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Defn of Cayley graph.
G = finite group (e.g., dihedral grp of order 8)

D8 = 〈 f, t | e = f2 = t4, ftf = t−1 〉
S = generating set of G (e.g., {f, t})
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Cayley graph Cay(G; S):
vertices = elements of G

edge v vs±1

for v ∈ G and s ∈ S

Cay(D2n; f, t) has a ham cycle.

Conj. Cay(G; S) has a ham cycle. (Easy if G abelian.)
• Cay(G; S) has a hamiltonian path.
• Cay(G; S) has a path of length #G.ε

• Cay(G; S) has a ham cycle for some irredundant S.
• [Babai] Opposite conjecture: not always a ham path.

Prop.
• [Babai] ∃ path (& cycle) of length ≈

√
#G.

• [Pak] ∀G, ∃S, Cay(G; S) has a ham cyc,
and #S ≤ log2 #G.

• [Witte] ∀S, ∃S′, Cay(G; S′) has a ham cyc,
and #S′ ≤ (#S)2.

Problem. Prove the conjecture when G is dihedral.

Eg. Cay(D2n; f, fta, ftb) (with gcd(a, b, n) = 1)
• valence 3,
• embeds on torus,
• [Alspach-Zhang]

has a ham cycle.

Conj. Cay(D2n; {reflections})
has a ham cycle.

(Then Cay(D2n; {anything})
has a ham cycle.)

Thm [Witte]. Cay(G; S) has a hamiltonian cycle
if #G is a prime power pn.

Problem. Find hamiltonian cycle if #G = 2pn.

Problem. Find hamiltonian cycle if G = P × Q

where #P and #Q are prime powers.
(G is “nilpotent.”)

Conj. Cay(G; S) has a hamiltonian cycle.
True when G is abelian.“almost”

Defn. commutator subgroup of G = [G, G]
= 〈 g−1h−1gh| g, h ∈ G 〉.

Rem. G is abelian ⇐⇒ [G, G] = {e}.

Thm [Durnberger, Marušič, Keating-Witte].
Cay(G; S) has a ham cycle if [G, G] has prime order
or, more generally, is cyclic of prime-power order.

Problem. Find ham cycle if [G, G] is cyclic.
Problem. Find ham cycle if [G, G] ∼= Z2 ⊕ Z2.

Thm [Durnberger, Marušič, Keating-Witte].
Cay(G; S) has a ham cycle if [G, G] has prime order.

Idea of proof. G = G/[G, G] is abelian
⇒ Cay(G; S) has a ham cyc C.

Lift C to a path P in Cay(G; S).

Assume P is not a cycle.
[“Marušič’s method”]

Then we construct ham cyc
in Cay(G; S)

by concatenating translates of P .

Thm [Alspach]. Cay(G; s, t) has a ham cyc
if 〈s〉 is a normal subgroup of G.

Problem. Show Cay(G; S) has a ham cyc if
• 〈s〉 " G, for some s ∈ S, and
• Cay(G/〈s〉; S) has a ham cyc.
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Thm [Paulraja].
The prism over X has a hamiltonian cycle if

X is cubic and 3-connected.

(Short proof: [Čada-Kaiser-Rosenfeld-Ryjáček])

Problem. Find ham cyc in prism Cay(G; S) P2.

Paulraja: Case where valence is three.

Many Cayley digraphs do not have hamiltonian cycles.

Eg. (with G cyclic ): −−→Cay(Z12; 3, 4) has no ham cyc.
[Rankin]: −−→Cay(Zn; s, s + 1) has no ham cyc

unless gcd(n, s) = 1 or gcd(n, s + 1) = 1.
In general, −−→Cay(Zn; s, t) has ham cyc

⇐⇒ gcd(n, ks + #t) = 1, with k + # = gcd(n, s − t).

Problem. When does −−→Cay(Zn; a, b, c) have a ham cyc?
Thm [Locke-Witte]. ∃ ∞ non-hamiltonian examples.

Conj [Curran-Witte]. {a, b, c} irredundant ⇒ ∃ ham cyc.

Rem. G abelian ⇒ −−→Cay(G; S) has ham path.
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