterexample if we do not require the
matrix entries to be algebraic:

Example. If � is any transcendental number, and

� �
("
�k x
0 ��k

# ����� k 2 Z; x 2 Z���
)
;

then � is a finitely generated subgroup of SL�2;C� that is torsion free and has
infinite cohomological dimension.
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Proof. Let a �
"
�k x
0 ��k

#
, bi �

"
1 �i

0 1

#
, and B � hbi j i 2 Z i.

Then � � haiB, and we have abia�1 � bi�2, so it is easy to see that � � ha;b0; b1i.
Therefore, � is finitely generated. Also, since B � Z1 and �=B � Z are torsion free,
we see that � is torsion free.

However, the cohomological dimension of Zr is dim Tr � r , so the subgroup B �
Z1 obviously has infinite cohomological dimension. Therefore, the cohomological
dimension of � must be infinite. �

The group � in the above example contains upper-triangular subgroups that are
isomorphic to Zr , with r arbitrarily large. The following generalization of Serre’s
Theorem shows that containing such subgroups is the only obstruction to having
finite cohomological dimension.

Definition. Let
Un �

8>>>>><>>>>>:

2666664
1

1 �
0

. . .

1

3777775

9>>>>>=>>>>>;
� SLn�C�:

A subgroup U of SLn�C� is unipotent if it is conjugate to a subgroup of Un.

Theorem (Alperin-Shalen, 1982 [2]). A finitely generated, torsion-free subgroup �
of SLn�C� has infinite cohomological dimension if and only if it contains unipotent,
free abelian subgroups of arbitrarily large rank.

Proof. (() See the proof of the example. This direction is elementary, with no
need for Bruhat-Tits buildings.

()) This argument uses more information about the structure of Xp than has
been given in this lecture. A sketch can be found in [6, p. 195]. �

It is easy to see that �1 � SLn�Z� and �p � SL
�
n;Z�1=p�

�
are finitely generated,

but it is not at all obvious that they are finitely presented. For �1, this is a
consequence of the Borel-Serre compactification:

Theorem (Borel-Serre, 1976 [3]). Adding certain points at infinity to X1 yields a
“partial compactification” XBS1, such that

(1) �1 acts properly discontinuously on XBS1,

(2) XBS1 is contractible, and

(3) XBS1=�1 is a compact manifold with corners.

Remark (historical). For G1 � SLn�R�, this construction is attributed to Siegel
[17].

Corollary. �1 is finitely presented.
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Proof. Assume, for simplicity, that �1 is torsion free, so it is the fundamental
group of XBS1=�1. Ignoring a technical issue, let us also assume that XBS1=�1 is

a CW-complex. Since XBS1=�1 is compact, it has only finitely many cells. The
fundamental group �1 is generated by representatives of the finitely many loops in
the 1-skeleton of XBS1=�1, and a presentation can be obtained by adding a relation
for each of the finitely many 2-cells. �

Theorem (Borel-Serre, 1973 [4]). SL
�
n;Z�1=p�

�
is finitely presented. In other

words, it is of type F2.

Proof. Note that the stabilizer of any simplex in Xp is a compact, open subgroup
of Gp (since Gp acts continuously and properly, by simplicial automorphisms).
Using this, it is not difficult to see that �p acts properly discontinuously on the

contractible space XBS1 � Xp. By combining these facts with the compactness of

XBS1=�1 and Xp=Gp, it is straightforward to show that �XBS1�Xp�=�p is compact. �

Remark. To say that a group � is of type Fm means that it acts freely and
cocompactly on an �m�1�-connected CW-complex. Therefore, the proof actually
shows that SL

�
n;Z�1=p�

�
is of type Fm for all m. The same can be said with

Z�1=p1;1=p2; : : : ;1=pk� in the place of Z�1=p�.

See [6, Chap. 7] for more discussion of the applications in this lecture.

