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Abstract. Coxeter groups arise in a wide variety of areas, so every mathematician
should know some basic facts about them, including their connection to “Dynkin
diagrams.” Proofs about these “groups generated by reflections” mainly use group
theory, geometry, and combinatorics.

This talk will briefly explain:

� what it means to say that G is a “group generated by reflections” (or,
equivalently, that G is a “Coxeter group”);

� what it means to say that G is “of type An, Bn, or Dn”, and
� that all but finitely many of the “irreducible” finite groups generated by

reflections are either dihedral groups or belong to these types.

For further reading, see [1, Chap. 1], [2], or [3].

1. What is a group generated by reflections?

Example. In R2:

� The reflection across the y-axis is the map �x;y�, ��x;y�.
� The reflection across the line y � x is the map �x;y�, �y;x�.

In general, it is easy to see that the reflection �L across a line L is the unique
isometry of R2 that fixes each point on the line L, and has order 2 (i.e., � 2

L � Id,
but �L � Id).

Definition. Let H be a hyperplane in Rn. (E.g., a line in R2 or a plane in R3.) The
corresponding reflection �H is the unique isometry of Rn that fixes each point
on H, and has order 2.

Remark. If H passes through the origin, and e is a unit vector that is orthogonal
to H, then

�H�x� � x � 2�x � e� e:

Example. Let L1 and L2 be two lines in R2, and assume �L1L2 � �=m, for some
m 2 Z�. Then (using �i as a shorthand for �Li) �1�2 is a rotation through
angle 2�=m, so ��1�2�m � Id. Indeed, h�1; �2i is the dihedral group D2m, so
it has the presentation

D2m � h�1; �2 j � 2
1 � � 2

2 � ��1�2�m � 1 i:
This is a (fairly trivial) example of a finite group that is generated by reflections.

In this theory, it is denoted I2�m�: the subscript 2 means that we are in R2, and
them tells us that the order of �1�2 ism. Combined with the fact that reflections
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always have order 2, this information determines the entire presentation. (There
is no deep reason for using the letter I for this particular group; the letters
A;B; : : : ;H are used for other Coxeter groups.)

Note that if H1 and H2 are any two hyperplanes in Rn, then h�1; �2i � I2�m� for
some m 2 Z� [ f1g. (We use the convention that the relation ��1�2�1 � 1 does
not impose any restriction on �1 and �2.) Therefore:

Lemma. Suppose �1; : : : ; �‘ are (distinct ) reflections in Rn. Then, for each i; j 2
f1; : : : ; ‘g, there exists mi;j 2 Z� [ f1g, such that

(1) ��i�j�mi;j � Id,
(2) mi;i � 1,
(3) mi;j � 2 if i � j,
(4) mj;i �mi;j, and
(5) mi;j � 2 iff �i commutes with �j.

This observation provides the axioms for an abstract definition:

Definition. Let M be an ‘ � ‘ symmetric matrix with entries in Z� [ f1g, such
that mi;i � 1, but mi;j � 2 when i � j. The corresponding Coxeter group (or
group generated by reflections) is the group with the following presentation
(i.e., generators and relations):



�1; : : : ; �‘ j ��i�j�mi;j � 1 for 1 � i; j � ‘

�
:

Warning. If �1; : : : ; �‘ are reflections in Rn, the group h�1; : : : ; �‘i that they
generate is usually not a “group generated by reflections.” The problem is
that there will usually be additional relations between �1; : : : ; �‘ that are not
consequences of the relations in the definition of a Coxeter group.

Conversely, since “group generated by reflections” is an abstract definition, a
typical Coxeter group will not be isomorphic to any group that is generated by
reflections of Euclidean space.

Example (an infinite Coxeter group). For an isosceles right triangle4a1a2a3 inR2,
let L1, L2, and L3 be the lines obtained by extending the sides of the triangle.
(For definiteness, require that ai � Li, and that the right angle is at a2.) Then
h�1; �2; �3i is a Coxeter group, with

�mi;j� �

2641 4 2
4 1 4
2 4 1

375 :
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This group acts as symmetries of a tiling of R2 by copies of 4a1a2a3.

(In fact, there is a unique element of h�1; �2; �3i that moves4a1a2a3 to any other
tile. This observation is the key to proving that h�1; �2; �3i is indeed a Coxeter
group; i.e., that the generators �1, �2, and �3 do not satisfy any relations other
than the ones forced by the defining relations of the Coxeter group.)

Definition. The “Coxeter matrix” �mi;j� can be replaced with a (labelled) graph
that presents the same information:

� the vertices are f1;2; : : : ; ‘g (or the reflections �1; : : : ; �‘), and
� the number mi:j is written on the edge i

mi;j j (when i � j).
When mi;j is small, we usually draw a multiple edge, instead of a labelled edge.
Since mi;j � 2, but the number of multiple edges can be as small as 0 (meaning
there is no edge from i to j), the number of edges drawn from i to j is taken to
be mi;j � 2. The result is called a Coxeter diagram.

Example (Coxeter diagram eB2). The Coxeter diagram of the above-mentioned

infinite Coxeter group is
4 4

2
or .

Exercise. If a Coxeter diagram is not connected, then the associated Coxeter group
is the direct product of the groups corresponding to the connected components.

2. Finite Coxeter groups

Theorem ([1, pp. 5–6], [2, pp. 214 and 242–246]). Every finite Coxeter group is a
direct product of groups on the following list (where the subscript in the notation,
usually n, specifies the number of vertices in the Coxeter diagram):

I2�m�: dihedral group D2m of order 2m m

An: symmetric group Sn�1, with �i � �i i� 1�.
Note that ��i�i�1�3 � 1, and �i commutes with �j if ji� jj � 1.

