We present the main ideas of a nice proof (due to

Dave Witte Morris
Department of Mathematics and Computer Science University of Lethbridge
Lethbridge, AB T1K 3M4
Dave.Morris@uleth.ca

D. Carter, G. Keller, and E. Paige) that every matrix in
$\operatorname{SL}(3, \mathbb{Z})$ is a product of a bounded number of elemen-
tary matrices. The two main ingredients are the Compactness Theorem of first-order logic and calculations of Mennicke symbols. (These symbols were developed in the 1960s in order to prove the Congruence Subgroup Property.) Similar methods apply to $\operatorname{SL}(2, A)$ if $A=\mathbb{Z}[\sqrt{2}]$ (or any other ring of integers with infinitely many units).

Thm (Carter-Keller). SL(3, $\mathbb{Z})$ is boundedly generated by elementary matrices.

Eg. Elementary matrices:

$$
\left[\begin{array}{ccc}
1 & 25 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-8 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 16 \\
0 & 0 & 1
\end{array}\right]
$$

Recall. Every invertible matrix can be reduced to Id by elementary column operations.

Prop. $T \in \mathrm{SL}(3, \mathbb{Z}) \Rightarrow T \leadsto$ Id by \mathbb{Z} column operations.

Rem. $\Gamma=$ any group.
Γ has bounded generation iff \exists finite $S \subset \Gamma$, integer r, s.t. $\forall \gamma \in \Gamma, \quad \gamma=s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots s_{r}^{k_{r}}$.
I.e., $\Gamma=X_{1} X_{2} \cdots X_{r} \quad$ with X_{i} cyclic groups.

Thm (Liehl). SL($2, \mathbb{Z}[1 / p])$ bddly gen'd by elem mats.
I.e., $T \leadsto$ Id by $\mathbb{Z}[1 / p]$ col ops, \# steps is bdd.

Easy proof. Assume Artin's Conjecture.

Eg. 2 is a primitive root modulo 13 :
$\left\{2^{k}\right\}=\{1,2,4,8,3,6,12,11,9,5,10,7\}$.
Complete set of residues.
Conj (Artin). $\forall r \neq \pm 1$, perfect square,
$\exists \infty$ primes q, s.t. r is prim root modulo q.
Assume $\exists q$ in every arith progression $\{a+k b\}$.

Prop. $T \in \mathrm{SL}(3, \mathbb{Z}) \Rightarrow T \leadsto$ Id by \mathbb{Z} column operations.
Eg. $\left[\begin{array}{cc}13 & 5 \\ 31 & 12\end{array}\right] \sim\left[\begin{array}{cc}3 & 5 \\ 7 & 12\end{array}\right] \sim\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$

$$
\leadsto\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Cor. $T \in \operatorname{SL}(3, \mathbb{Z}) \Rightarrow T=$ product of elementary mats.
I.e., $\operatorname{SL}(3, \mathbb{Z})$ is generated by elementary matrices.

Thm (Carter-Keller). $T=$ prod of 48 elem mats.
So $\operatorname{SL}(3, \mathbb{Z})$ is boundedly generated by elem mats.
Remark. No such bound exists for $\operatorname{SL}(2, \mathbb{Z})$:
$\mathrm{SL}(2, \mathbb{Z})$ not boundedly generated by elem mats.
Thm (C-K). $\Gamma=\mathrm{SL}(3, \mathbb{Z})$ bddly gen'd by elem mats.

Consequences.

- Г has the Congruence Subgroup Property
[Lubotzky, Platonov-Rapinchuk] Conjecture. converse.
- Γ is superrigid $\quad(<\infty$ irred reps of each dim) [Rapinchuk]
- $\operatorname{SL}(3, \mathbb{Z})$ has Kazhdan's property T (with explicit ϵ) Conjecture. $\mathrm{SL}(3, \mathbb{Z}[x])$ has property T. [Shalom]
- Γ has no action on \mathbb{R} (nontriv, or-pres). [Lifschitz-M]

Thm (Liehl). SL($2, \mathbb{Z}[1 / p])$ bddly gen'd by elem mats.
I.e., $T \leadsto$ Id by $\mathbb{Z}[1 / p]$ col ops, \# steps is bdd.