Lecture 2. Examples of Bruhat-Tits buildings

Example (Bruhat-Tits building of SL2�Qp�). We have already seen that the Bruhat-
Tits building of Gp � SL2�Qp� is a tree (since dimXp � n � 1 in general, and we
have n � 2 in this case). In fact, Xp turns out to be a regular tree of valence p�1:
every vertex is in exactly p � 1 edges. Here is a picture of (a ball in) X2:

texpreamble Note that any finite geodesic segment has uncountably many
different extensions to a (two-way-infinite) geodesic. However, all of these
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extensions are equivalent under the isometry group. In fact, they are equivalent
under Gp:

if 1 and 2 are any two geodesics in Xp, then there exists g 2 Gp,
such that g�1� � 2, and g fixes every point of 1 \ 2:

(BT1)

This implies that Gp is transitive on the set of edges. However, it turns out that
Gp is not transitive on the set of vertices. Instead, the two vertices of any edge
are of a different “type” (colored black or white in the figure), and Gp is transitive
on the set of vertices of any given type. Thus, if an element g of Gp fixes an edge
setwise, then it fixes the edge pointwise. (In the terminology of Serre’s book on
Trees, this means that Gp acts without inversion.)

The group A of diagonal matrices in Gp � SL2�Qp� fixes a unique geodesic
setwise, and acts by translation along this geodesic. (Note the close analogy
with the action of SL2�R� on the hyperbolic plane. Perhaps we should also
point out that, under the identification A � Q�

p � Z � compact, the group Z
acts by translations on the geodesic, and the compact group acts trivially on
this geodesic.) Since the maximal split tori in Gp are all conjugate, and the
geodesics in Xp are all equivalent under Gp, this implies that there is a natural
1–1 correspondence

fsplit torig $ fgeodesicsg defined by A$ geodesic fixed by A:

Remark. The nonuniqueness of geodesic extensions (or “branching”), can also be
seen in the coarse geometry of the hyperbolic plane. Namely, if two geodesics
are asymptotic at �1, but not at �1, then, looking from a far distance, they are
indistiguishable from two geodesics that are equal for all time in the past, but are
heading off in two completely different directions in the future.

In these lectures, we are assuming that Gp is the simple group SLn�Qp�, but let
us make an exception to discuss the semsimple group SL2�Qp��SL2�Qp�, because
it provides an illuminating example.

Example (Bruhat-Tits building of SL2�Qp�� SL2�Qp�). In general, the Bruhat-Tits
building of a direct product of groups is the Cartesian product of the Bruhat-Tits
buildings of the factors. Therefore, the Bruhat-Tits building of SL2�Qp��SL2�Qp�
is the product T1 � T2 of two �p � 1�-regular trees.

The trees T1 and T2 each have a unique SL2�Qp�-invariant metric (up to a
constant that determines the length of an edge). More generally, the Bruhat-Tits
building of SLn�Qp� (or any other simple group Gp) has a Gp-invariant metric that
is canonical, up to a normalizing constant. (We will have more to say about this
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metric in the final lecture.) However, for a Bruhat-Tits building that is a product,
there may be no canonical way to choose the constants on the various factors.5

The Cartesian product of a geodesic 1 in T1 with a geodesic 2 in T2 is a
subspace of Xp � T1 � T2 that is isometric to the Euclidean plane, tiled by
rectangles:

1 � 2:

1

4

1

4

1

4

2

3

2

3

2

3

1

4

1

4

1

4

2

3

2

3

2

3

1

4

1

4

1

4

2

3

2

3

2

3

As in any Bruhat-Tits building, Gp is transitive on the vertices of any given type,
and each top-dimensional cell6 has exactly one vertex of each type.

A subset of Xp is a flat if it is isometric to a Euclidean space Rk. (Note that
1-dimensional flats are geodesics.) Since dimXp � 2, it is obvious that F � 1�2

is a maximal flat.7 Note that if we choose a geodesic 01 of T1 that branches from 1

at some vertex v , then F 0 � 01 � 2 is a maximal flat that branches from F along
the line fvg � 2.

In fact, since each vertex in 1 (or 2) is in p � 1 different edges of T1 (or T2,
respectively), we see that each edge of Xp is on the boundary of p � 1 different

5For a well-defined normalization that is an analogue of the Killing form for semisimple Lie
groups, see the proof of Lemma 4.2 in [D. W. Morris and K. Wortman, Horospherical limit points
of S-arithmetic groups, http://arxiv.org/abs/1309.7113.

6In the theory of Bruhat-Tits buildings, top-dimensional cells are called chambers, but we do
not need this terminology.

7In the theory of Bruhat-Tits buildings, maximal flats are called apartments, but we are
using terminology that is more familiar to geometers. These flats are usually denoted A (for
“apartment”), instead of F . Then some other letter, such as R or S or T , must be used for a
maximal split torus.

http://arxiv.org/abs/1309.7113
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rectangles (2-cells) in Xp, so each of the horizontal or vertical lines in the above
figure is a branch locus where maximal flats in Xp branch from each other.

