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Abstract: Deroin and Hurtado recently proved the 30-year-old
conjecture that no lattice in SL(3,R) can act faithfully (by
homeomorphisms) on the real line. (The same is true for
irreducible lattices in other semisimple Lie groups of real
rank at least two.) We will discuss this theorem, and point
out that the same methods apply to lattices in p-adic groups.
In fact, the p-adic case is easier, because some of the
technical issues do not arise.
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Let G = SL(3,R) = {3× 3 mats | det = 1, R entries}
= semisimple Lie group, with rankRG ≥ 2

Let Γ = irreducible lattice in G (= ṠL(3,Z))
Γ is discrete (no accumulation points)
G/Γ has finite volume

Zimmer program [1980s–now]
Show: if M is a compact mfld, and dimM is “small,”
then Γ cannot act faithfully on M (Γ # # #! M) by diffeos.

Completed by Brown-Fisher-Hurtado [2020–2022+].

But what about actions by homeomorphisms?
Assume dimM = 1. (Higher dimensions wide open.)
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Γ lattice in SL(3,R), dimM = 1: Γ ?! M .

Thm [Witte, 1994]. ṠL(3,Z) # # #! S1 or R.

What about other latts in SL(3,R)? or in other semi-
simple Lie groups

Theorem (Ghys, Burger-Monod [1999])

If Γ̇ # # #! R, then Γ # # #! S1. (unless SL(2,R) is a factor of G)

Theorem (Deroin-Hurtado [2022+])
Γ # # #! R. (unless ˜SL(2,R) is a factor of G)

Γ is a lattice in SL(3,RRR), but same proof (easier):

Γ # # #! R (or S1) if Γ = lattice in SL(3,Qp). work in
progress

Apparently(?): also lattices in SL(3,R)× SL(3,Qp).
( Γ = S-arithmetic group, no p-adic factors of rank 1)
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Almost-periodic space

Theorem (Deroin, Deroin et al. [2013, 2022+])
If Γ! R, then ∃ compact metrizable space Z :

R
free
! Z and Γ! Z with no global fixed point,

each R-orbit is Γ -invariant, and
additional technical conditions are satisfied.

Proof.
∃ Γ! R, bi-Lipschitz, bdd displacement, etc.

Z % { Γ
ϕ
! R | ∀gen γ, |ϕγ(x)− x| < C, · · · }.

R! Z : (conjugate by translation)tϕγ(x) =ϕγ(x − t)+ t.
Γ! Z : λϕ = ϕλ(0)ϕ.
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R! Z , Γ! Z , and each R-orbit is Γ -invariant

Induce to a GGG-action (classical)
Let X = (G × Z)/Γ , where (h, z)∗ γ = (hγ,γ−1z).
So G! X by g[(h, z)] = [(gh, z)] and X ) G/Γ × Z .

Let K = SL(3,Zp) = compact, open subgroup of G.

Since K is open, we know K\G is discrete.
Since G/Γ is compact, this implies K\G/Γ is finite.

For simplicity, assume G = K Γ .
So we can identify G/Γ with K: X ) K × Z .

this is easier than the real case
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Stationary measures

R! Z , Γ! Z , G! X, X ) G/Γ × Z ) K × Z

Let µG = nice bi-K-invariant probability meas on G.
G = K Γ ⇒ µG = µK ∗ µΓ µK = Haar on K,

µΓ = nice prob meas on Γ

Let µZ = an ergodic R-inv’t probability measure on Z .
Z can be constructed so mean displacement is 0:

∀z ∈ Z,
∑
γ∈Γ

(
γz − z)µΓ(γ) = 0.

Then µZ is µΓ -stationary:∑
γ µΓ(γ)γ∗µZ = µΓ ∗ µZ = µZ .