This is the group of symmetries of a regular simplex in Rn (the higher-
dimensional generalization of a regular triangle or regular tetrahedron).
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Bn: The group of signed permutations
(permutations � of f�1; : : : ;�ng, such that ���i� � ���i� for all i),

with �i �
�
i i� 1

��
�i ��i� 1�

�
for i < n, and �n � �n �n�.

Note that ��i�i�1�3 � 1 if i � n� 2, but ��n�1�n�4 � 1,
and �i commutes with �j if ji� jj � 1.

This is the group of symmetries of the n-dimensional cube.

Cn: Same as Bn, so not needed in this list.

Dn: Signed permutations of f�1; : : : ;�ng that change an even number of signs
(i.e.,

�
��1�; : : : ; ��n�

	
\
�
�1; : : : ;�n

	
has even cardinality),

with �i as in Bn for i < n, and �n �
�
n� 1 �n

��
��n� 1� n

�
.

Note that ��i�i�1�3 � 1 if i � n� 2, ��n�2�n�3 � 1,
and all other pairs commute.

This is a subgroup of index two in Bn.

etc: Seven exceptional examples, called E6, E7, E8, F4, G2, H3, and H4.

Idea of proof. Suppose X is the Coxeter diagram of a finite group.

Key Fact: If X0 is a subdiagram of X (obtained by deleting vertices and/or
reducing labels on the edges of X), then X0 also represents a finite group.

Every cycle is the Coxeter diagram of an infinite group (see the corollary below).
Therefore, the Key Fact implies that X has no cycles, so it is a tree.

For any ‘ � 4, it can be shown that the following Coxeter diagram represents
an infinite group:

eD‘: (has ‘ � 1 vertices):

Assume, for simplicity, that X has no multiple edges. Since eD4 is infinite, every
vertex must have degree � 3. Furthermore, there can be at most one vertex of
degree 3, since eD‘ is infinite for ‘ > 4.

We may assume X � An, so there does exist a (unique) vertex of degree 3. We
may also assume X � Dn, so no more than one of the three legs of X has length
one. A few more comparisons (which we omit) show:

� There does exist a (unique) leg of length one.
� One of the other legs has length less than three, so it is of length two.
� The length of the third leg is � 4.

Therefore, X is either , , or . These are the
Coxeter diagrams E6, E7, and E8, respectively. �
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Remark. Here are diagrams of the remaining Coxeter groups that are finite:

F4 , G2 = I2�6�
�

not needed
in this list

�
,

H3 , H4 .

The following result can be used to show that Coxeter groups are infinite (which
is required to carry out the above proof).

Proposition. Suppose M � �mi;j� is the Coxeter matrix of G, and let

My �
�
� cos��=mi;j�

�
i;j
:

If G is finite, then My is positive definite: all of its eigenvalues are strictly positive.

Proof. Define a bilinear form hxjyi � xTMyy , and let fe1; : : : ; e‘g be the standard
basis of R‘. For each i, define a linear transformation ri on R‘ by

ri�x� � x � 2hx j eii ei:
This is the formula for a reflection through the hyperplane orthogonal to ei (with
respect to the given bilinear form), so it is not difficult to see that:

� h j i is invariant under hr1; : : : ; r‘i � G.
� Since hei j eji � � cos��=mi;j�, the transformations ri and rj interact

just like Euclidean reflections through hyperplanes at an angle of �=mi;j.
Therefore �rirj�mi;j � Id. This means that r1; : : : ; r‘ satisfy the relations
defining G, so there is a homomorphism G ! G, such that �i � ri.

Now suppose G is finite. Then we can define a G-invariant bilinear form by
averaging the usual dot product:

hx j yi0 � 1
jGj

X
g2G

�gx���gy�:

This is positive definite (i.e., hx j xi0 > 0 for all x � 0). However, if we assume
that G is irreducible (i.e., the Coxeter diagram is connected), then it can be shown
that the G-invariant bilinear form is unique (up to a scalar multiple). Therefore,
hxjyi � hxjyi0 is positive definite, so the matrix My is positive definite. �

Remark. The converse is true: if My is positive definite, then G is finite.

Corollary. The Coxeter group corresponding to a cycle is infinite.

Proof. Since � cos��=3� � �1=2, the nonzero entries in each row of My are 1,
�1=2, and another �1=2, so the sum of every row is 0. Therefore, �1;1; : : : ;1� is
an eigenvector of My with eigenvalue 0. Hence, My is not positive definite. �

Alternate proof. The group acts transitively on the tiles of a tessellation of
Euclidean space by regular simplices. �
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Exercise. Show that the Coxeter group of type eD‘ is infinite.
Hint: My is not invertible.

Remark. Coxeter groups of types A to G arise in the theory of Lie groups, where
they are called Weyl groups (but types H3, H4, and I2�m� do not appear). An
orientation is assigned to each edge with a label greater than 2 (or, in other
words, to each multiple edge) in the Coxeter diagram, and the resulting directed
graph is called a Dynkin diagram. For example, the Dynkin diagram of type F4

is .
However, the Coxeter diagram of type Bn yields two different Dynkin diagrams

(if n > 2), because the two different orientations of the double edge yield non-
isomorphic directed graphs. One orientation yields the Dynkin diagram Bn, and
assigning the opposite orientation yields a Dynkin diagram that is called Cn.

Also, a slightly different convention is used in Lie theory, so the Dynkin
diagram G2 has only a triple edge, not quadruple.
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