Some lattice subgroups that cannot act on the line (after Deroin and Hurtado)

Dave Witte Morris

University of Lethbridge, Alberta, Canada https://deductivepress.ca/dmorris dmorris@deductivepress.ca
Abstract: Deroin and Hurtado recently proved the 30-year-old conjecture that no lattice in SL($3, \mathbb{R}$) can act faithfully (by homeomorphisms) on the real line. (The same is true for irreducible lattices in other semisimple Lie groups of real rank at least two.) We will discuss this theorem, and point out that the same methods apply to lattices in p-adic groups. In fact, the p-adic case is easier, because some of the technical issues do not arise.
https://deductivepress.ca/dmorris/talks/deroin-hurtado.pdf

Let $G=\operatorname{SL}(3, \mathbb{R})=\{3 \times 3$ mats \mid det $=1, \mathbb{R}$ entries $\}$ $=$ semisimple Lie group, with $\operatorname{rank}_{\mathbb{R}} G \geq 2$
Let $\Gamma=$ irreducible lattice in $G \quad(=\operatorname{SL}(3, \mathbb{Z}))$

- Γ is discrete (no accumulation points)
- G / Γ has finite volume

Zimmer program [1980s-now]

Show: if M is a compact mfld, and $\operatorname{dim} M$ is "small," then Γ cannot act faithfully on $M(\Gamma \xrightarrow{\nmid} M)$ by diffeos.

Completed by Brown-Fisher-Hurtado [2020-2022+].
But what about actions by homeomorphisms? Assume $\operatorname{dim} M=1$. (Higher dimensions wide open.)

Γ lattice in $\operatorname{SL}(3, \mathbb{R}), \operatorname{dim} M=1: \Gamma \xrightarrow{?} M$.

Thm [Witte, 1994]. $\quad \dot{\operatorname{SL}}(3, \mathbb{Z}) \xrightarrow{\text { q }} S^{1}$ or \mathbb{R}.

What about other latts in $\operatorname{SL}(3, \mathbb{R})$?
or in other semisimple Lie groups
Theorem (Ghys, Burger-Monod [1999]) If $\dot{\Gamma} \nVdash \mathbb{R}$, then $\Gamma \nrightarrow S^{1}$. (unless $\mathrm{SL}(2, \mathbb{R})$ is a factor of G)

Theorem (Deroin-Hurtado [2022+])

$\Gamma \xrightarrow{\mu} \mathbb{R}$.

(unless $\widetilde{\mathrm{SL}(2, \mathbb{R})}$ is a factor of G)
Γ is a lattice in $\operatorname{SL}(3, \mathbb{R})$, but same proof (easier): $\Gamma \stackrel{\leftrightarrow}{\boldsymbol{p}} \mathbb{R}\left(\right.$ or $\left.S^{1}\right)$ if $\Gamma=$ lattice in $\operatorname{SL}\left(3, \mathbb{Q}_{p}\right)$. work in progress
Apparently(?): also lattices in $\operatorname{SL}(3, \mathbb{R}) \times \operatorname{SL}\left(3, \mathbb{Q}_{p}\right)$. ($\Gamma=S$-arithmetic group, no p-adic factors of rank 1)

Almost-periodic space

Theorem (Deroin, Deroin et al. [2013, $\left.2022^{+}\right]$)
If $\Gamma \rightarrow \mathbb{R}$, then \exists compact metrizable space Z :

- $\mathbb{R} \xrightarrow{\text { free }} Z$ and $\Gamma \rightarrow Z$ with no global fixed point,
- each \mathbb{R}-orbit is Γ-invariant, and
- additional technical conditions are satisfied.

Proof.

$\exists \Gamma \rightarrow \mathbb{R}$, bi-Lipschitz, bdd displacement, etc.

$$
Z \doteq\left\{\Gamma \stackrel{\varphi}{\rightarrow} \mathbb{R}\left|\forall \operatorname{gen} \gamma,\left|\varphi_{\gamma}(x)-x\right|<C, \cdots\right\} .\right.
$$

$\mathbb{R} \rightarrow Z:{ }^{t} \varphi_{\gamma}(x)=\varphi_{\gamma}(x-t)+t$. (conjugate by translation) $\Gamma \rightarrow Z:{ }^{\lambda} \varphi={ }^{\varphi_{\lambda}(0)} \varphi$.

$\mathbb{R} \leftrightarrow Z, \Gamma \leftrightarrow Z$, and each \mathbb{R}-orbit is Γ-invariant

Induce to a G-action (classical)

Let $X=(G \times Z) / \Gamma$, where $(h, z) * \gamma=\left(h \gamma, \gamma^{-1} z\right)$. So $G \rightarrow X$ by $g[(h, z)]=[(g h, z)]$ and $X \simeq G / \Gamma \times Z$.

