A LATTICE WITH NO TORSION-FREE SUBGROUP OF FINITE INDEX (AFTER P. DELIGNE) JUNE 2009

DAVE WITTE MORRIS, UNIVERSITY OF LETHBRIDGE http://people.uleth.ca/~dave.morris/

STATEMENT OF THE RESULTS

We discuss only a simple special case of Deligne's results.

Proposition (Deligne). *The inverse image of* $\Gamma = \text{Sp}(2n, \mathbb{Z})$ *in the universal cover of* $\text{Sp}(2n, \mathbb{R})$ *is not residually finite.*

Remark. In fact, Deligne showed that the intersection of all the subgroups of finite index is precisely $2\pi_1(\text{Sp}(2n, \mathbb{R}))$.

Here is an equivalent formulation of the result that does not require infinite extensions. It is well known that the fundamental group of $G_{\mathbb{R}} = \text{Sp}(2n, \mathbb{R})$ is \mathbb{Z} . Thus, for any finite cyclic group Z, there is a (unique) connected covering group $\widetilde{G_{\mathbb{R}}}$ of $G_{\mathbb{R}}$ with covering group Z. The inverse image $\widetilde{\Gamma}$ of $\Gamma = \text{Sp}(2n, \mathbb{Z})$ in $\widetilde{G_{\mathbb{R}}}$ is a lattice in $\widetilde{G_{\mathbb{R}}}$.

Proposition (Deligne). *If* #Z > 2, *then* $\tilde{\Gamma}$ *has no torsion-free subgroup of finite index.*

Proof

We prove the contrapositive: assuming that $\tilde{\Gamma}$ has a torsion-free subgroup of finite index (or, equivalently, $\tilde{\Gamma}$ is residually finite), we will show $\#Z \leq 2$.

It is known that Γ has the Congruence Subgroup Property. This means that the profinite completion of Γ is

$$\widehat{\Gamma} \cong \underset{p \text{ prime}}{\times} \operatorname{Sp}(2n, \mathbb{Z}_p),$$

where \mathbb{Z}_p denotes the ring of *p*-adic integers. Since $\tilde{\Gamma}$ is residually finite, the profinite completion of $\tilde{\Gamma}$ is a central extension of $\hat{\Gamma}$ by *Z*:

$$e \to Z \to \widehat{\widetilde{\Gamma}} \to \widehat{\Gamma} \to e.$$

Now, we will obtain an analogous result that replaces the arithmetic group $\Gamma = \text{Sp}(2n, \mathbb{Z})$ with the algebraic group $G_{\mathbb{Q}} = \text{Sp}(2n, \mathbb{Q})$. We define a topology on $G_{\mathbb{Q}}$ by declaring the subgroups of finite index in Γ to be the basic open sets containing *e*. (And the translates of these subgroups are the basic open sets at any other point. Since $G_{\mathbb{Q}}$ commensurabilizes Γ , it does not matter whether we translate on the left or on the right — the same topology is obtained.) Then we can complete $G_{\mathbb{Q}}$ to obtain a totally disconnected

group $\widehat{G}_{\mathbb{Q}}$ that contains $\widehat{\Gamma}$ as a compact open subgroup. Indeed, from the description of $\widehat{\Gamma}$, we see that

$$\widehat{G}_{\mathbb{Q}} = \mathop{\times}\limits_{p \text{ prime}}^{\circ} \operatorname{Sp}(2n, \mathbb{Q}_p),$$

where X represents the restricted (or "adelic") product in which all but finitely many coordinates g_p are required to be in the compact group $\text{Sp}(2n, \mathbb{Z}_p)$. This is a locally compact group.

Note. The direct product $G_{\mathbb{R}} \times \widehat{G_{\mathbb{Q}}}$ is the adelic group $G_{\mathbb{A}} = \text{Sp}(2n, \mathbb{A})$.

Similarly, we complete $\widetilde{G}_{\mathbb{Q}}$ with respect to the topology defined by the finite-index subgroups of $\widetilde{\Gamma}$, so $\hat{\widetilde{\Gamma}}$ is a compact open subgroup of $\widehat{\widetilde{G}_{\mathbb{Q}}}$.