It is easy to see that the isometry group of Xp is not transitive on the set of
geodesics. (For example, a line of rational slope in 1�2 cannot be sent to a line of
irrational slope, because the set of vertices must be preserved.) However, although
it may not be obvious, the isometry group is transitive on the set of maximal flats.
In fact, Gp is transitive on this set. (This means that every maximal flat is of the
form 01 � 02, where 0i is a geodesic in Ti.) Furthermore, (BT1) generalizes in a
natural way:

if F1 and F2 are any two maximal flats in Xp, then there exists g 2 Gp,
such that g�F1� � F2, and g fixes every point of F1 \ F2:

(BT1)

This is a basic property of all Bruhat-Tits buildings — it is a minor modification
of an axiom in the theory of buildings.

If we let A1 and A2 be the split tori in SL2�Qp� that fix 1 and 2, respectively,
then it is clear that A1�A2 fixes the maximal flat 1�2 in T1�T2, and acts on it
by translation (via a cococompact group of isometries that is isomorphic to Z2).
We have a natural 1–1 correspondence

fmaximal split torig $ fmaximal flatsg defined by A$ flat fixed by A;

and the same is true in any Bruhat-Tits building.

Remark. It is a basic axiom of (“thick”) buildings in general, and Bruhat-Tits
buildings in particular, that every simplex8 of codimension one is a face of at
least three different top-dimensional simplexes. This means, in every Bruhat-Tits
building, branching of the maximal flats occurs at every codimension-one simplex,
as in the above examples.

Exercise. Let F be a maximal flat in a Bruhat-Tits building Xp, and let � be a
codimension-one simplex in F . Show that Gp contains an element g that acts
on F via the reflection through the hyperplane that contains � . (Also, use this
observation to verify that the vertices in the depiction of 1 � 2 on page 8 have
been correctly partitioned into types.)
Hint: Combine the preceding remark with (BT1).

Any two points of Xp are joined by a geodesic. (In fact, it follows from (BT1)
that there is a unique geodesic segment joining any two points in Xp [6, p. 152].)
Then, since Xp is finite-dimensional, it is obvious that

Any two points of Xp are contained in a maximal flat.(BT2)

8If Xp is a product, such as T1 � T2, then we should not be using the term “simplex,” because
the cells in the complex are “polysimplexes” (i.e., Cartesian products of simplexes), not simplexes.
We will ignore this technicality, because our interest is in examples such as Gp � SLn�Qp�.
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By considering points in the interior of any two given simplexes, we see that if �1

and �2 are two simplexes of Xp, then there is a maximal flat that contains �1[�2.
This is another axiom in the theory of buildings.

A Bruhat-Tits building Xp is a simplicial complex that is constructed in a certain
way from a p-adic groupGp (such as SLn�Qp�). Some of the main properties of the
construction are summarized in the following definition. For us, the collection F
is the set of maximal flats, but, in the theory of buildings, the elements of F are
called “apartments.”

Definition (Tits). An (irreducible) Euclidean building is a finite-dimensional
simplicial complex X (with a metric), together with a collection F of subsets of X,
satisfying the following axioms:

(1) Each F 2 F is a Coxeter complex in some Euclidean space Rd. This means
that the simplicial structure of F is the tiling generated by the hyperplanes
of a group generated by reflections.

(2) 8F1; F2 2 F , there is an isometry from F1 onto F2 that fixes F1\F2 pointwise.

(3) Every codimension-one simplex is a face of at least three top-dimensional
simplexes.

(4) 8x;y 2 X; 9F 2 F ; fx;yg � F .

We have seen that the Bruhat-Tits buildingXp satisfies these properties, so every
Bruhat-Tits building is a Euclidean building. Conversely, Tits proved that every
Euclidean building of dimension at least four is isomorphic to the Bruhat-Tits
building of some group Gp.

Remark. The reason these are called “Euclidean” buildings is that each apartment
is a Euclidean space. In a “spherical” building, each apartment is a sphere, and
the simplicial structure on the sphere is generated by a group of reflections acting
on the sphere. There are also “hyperbolic” buildings, in which each apartment is
a hyperbolic space Hd, and the simplicial structure is generated by a group of
reflections acting by reflections that are isometries of the hyperbolic metric.