Let $K=\operatorname{SL}\left(3, \mathbb{Z}_{p}\right)=$ compact, open subgroup of G.
Since K is open, we know $K \backslash G$ is discrete. Since G / Γ is compact, this implies $K \backslash G / \Gamma$ is finite. For simplicity, assume $G=K \Gamma$.
So we can identify G / Γ with $K: \quad X \simeq K \times Z$.

this is easier than the real case

Stationary measures

$$
\mathbb{R} \leftrightarrow Z, \Gamma \leftrightarrow Z, G \leftrightarrow X, X \simeq G / \Gamma \times Z \simeq K \times Z
$$

Let $\mu_{G}=$ nice bi- K-invariant probability meas on G.
$G=K \Gamma \Rightarrow \mu_{G}=\mu_{K} * \mu_{\Gamma}$ $\mu_{K}=$ Haar on K,
$\mu_{\Gamma}=$ nice prob meas on Γ
Let $\mu_{Z}=$ an ergodic \mathbb{R}-inv't probability measure on Z. Z can be constructed so mean displacement is 0 :

$$
\forall z \in Z, \quad \sum_{\gamma \in \Gamma}(\gamma z-z) \mu_{\Gamma}(\gamma)=0 .
$$

Then μ_{Z} is μ_{Γ}-stationary:

$$
\sum_{\gamma} \mu_{\Gamma}(\gamma) \gamma_{*} \mu_{Z}=\mu_{\Gamma} * \mu_{Z}=\mu_{Z}
$$

So $\mu_{X}=\mu_{K} \times \mu_{Z}$ is μ_{G}-stationary.
harder to define μ_{X} in real case
$\mathbb{R} \rightarrow Z, Г \rightarrow Z, G \rightarrow X, X \simeq G / \Gamma \times Z \simeq K \times Z$ $\mu_{X}=\mu_{K} \times \mu_{Z}$ is μ_{G}-stationary

Let $P=\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right]$ and $A=\left[\begin{array}{ccc}* & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & *\end{array}\right] \subset P$.
For $a \in A, \quad U_{a}^{+}=\left\{\begin{array}{l|l}u \in G & \begin{array}{l}a^{n} u a^{-n} \rightarrow 1 \\ \text { as } n \rightarrow-\infty\end{array}\end{array}\right\}$.

Theorem (Furstenburg [1963]

\exists ! P-inv't prob measure μ_{P} on $X, \quad \mu_{X}=\int_{K} k_{*} \mu_{P} d k$.

Key Proposition

If $\quad U_{a}^{+} \subseteq P \quad$ and $\quad a$ is "leafwise-contracting," then μ_{P} is $C_{G}(a)$-invariant.

Before proving this, see how it gives a contradiction.

Key. $U_{a}^{+} \subseteq P($ leafwise-contracting $) \Rightarrow \mu_{P}$ is $C_{G}(a)$-inv't.
Cor. μ_{P} is G-invariant. ("propagating invariance")
Proof (ignore need to be leafwise-contracting).
$a^{n}=\left[\begin{array}{ll}■ & \\ & \boxed{\square}\end{array}\right] \Rightarrow U_{a}^{+}=\left[\begin{array}{cc}1 & * \\ & 1 \\ & \\ & 1\end{array}\right] \Rightarrow\left[\begin{array}{cc}* & * \\ * & \\ & \\ & \\ & \end{array}\right]$-inv't.
$a^{n}=\left[\begin{array}{ll}\square & .\end{array}\right] \Rightarrow U_{a}^{+}=\left[\begin{array}{ccc}1 & * & * \\ & 1 & 1 \\ & & 1\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & \underset{*}{*} \\ & * & *\end{array}\right]$-inv't.
G is generated by these centralizers.
This is where higher rank is used;: \quad rank $1 \Rightarrow C_{G}(a) \doteq A \subset P$. \therefore Argument is more complicated if some simple factor has rank 1 .
$\mu_{K} \times \mu_{Z}=\mu_{X}=\int_{K} k_{*} \mu_{P} d k=\int_{K} \mu_{P} d k=\mu_{P}$ is G-inv't. So μ_{Z} is Γ-inv't, so $\Gamma \rightarrow \mathbb{R}$-orbits by translations, so $\Gamma \xrightarrow{\text { homo }} \mathbb{R}$.

Leafwise-Contracting (globally contracting)

Some half-plane of A is leafwise-contracting.
Action on each leaf is Lipschitz, so diff'ble a.e. Let

$$
\chi(a)=\int_{X} \log D_{\text {leaf }} a(x) d \mu_{P}(x) .
$$

Then $x: A \rightarrow \mathbb{R}$ is a homomorphism.
Fact. χ is nontrivial: $\exists a, \chi(a)<0$ and $U_{a}^{+} \subset P$. Idea of proof: $\mu_{X}(a X)=\mu_{X}(X)$, so $\int D_{\text {leaf }} a=1$. Jensen's Ineq: \log is concave, so $\int \log D_{\text {leaf }}<\log 1$. Since $\mu_{X}=\int_{K} k_{*} \mu_{p} d k$, can conclude also for μ_{P}.