So µX = µK × µZ is µG-stationary. harder to define
µX in real case
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R! Z , Γ! Z , G! X, X ) G/Γ × Z ) K × Z
µX = µK × µZ is µG-stationary

Let P =
[∗ ∗ ∗

0 ∗ ∗
0 0 ∗

]
and A =

[
∗ 0 0
0 ∗ 0
0 0 ∗

]
⊂ P .

For a ∈ A, U+a =
{
u ∈ G

∣∣∣∣
anua−n → 1
as n→ −∞

}
.

Theorem (Furstenburg [1963] (real case))

∃! P -inv’t prob measure µP on X, µX =
∫
K k∗ µP dk.

Key Proposition
If U+a ⊆ P and a is “leafwise-contracting,”

then µP is CG(a)-invariant.

Before proving this, see how it gives a contradiction.
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Key. U+a ⊆ P (leafwise-contracting) ⇒ µP is CG(a)-inv’t.

Cor. µP is G-invariant. (“propagating invariance”)

Proof (ignore need to be leafwise-contracting).

an =
[ ]

⇒ U+a =
[

1 ∗
1 ∗

1

]
⇒
[∗ ∗∗ ∗

1

]
-inv’t.

an =
[ ]

⇒ U+a =
[

1 ∗ ∗
1

1

]
⇒
[

1 ∗ ∗∗ ∗

]
-inv’t.

G is generated by these centralizers.

This is where higher rank is used;: rank 1 ⇒ CG(a) % A ⊂ P .
∴∴∴ Argument is more complicated if some simple factor has rank 1.

µK×µZ = µX =
∫
K k∗ µP dk =

∫
K µP dk = µP is G-inv’t.

So µZ is Γ -inv’t, so Γ! R-orbits by translations,

so Γ homo"→ R. →←
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Leafwise-Contracting (globally contracting)

Some half-plane of A is leafwise-contracting.

Action on each leaf is Lipschitz, so diff’ble a.e. Let
χ(a) =

∫
X log Dleafa(x)dµP(x).

Then χ : A→ R is a homomorphism.

Fact. χ is nontrivial: ∃a, χ(a) < 0 and U+a ⊂ P .
Idea of proof: µX(aX) = µX(X), so

∫
Dleafa = 1.

Jensen’s Ineq: log is concave, so
∫

logDleaf < log 1.
Since µX =

∫
K k∗ µp dk, can conclude also for µP .

Theorem
∀a ∈ χ−1(R−), for a.e. x ∈ X,

∀y ∈ Rx, dleaf(anx,any)→ 0.
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Key Proposition
If U+a ⊆ P and a is leafwise-contracting,

then µP is CG(a)-invariant.

Proof. Let c ∈ CG(A). We wish to show c∗µP = µP .
Recall: µP is a P -inv’t prob meas on X ) G/Γ × Z .
Let x be a Birkhoff-generic point for a w.r.t. µP .
Then ak cx ≈ x is Birkhoff-generic w.r.t. c∗µP .

xc = ak cx G/Γ= g−u+x
µP is U+a -inv’t, so x0 = u+x is also generic. (a.e.)

technical
issue

d(anx0, ang−x0) ≺ ‖g−‖ ≈ 0,
d(anxc, ang−x0) = dleaf(anxc,ang−x0)→ 0.

∴∴∴ x0 and xc have almost same Birkhoff averages.
So µP = c∗µP .
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Key. U+a ⊆ P (leafwise-contracting) ⇒ µP is CG(a)-inv’t.

Cor. µP is G-invariant. (“propagating invariance”)

Proof.
Fix a0 with χ(a0) < 0 and U+a0

⊂ P , so a0 ∈WP .
Contracting half-plane contains an adjacent WQ.
Choose a1 on boundary:

µP is CG(a1)-inv’t.
Weyl grp el’t w ∈ CG(a1)
reflects across this side.
Then µP = w∗ µP = µQ.
Choose a2 on other bdry of WQ

so µP = µQ is CG(a2)-inv’t.
These centralizers generate G.
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