Exercise ([6, Prop. 3.1, p. 85]). Let F be a maximal flat in a Bruhat-Tits building Xp,
and let � be a top-dimensional simplex in F . For each x 2 Xp, choose a maximal
flat F 0 that contains � [ fxg, and use (BT1) to choose g 2 Gp, such that gF 0 � F ,
and g is the identity on � . Show that defining r�x� � gx yields a well-defined
“retraction” r : Xp ! F , such that

(1) r is the identity on F ,
(2) d

�
r�x�;y

�
� d�x;y� for all x 2 Xp and y 2 � , and

(3) r�x� is independent of the choice of F 0 and g.

It can be shown (but this is not part of the exercise) that r is distance decreasing
(hence, continuous) [6, p. 152].
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Exercise ([6, (��) on p. 153]). Show Xp is a CAT�0� space. (In particular, Xp is
contractible.)
Hint: You need to show that if x1; x2; x3 2 Xp and p1; p2; p3 2 R2, such that d�xi; xj� �
d�pi; pj� for all i; j, then d�x1; x� � d�p1; p�, where x and p are the midpoints of
the geodesic segments x2x3 and p2p3, respectively. To prove this, use a (distance-
decreasing) retraction to move the triangle x1; x2; x3 into a flat.

Corollary ([6, p. 161]). Every compact subgroup K of Gp has a fixed point in Xp.

Proof. In a CAT�0� space, every bounded set has a well-defined circumcenter.
Since any K-orbit is a K-invariant, bounded set, the circumcenter of this orbit
is a K-invariant point. �

Example (Bruhat-Tits building of SL3�Qp�). The maximal flats in the Bruhat-Tits
building of SL3�Qp� are Euclidean planes, tiled by equilateral triangles.

More generally, the maximal flats in the Bruhat-Tits building of SLn�Qp� are �n�
1�-dimensional Euclidean spaces, tiled by regular simplexes. (The n vertices of
each simplex are representatives of the orbits of Gp on the 0-skeleton of Xp.) As
always, every boundary hyperplane is a branch locus.

It is well known that SO�n� is the only maximal compact subgroup of SLn�R�.
More generally, the maximal compact subgroups of any connected Lie group are
all conjugate to each other. This is not true for p-adic groups:

Proposition. SLn�Qp� has exactly n conjugacy classes of maximal compact
subgroups.

Proof. More precisely, every maximal compact subgroup is conjugate to a
subgroup of the form 2664

Zp
k�k

p�1Zp
k��n�k�

pZp
�n�k��k

Zp
�n�k���n�k�

3775 ;
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for some k 2 f1;2; : : : ; ng. (When k � n, this group is SLn�Zp�.)
Let K be a maximal compact subgroup of Gp. Since K is compact, it must fix

some point in Xp. Since Gp is type-preserving, this implies that K fixes a vertex v
of the simplicial complex. Therefore, K is contained in the stabilizer of v . The
stabilizer is compact (since Gp acts properly on Xp), so maximality implies that K
equals the stabilizer of v . However, there are only n types of vertices, all vertices
of the same type are in the same Gp-orbit, and stabilizers of points in the same
orbit are conjugate. Therefore, there are at most n conjugacy classes of maximal
compact subgroups. �

Remark. The n subgroups listed at the start of the above proof are the stabilizers
of the vertices of a particular simplex in Xp. They (and their conjugates) are the
“maximal parahoric subgroups” of SLn�Qp�. (It is interesting to note that they are
all conjugate under GLn�Qp�, even though they are not conjugate by any matrix
of determinant 1.)

Remark. In general, the same proof shows that the number of conjugacy classes
of maximal compact subgroups of Gp is rankQp Gp.

Lecture 3. More applications of Bruhat-Tits buildings

3.1. Arithmeticity. A special case of an amazing theorem of G. A. Margulis [12]
(or see [13, Thm. 9.1.11, p. 298] or [19, Thm. 6.1.2, p. 114]) tells us that if G �
SLn�R�, withn � 3, then every cocompact, discrete subgroup � ofG is “arithmetic.”
This makes it possible to provide a quite explicit list of all the possibilities for � .
More generally, Margulis’ theorem applies whenever G is a connected, simple real
Lie group that contains a 2-dimensional group of diagonal matrices. By using
Bruhat-Tits buildings, Gromov and Schoen [9] were able to prove this arithmeticity
theorem for G � Sp�1; n�, which has only a 1-dimensional group of diagonal
matrices.

