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Statement of the results

We discuss only a simple special case of Deligne’s results.

Proposition (Deligne). The inverse image of Γ = Sp(2n, Z) in the universal cover of Sp(2n, R)
is not residually finite.

Remark. In fact, Deligne showed that the intersection of all the subgroups of finite index
is precisely 2 π1

(
Sp(2n, R)

)
.

Here is an equivalent formulation of the result that does not require infinite extensions.
It is well known that the fundamental group of GR = Sp(2n, R) is Z. Thus, for any finite
cyclic group Z , there is a (unique) connected covering group G̃R of GR with covering
group Z . The inverse image Γ̃ of Γ = Sp(2n, Z) in G̃R is a lattice in G̃R.

Proposition (Deligne). If #Z > 2, then Γ̃ has no torsion-free subgroup of finite index.

Proof

We prove the contrapositive: assuming that Γ̃ has a torsion-free subgroup of finite index
(or, equivalently, Γ̃ is residually finite), we will show #Z ≤ 2.

It is known that Γ has the Congruence Subgroup Property. This means that the profinite
completion of Γ is

Γ̂ � ×
p prime

Sp(2n, Zp),

where Zp denotes the ring of p-adic integers. Since Γ̃ is residually finite, the profinite
completion of Γ̃ is a central extension of Γ̂ by Z :

e → Z → ̂̃Γ → Γ̂ → e.

Now, we will obtain an analogous result that replaces the arithmetic group Γ = Sp(2n, Z)
with the algebraic group GQ = Sp(2n, Q). We define a topology on GQ by declaring the
subgroups of finite index in Γ to be the basic open sets containing e. (And the translates
of these subgroups are the basic open sets at any other point. Since GQ commensu-
rabilizes Γ , it does not matter whether we translate on the left or on the right — the
same topology is obtained.) Then we can complete GQ to obtain a totally disconnected
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group ĜQ that contains Γ̂ as a compact open subgroup. Indeed, from the description of Γ̂ ,
we see that

ĜQ =
◦×

p prime
Sp(2n, Qp),

where
◦× represents the restricted (or “adelic”) product in which all but finitely many

coordinates gp are required to be in the compact group Sp(2n, Zp). This is a locally
compact group.

Note. The direct product GR × ĜQ is the adelic group GA = Sp(2n, A).

Similarly, we complete G̃Q with respect to the topology defined by the finite-index sub-

groups of Γ̃ , so ̂̃Γ is a compact open subgroup of ̂̃GQ.
We have a central extension:

e → Z → ̂̃GQ → ĜQ → e.

Taking the product of this with the central extension

e → Z → G̃R → GR → e

yields a central extension

e → Z × Z → G̃R × ̂̃GQ → GA → e.

Now, let

G̃A = G̃R × ̂̃GQ

{ (z, z) | z ∈ Z } ,

so we have a central extension

(∗) e → Z → G̃A → GA → e.

Note that the diagonal embedding

G̃Q → G̃R × ̂̃GQ

factors through to a well-defined embedding

GQ → G̃A.

Hence, the extension (∗) splits over GQ.
Now, the following theorem of C. C. Moore immediately implies that #Z ≤ 2.

Theorem (Moore). There is a “universal” topological central extension

e → Z/2Z → E → GA → e

that splits over GQ, such that if

e → Z → G̃A → GA → e
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is any topological central extension that splits over GQ, with Z discrete, then there is a
commutative diagram

e -----------------------------------------------------------------------------------------------------→ Z/2Z -----------------------------------------------------------------------------------------------------→ E -----------------------------------------------------------------------------------------------------→ GA -----------------------------------------------------------------------------------------------------→ e∥∥∥ y y ∥∥∥ ∥∥∥
e -----------------------------------------------------------------------------------------------------→ Z -----------------------------------------------------------------------------------------------------→ G̃A -----------------------------------------------------------------------------------------------------→ GA -----------------------------------------------------------------------------------------------------→ e

In our case, we know that the map E → G̃A is surjective, because G̃R is perfect and
contains Z . Therefore Z is a quotient of Z/2Z, so #Z ≤ 2, as desired.

Discussion of Moore’s Theorem

It is well known that the fundamental group of the real Lie group Sp(2n, R) is Z, so the
universal cover is a central extension

e → Z → ˜Sp(2n, R) → Sp(2n, R) → e.

Deodhar (with details completed by Deligne) calculated an analogous “fundamental group"
of the p-adic Lie group Sp(2n, Qp) (and of more general “quasi-split” p-adic groups).

Theorem (Deodhar, Deligne). For every prime p, there is a universal central extension G̃p
of Sp(2n, Qp) with discrete kernel. Furthermore, the kernel of the universal extension is
the group µp of all roots of unity in Q×

p .

For almost every p, the extension G̃p splits over the maximal compact subgroup Sp(2n, Zp)
of Sp(2n, Qp). This allows us to define the restricted direct product

◦×
p

G̃p.

(We include p = ∞ in this product, where Q∞ = R.) This is a central extension of GA:

(∗∗) e →
⊕

p
µp →

◦×
p

G̃p → GA → e,

where we let µp = Z for p = ∞.
For each p, there is a unique surjection σp : µp → µ, where µ � Z/2Z is the group {±1}

of roots of unity in Q. The sum of these homomorphisms is a homomorphism

σ :
⊕

p
µp → µ.

Applying σ to the kernel of the extension (∗∗) yields a central extension

e → µ → E → GA → e.

Moore proved (not only for symplectic groups) that this extension splits over GQ, and
that it is the universal extension with this property.
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