Proof. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad q=a+k b$ prime, p is prim root
$\leadsto\left[\begin{array}{cc}q & b \\ * & *\end{array}\right] \quad p^{\ell} \equiv b(\bmod q) ; p^{\ell}=b+k^{\prime} q$
$\leadsto\left[\begin{array}{cc}q & p^{\ell} \\ * & *\end{array}\right] \quad p^{\ell}$ unit \Rightarrow can add anything to q
$\sim\left[\begin{array}{cc}1 & p^{\ell} \\ * & *\end{array}\right] \sim\left[\begin{array}{ll}1 & 0 \\ * & 1\end{array}\right] \sim\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

How to prove bounded generation［C－K－P］．
－Compactness Thm（1st－order logic）／ultraproduct
－Mennicke symbols（Algebraic K－Theory）
Prop． $\operatorname{SL}(3, \mathbb{Z})$ boundedly generated by elem mats
$\Leftrightarrow \operatorname{SL}\left(3, \mathbb{Z}^{\infty}\right)$ generated by elem mats．
Proof．（ \Leftarrow ）Contrapos：$\exists g_{r}$ ，not prod of r elem mats． In SL $(3, \mathbb{Z})^{\infty}$ ，element $\left(g_{r}\right)_{r=1}^{\infty}$ not prod of elem mats． So elem mats do not generate $\operatorname{SL}(3, \mathbb{Z})^{\infty} \cong \operatorname{SL}\left(3, \mathbb{Z}^{\infty}\right)$ ．
\mathbb{Z}^{∞} is a bad ring（not integral domain）：use ${ }^{*} \mathbb{Z}=\mathbb{Z} / \mathfrak{p}$ ， where $\mathfrak{p}=$ prime ideal containing $\left\{e_{1}, e_{2}, \ldots\right\}$
（and $\left(x_{k}\right) \in \mathfrak{p} \Rightarrow$ some x_{k} is 0 ）．（ ${ }^{*} \mathbb{Z}=$ ultraprod）
Recall $C=\operatorname{SL}\left(3,{ }^{*} \mathbb{Z}\right) /\langle$ elem mats \rangle ．
Let $W=W_{*_{\mathbb{Z}}}=\left\{(a, b) \in{ }^{*} \mathbb{Z}^{2} \mid a, b\right.$ rel prime $\}$
$=\left\{1\right.$ st rows of elements of $\left.\operatorname{SL}\left(2,{ }^{*} \mathbb{Z}\right)\right\}$ ．
Define []$: W \rightarrow C$ by $\left[\begin{array}{l}b \\ a\end{array}\right] \equiv\left[\begin{array}{lll}a & b & 0 \\ * & * & 0 \\ 0 & 0 & 1\end{array}\right]$ ．
－［ ］is well def＇d（easy）and onto（＂stable range＂）．
－（MS1）$\left[\begin{array}{c}b+t a \\ a\end{array}\right]=\left[\begin{array}{l}b \\ a\end{array}\right]=\left[\begin{array}{c}b \\ a+t b\end{array}\right]$ ．
－（MS2a）$\left[\begin{array}{c}b_{1} \\ a\end{array}\right]\left[\begin{array}{c}b_{2} \\ a\end{array}\right]=\left[\begin{array}{c}b_{1} b_{2} \\ a\end{array}\right] \quad$（need $n \geq 3$ ）．
$(\mathbb{Z} / q \mathbb{Z})^{\times}$cyclic $\Rightarrow \exists b, e_{i}$ ，s．t．$b_{i} \equiv b^{e_{i}}(\bmod q)$ ．

$$
\left[\begin{array}{c}
b_{i} \\
a_{i}
\end{array}\right]=\left[\begin{array}{c}
b_{i} \\
q
\end{array}\right]=\left[\begin{array}{c}
b^{e_{i}} \\
q
\end{array}\right]=\left[\begin{array}{l}
b \\
q
\end{array}\right]^{e_{i}} \in\left\langle\left[\begin{array}{l}
b \\
q
\end{array}\right]\right\rangle .
$$