Here is a highly simplified (and inaccurate) outline of the proof. Embed G in
some SLN�R�. To show that � is arithmetic, we need to show that � � G \ SLN�Z�
(after a change of basis). The vanishing of a certain cohomology group H1�G; g�
implies that � � G\SLN�Q�. Thus, for every prime p, we have an embedding of �
in SLN�Qp�. So � acts on the Bruhat-Tits building Xp. It also acts on the symmetric
space X1 � G=K associated to Sp�1; n�.

By choosing a � -equivariant map from X1 to Xp that minimizes a certain energy
functional, Gromov and Schoen obtain a � -equivariant map from X1 to Xp that
is harmonic. (To achieve this, they developed the necessary theory of harmonic
maps into (non-manifold) simplicial complexes.) It can be shown that any such
harmonic map must be constant. Since this constant map is � -equivariant, the
group � must have a fixed point inXp. So � is contained in the stabilizer of a point,
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which is a compact subgroup of SLN�Qp�. This means that the prime p occurs
to only a bounded power in the denominator of any element of � . Then a finite-
index subgroup � 0 has the property that no power of p occurs in any denominator.
Repeating the argument to eliminate all primes from the denominators yields a
finite-index subgroup � 00 that is contained in SLN�Z�, as desired.

3.2. Decompositions of Gp. The Cartan decomposition G � KAK and Iwasawa
decomposition G � KAN are well known for SLn�R� and other simple Lie groups.
There are analogous results for SLn�Qp� (and other p-adic groups).

Theorem (Bruhat-Tits [8, (4.4.3)]). Let Gp � SLn�Qp�, K � SLn�Zp�,
A � fdiagonal matrices g, N � fupper triangular with 1’s on diagonalg. Then:

(1) (Cartan decomposition): Gp � KAK.
(2) (Iwasawa decomposition): Gp � KAN.

Proof of the Cartan decomposition. Let h 2 Gp, let F be the maximal flat in Xp that
is fixed by A, and let x 2 F be a basepoint.

Since Xp is a building, there is a maximal flat F 0 that contains both x and hx.
Furthermore, there exists g 2 Gp, such that gF 0 � F (and g fixes F 0\F pointwise,
so gx � x). Then ghx 2 F , and is the same type as x, so there exists a 2 A,
such that a�ghx� � x. Hence, g and agh both belong to StabGp�x� � K, so
h � g�1a�1�agh� 2 KAK. �

3.3. Recent results. Fundamental properties of S-arithmetic groups are proved
by using the Tits building. Here are a couple of important-sounding examples
from the internet:

L. Ji: Large scale geometry, compactifications and the integral Novikov
conjectures for arithmetic groups, in Third International Congress of Chinese
Mathematicians. Amer. Math. Soc., Providence, 2008, pp. 317–344. MR2409642,
http://www.cms.zju.edu.cn/UploadFiles/AttachFiles/2006925225424691.pdf

H. Rüping: The Farrell-Jones conjecture for S-arithmetic groups (preprint).
http://arxiv.org/abs/1309.7236

3.4. Explicit construction of the Bruhat-Tits building of SLn(Qp).

Definition (cf. https://en.wikipedia.org/wiki/Building_(mathematics)).

� If fv1; : : : ; vng is any basis of �Qp�n, then Zpv1�� � ��Zpvn is called a lattice
in �Qp�n.

� Equivalence relation: �1 � �2 if there exists k 2 Z, such that pk�1 � �2.

� Each equivalence class is a vertex of Xp.

� If p�k Ì �0 Ì �1 Ì � � � Ì �k, then ��0�; : : : ; ��k� are the vertices of a
k-simplex in Xp.

http://www.ams.org/mathscinet-getitem?mr=2409642
http://www.cms.zju.edu.cn/UploadFiles/AttachFiles/2006925225424691.pdf
http://arxiv.org/abs/1309.7236
https://en.wikipedia.org/wiki/Building_(mathematics)
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The group A of diagonal matrices fixes the maximal flat whose vertices are
represented by lattices of the form pk1Zp � pk2Zp � � � � � pknZp.

Exercise.

(1) Show (directly) that A has n orbits on the vertices of this maximal flat.
(2) Calculate the stabilizer of a vertex in each orbit.
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