We have a central extension:

$$e \to Z \to \widehat{\widetilde{G}_{\mathbb{Q}}} \to \widehat{G}_{\mathbb{Q}} \to e.$$

Taking the product of this with the central extension

$$e \to Z \to \widetilde{G_{\mathbb{R}}} \to G_{\mathbb{R}} \to e$$

yields a central extension

$$e \to Z \times Z \to \widetilde{G_{\mathbb{R}}} \times \widehat{\widetilde{G_{\mathbb{Q}}}} \to G_{\mathbb{A}} \to e.$$

Now, let

$$\widetilde{G_{\mathbb{A}}} = \frac{\widetilde{G_{\mathbb{R}}} \times \widehat{\widetilde{G_{\mathbb{Q}}}}}{\{(z,z) \mid z \in Z\}},$$

so we have a central extension

 $(*) \qquad \qquad e \to Z \to \widetilde{G_{\mathbb{A}}} \to G_{\mathbb{A}} \to e.$

Note that the diagonal embedding

$$\widetilde{G_{\mathbb{Q}}} \to \widetilde{G_{\mathbb{R}}} \times \widehat{\widetilde{G_{\mathbb{Q}}}}$$

factors through to a well-defined embedding

$$G_{\mathbb{Q}} \to \widetilde{G_{\mathbb{A}}}.$$

Hence, the extension (*) splits over $G_{\mathbb{Q}}$.

Now, the following theorem of C. C. Moore immediately implies that $\#Z \le 2$.

Theorem (Moore). There is a "universal" topological central extension

$$e \to \mathbb{Z}/2\mathbb{Z} \to E \to G_{\mathbb{A}} \to e$$

that splits over $G_{\mathbb{Q}}$, such that if

$$e \to Z \to \widetilde{G_{\mathbb{A}}} \to G_{\mathbb{A}} \to e$$

is any topological central extension that splits over G_Q , with Z discrete, then there is a commutative diagram

In our case, we know that the map $E \to \widetilde{G_A}$ is surjective, because $\widetilde{G_R}$ is perfect and contains *Z*. Therefore *Z* is a quotient of $\mathbb{Z}/2\mathbb{Z}$, so $\#Z \leq 2$, as desired.

DISCUSSION OF MOORE'S THEOREM

It is well known that the fundamental group of the real Lie group $\text{Sp}(2n, \mathbb{R})$ is \mathbb{Z} , so the universal cover is a central extension

$$e \to \mathbb{Z} \to \widetilde{\operatorname{Sp}(2n, \mathbb{R})} \to \operatorname{Sp}(2n, \mathbb{R}) \to e$$

Deodhar (with details completed by Deligne) calculated an analogous "fundamental group" of the *p*-adic Lie group $Sp(2n, \mathbb{Q}_p)$ (and of more general "quasi-split" *p*-adic groups).

Theorem (Deodhar, Deligne). For every prime p, there is a universal central extension G_p of $\operatorname{Sp}(2n, \mathbb{Q}_p)$ with discrete kernel. Furthermore, the kernel of the universal extension is the group μ_p of all roots of unity in \mathbb{Q}_p^{\times} .

For almost every p, the extension \widetilde{G}_p splits over the maximal compact subgroup $\operatorname{Sp}(2n, \mathbb{Z}_p)$ of $\operatorname{Sp}(2n, \mathbb{Q}_p)$. This allows us to define the restricted direct product

$$\overset{\circ}{\underset{p}{\times}}\widetilde{G_{p}}.$$

(We include $p = \infty$ in this product, where $\mathbb{Q}_{\infty} = \mathbb{R}$.) This is a central extension of $G_{\mathbb{A}}$:

$$(**) \qquad e \to \bigoplus_p \mu_p \to \bigotimes_p^{\circ} \widetilde{G}_p \to G_{\mathbb{A}} \to e,$$

where we let $\mu_p = \mathbb{Z}$ for $p = \infty$.

For each p, there is a unique surjection $\sigma_p: \mu_p \to \mu$, where $\mu \cong \mathbb{Z}/2\mathbb{Z}$ is the group $\{\pm 1\}$ of roots of unity in \mathbb{Q} . The sum of these homomorphisms is a homomorphism

$$\sigma\colon \bigoplus_p \mu_p \to \mu.$$

Applying σ to the kernel of the extension (**) yields a central extension

$$e \rightarrow \mu \rightarrow E \rightarrow G_{\mathbb{A}} \rightarrow e.$$

Moore proved (not only for symplectic groups) that this extension splits over G_Q , and that it is the universal extension with this property.

REFERENCES

- P. Deligne: Extensions centrales non résiduellement finies de groupes arithmétiques, *C. R. Acad. Sci. Paris Ser. A* 287 (1978), no. 4, 203–208. MR MR0507760 (80g:20056)
- [2] C.C.Moore: Group extensions of p-adic and adelic linear groups, Publ. Math. I.H.E.S. 35 (1968) 5-70.