Note：Since $C^{24}=e$ ，only need $(\mathbb{Z} / q \mathbb{Z})^{\times}$cyclic modulo 24th powers．

This follows from the componentwise calculation：

$\left(b_{i}-z^{24}\right)\left(b_{i}-b z^{24}\right)\left(b_{i}-b^{2} z^{24}\right) \cdots\left(b_{i}-b^{23} z^{24}\right)$
is 0 in every coordinate．
So it is 0 ．
Since ${ }^{*} \mathbb{Z}$ is integral domain，then $b_{i}=b^{e_{i}} z^{24}$ ．

References

H．Bass，Algebraic K－theory，Benjamin，New York， 1968.
H．Bass，J．Milnor，and J．－P．Serre，Solution of the Congruence
Subgroup Problem for SL $n(n \geq 3)$ and $\mathrm{Sp}_{2 n}(n \geq 2)$ ，Inst．Hautes Etudes Sci．Publ．Math． 33 （1967），59－137．
D．Carter and G．Keller，Bounded elementary generation of $\operatorname{SL}_{n}(\mathcal{O})$ ， Amer．J．Math． 105 （1983），673－687．
D．Carter and G．Keller，Elementary expressions for unimodular matrices，Comm．Algebra 12 （1984），379－389．
D．Carter，G．Keller，and E．Paige：Bounded expressions in SL (n, A) ， （unpublished）．
I．V．Erovenko and A．Rapinchuk，Bounded generation of S－ arithmetic subgroups of isotropic orthogonal groups over number fields，J．Number Theory 119 （2006），no．1，28－48．
B．Liehl：Beschrankte Wortlange in SL2．Math．Z． 186 （1984），no．4， 509－524．
L．Lifschitz and D．W．Morris：Bounded generation and lattices that cannot act on the line，Pure Appl．Math．Q． 4 （ 2008）99－126．
http：／／pamq．henu．edu．cn／down1oadarticle．jsp？id＝217 http：／／arxiv．org／abs／math／0604612

Prop．SL（ $3, \mathbb{Z}$ ）boundedly generated by elem mats $\Leftrightarrow \operatorname{SL}(3, * \mathbb{Z}) \doteq$ 〈elem mats $\rangle \quad$（up to finite index）．

Thm（Carter－Keller）．SL（ $3, \mathbb{Z}$ ）bdd gen by elems．
Prove：〈elem mats 〉 finite index in $\operatorname{SL}\left(3,{ }^{*} \mathbb{Z}\right)$ ．
Let $C=C_{*_{\mathbb{Z}}}=\operatorname{SL}\left(3,{ }^{*} \mathbb{Z}\right) /\langle$ elem mats $\rangle . \quad$（finite？？）
Thm．A commutative $\Rightarrow\langle$ elem mats $\rangle \triangleleft \mathrm{SL}(3, A)$ ． So C is a group．In fact，C is abelian．
Step 1．Exponent of C divides 24 （i．e．，$x^{24}=e$ ）．
Step 2．C cyclic．（Any 2 elts are in same cyclic subgrp．）

Step 2．Any 2 elts of C are in same cyclic subgrp．
Given $\left[\begin{array}{l}b_{1} \\ a_{1}\end{array}\right],\left[\begin{array}{l}b_{2} \\ a_{2}\end{array}\right] \in C \quad$（nontrivial）．
Dirichlet：\exists large prime $p \equiv b_{1}\left(\bmod a_{1}\right)$ ．

$$
\left[\begin{array}{l}
b_{1} \\
a_{1}
\end{array}\right]=\left[\begin{array}{c}
p \\
a_{1}
\end{array}\right] ; \quad \text { we may assume } b_{1}=p \text { prime. }
$$

