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Defn of Cayley graph.
G = finite group (e.g., dihedral grp of order 8)
Ds=(ftle=f*=t" ftf=t"")

S = generating set of G (e.g, {f,t})
6 —
Cayley graph Cay(G; S):
vertices = elements of G f tf
edge v — vst!
forve G and s €S £ f £2f

Cay(Dap; f,t) has a ham cycle.
1 — 2

(Easy if G abelian.)
e Cay(G;S) has a hamiltonian path.

e Cay(G;S) has a path of length € #G.

e Cay(G;S) has a ham cycle for some irredundant S.

Conj. Cay(G;S) has a ham cycle.

e [Babai] Opposite conjecture: not always a ham path.

Prop.
e [Babai] 3 path (& cycle) of length ~ /#G.
o [Pak] VG, 35, Cay(G;S) has a ham cyc,
and #S < log, #G.
o [Witte] VS, 35’, Cay(G;S’) has a ham cyc,
and #S' < (#5)2.

Problem. Prove the conjecture when G is dihedral.

Eg. Cay(Day; f, ft°, f1°)
e valence 3,

(with ged(a,b,n) = 1)

e embeds on torus,
o [Alspach-Zhang]
has a ham cycle.

Conj. Cay(Day,; {reflections})
has a ham cycle.

(Then Cay(Da,; {anything})
has a ham cycle.)

Thm [Witte]. Cay(G;S) has a hamiltonian cycle
if #G is a prime power p".

Problem. Find hamiltonian cycle if #G = 2p".

Problem. Find hamiltonian cycle if G = P x @
where #P and #Q are prime powers.
(G is “nilpotent.”)

Conj. Cay(G;S) has a hamiltonian cycle.
True when G is “almost” abelian.

Defn. commutator subgroup of G = [G, G|
= (g7'h7'ghl g, h € G).
Rem. G is abelian <= [G,G] = {e}.
Thm [Durnberger, Marusic, Keating-Witte].
Cay(G; S) has a ham cycle if [G,G] has prime order

or, more generally, is cyclic of prime-power order.

Problem. Find ham cycle if [G,G] is cyclic.
Problem. Find ham cycle if [G,G] = Zo & Zs.

Thm [Durnberger, Marusic¢, Keating-Witte].
Cay(G; S) has a ham cycle if [G, G| has prime order.

Idea of proof. G = G/|G,G] is abelian
= Cay(G; S) has a ham cyc C. ¢

Lift C to a path P in Cay(G;S).

Assume P is not a cycle.
[“Marusic’s method”]

Then we construct ham cyc
in Cay(G;95)

by concatenating translates of P.

O000Q

Thm [Alspach]. Cay(G;s,t) has a ham cyc
if (s) is a normal subgroup of G.

Problem. Show Cay(G;S) has a ham cyc if
o (s) <G, for some s € S, and
e Cay(G/(s); S) has a ham cyc.
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Thm [Paulraja].
The prism over X has a hamiltonian cycle if

X is cubic and 3-connected.
(Short proof: [Cada-Kaiser-Rosenfeld-Ryjacek])
Problem. Find ham cyc in prism Cay(G;S) O Ps.

Paulraja: Case where valence is three.

Many Cayley digraphs do not have hamiltonian cycles.

Eg. (with G cyclic ): C—a})/(Zlg; 3,4) has no ham cyc.
[Rankin]: C—a};(Zn; s,s+ 1) has no ham cyc

unless ged(n,s) =1 or ged(n,s+ 1) = 1.
In general, @;(Zn; s,t) has ham cyc

< ged(n, ks + £t) = 1, with k + £ = ged(n, s —t).
Problem. When does (%J;'(Zn; a,b,c) have a ham cyc?
Thm [Locke-Witte]. 3 oo non-hamiltonian examples.

Conj [Curran-Witte]. {a,b, c} irredundant = 3 ham cyc.
Rem. G abelian = C—a};(G; S) has ham path.
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