Theorem

$$
\begin{aligned}
& \forall a \in \chi^{-1}\left(\mathbb{R}^{-}\right), \text {for a.e. } x \in X, \\
& \\
& \forall y \in \mathbb{R} x, \quad d_{\text {leaf }}\left(a^{n} x, a^{n} y\right) \rightarrow 0 .
\end{aligned}
$$

Key Proposition

If $\quad U_{a}^{+} \subseteq P \quad$ and $\quad a$ is leafwise-contracting, then μ_{P} is $C_{G}(a)$-invariant.

Proof. Let $c \in C_{G}(A)$. We wish to show $c_{*} \mu_{P}=\mu_{P}$. Recall: μ_{P} is a P-inv't prob meas on $X \simeq G / \Gamma \times Z$. Let x be a Birkhoff-generic point for a w.r.t. μ_{p}. Then $a^{k} c x \approx x$ is Birkhoff-generic w.r.t. $c_{*} \mu_{P}$.

$$
x_{c}=a^{k} c x \stackrel{G / \Gamma}{=} g^{-} u^{+} x \quad \begin{gathered}
\text { technical } \\
\text { issue }
\end{gathered}
$$

μ_{P} is U_{a}^{+}-inv't, so $x_{0}=u^{+} x$ is also generic. (a.e.)

- $d\left(a^{n} x_{0}, a^{n} g^{-} x_{0}\right) \prec\left\|g^{-}\right\| \approx 0$,
- $d\left(a^{n} x_{c}, a^{n} g^{-} x_{0}\right)=d_{\text {leaf }}\left(a^{n} x_{c}, a^{n} g^{-} x_{0}\right) \rightarrow 0$.
$\therefore x_{0}$ and x_{c} have almost same Birkhoff averages.

$$
\text { So } \mu_{P}=c_{*} \mu_{P} .
$$

Key. $U_{a}^{+} \subseteq P$ (leafwise-contracting) $\Rightarrow \mu_{P}$ is $C_{G}(a)$-inv't.
Cor. μ_{P} is G-invariant. ("propagating invariance")

Proof.

Fix a_{0} with $\chi\left(a_{0}\right)<0$ and $U_{a_{0}}^{+} \subset P$, so $a_{0} \in \mathcal{W}_{P}$. Contracting half-plane contains an adjacent \mathcal{W}_{Q}. Choose a_{1} on boundary:

$$
\mu_{P} \text { is } C_{G}\left(a_{1}\right) \text {-inv't. }
$$

Weyl grp el't $w \in C_{G}\left(a_{1}\right)$ reflects across this side.
Then $\mu_{P}=w_{*} \mu_{P}=\mu_{Q}$. Choose a_{2} on other bdry of \mathcal{W}_{Q} so $\mu_{P}=\mu_{Q}$ is $C_{G}\left(a_{2}\right)$-inv't. These centralizers generate G.

Main reference:

Bertrand Deroin and Sebastian Hurtado:
Non left-orderability of lattices in higher rank semi-simple Lie groups. https://arxiv.org/abs/2008.10687

Almost-periodic space:
Bertrand Deroin: Almost-periodic actions on the real line.
Enseign. Math. 59 (2013)183-194. MR 3113604
Bertrand Deroin, Victor Kleptsyn, Andrés Navas, Kamlesh Parwani: Symmetric random walks on Homeo $+(\mathbb{R})$. Ann. Probab. 41 (2013) 2066-2089. MR 3098067

Stationary measures:
Harry Furstenberg: Noncommuting random products.
Trans. Amer. Math. Soc. 108 (1963) 377-428. MR 0163345

Zimmer program:
Aaron Brown, David Fisher, Sebastian Hurtado: Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T). Ann. of Math. (2) 196 (2022) 891-940. MR 4502593

Aaron Brown, David Fisher, Sebastian Hurtado:
Zimmer's conjecture for non-uniform lattices and escape of mass. https://arxiv.org/abs/2105.14541

David Fisher: Recent developments in the Zimmer program. Notices Amer. Math. Soc. 67 (2020) 492-499. MR 4186267

Older papers on actions of lattices on 1-dimensional manifolds:
Étienne Ghys: Actions de réseaux sur le cercle.
Invent. Math. 137 (1999) 199-231. MR 1703323
Marc Burger and Nicolas Monod:
Bounded cohomology of lattices in higher rank Lie groups.
J. Eur. Math. Soc. (JEMS) 1 (1999) 199-235. MR 1694584

Marc Burger: An extension criterion for lattice actions on the circle, in Geometry, rigidity, and group actions, ed. by B. Farb and D. Fisher.
Univ. Chicago Press, Chicago, IL, 2011. pp. 3-31. MR 2807827
Étienne Ghys: Groups acting on the circle.
Enseign. Math. (2) 47 (2001), no. 3-4, 329-407. MR 1876932
Dave Witte:
Arithmetic groups of higher \mathbb{Q}-rank cannot act on 1-manifolds.
Proc. Amer. Math. Soc. 122 (1994) 333-340. MR 1198459
Lucy Lifschitz and Dave Witte Morris:
Bounded generation and lattices that cannot act on the line, Pure Appl. Math. Q. 4 (2008), no. 1, part 2, 99-126. MR 2405997