In fact，wma all a_{i}, b_{i} are large primes（ $b_{1} \neq b_{2}$ ）．
CRT：$\exists q$ ，s．t．$q \equiv a_{i}\left(\bmod b_{i}\right)$ ；wma $a_{1}=q=a_{2}$ ．
$(\mathbb{Z} / q \mathbb{Z})^{\times}$cyclic $\Rightarrow \exists b, e_{i}$ ，s．t．$b_{i} \equiv b^{e_{i}}(\bmod q)$ ．

$$
\left[\begin{array}{c}
b_{i} \\
a_{i}
\end{array}\right]=\left[\begin{array}{c}
b_{i} \\
q
\end{array}\right]=\left[\begin{array}{c}
b^{e_{i}} \\
q
\end{array}\right]=\left[\begin{array}{l}
b \\
q
\end{array}\right]^{e_{i}} \in\left\langle\left[\begin{array}{l}
b \\
q
\end{array}\right]\right\rangle .
$$

Step 1．Exponent of C divides 24 （i．e．，$x^{24}=e$ ）．
Idea．Given $\left[\begin{array}{l}b \\ a\end{array}\right]$ ，choose $a_{1}, a_{2} \equiv a(\bmod b)$ ，
such that $\operatorname{gcd}\left(\phi\left(a_{1}\right), \phi\left(a_{2}\right)\right) \mid 6$.

$$
\begin{aligned}
{\left[\begin{array}{l}
b \\
a
\end{array}\right]^{6} } & =\left[\begin{array}{l}
b \\
a
\end{array}\right]^{m_{1} \phi\left(a_{1}\right)}\left[\begin{array}{l}
b \\
a
\end{array}\right]^{m_{2} \phi\left(a_{2}\right)} \\
& =\left[\begin{array}{c}
b \\
a_{1}
\end{array}\right]^{m_{1} \phi\left(a_{1}\right)}\left[\begin{array}{c}
b \\
a_{2}
\end{array}\right]^{m_{2} \phi\left(a_{2}\right)} \\
& =\left[\begin{array}{c}
b^{\phi\left(a_{1}\right)} \\
a_{1}
\end{array}\right]^{m_{1}}\left[\begin{array}{c}
b^{\phi\left(a_{2}\right)} \\
a_{2}
\end{array}\right]^{m_{2}} \\
& =\left[\begin{array}{c}
1 \\
a_{1}
\end{array}\right]^{m_{1}}\left[\begin{array}{c}
1 \\
a_{2}
\end{array}\right]^{m_{2}} \\
& =e^{m_{1}} e^{m_{2}} \\
& =e . \quad \square
\end{aligned}
$$

A．Lubotzky：Subgroup growth and congruence subgroups，Invent． Math． 119 （1995），no．2，267－295．
D．W．Morris：Bounded generation in $\mathrm{SL}(n, A)$（after D．Carter， G．Keller，and E．Paige）New York J．Math． 13 （2007）383－421． http：／／arxiv．org／abs／math／0503083
V．P．Platonov and A．S．Rapinchuk：Abstract characterizations of arithmetic groups with the congruence property，Soviet Math． Dokl． 44 （1992），no．1，342－347．
A．S．Rapinchuk：Representations of groups of finite width，Soviet Math．Dokl． 42 （1991），no．3，816－820．
Y．Shalom：The algebraization of Kazhdan＇s property（T），in： International Congress of Mathematicians，Vol．II．Eur．Math．Soc．， Zurich，2006，pp．1283－1310．
http：／／www．icm2006．org／
proceedings／Vol＿II／contents／ICM＿Vo1＿2＿60．pdf O．I．Tavgen，Bounded generation of Chevalley groups over rings of algebraic S－integers，Math．USSR－Izv． 36 （1991），no．1，101－128． O．I．Tavgen，Finite width of arithmetic subgroups of Chevalley groups of rank ≥ 2 ，Soviet Math．Dokl． 41 （1990），no．1，136－140．

