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Abstract

Place a checker on one square of a checkerboard.
Asking whether the checker can make a tour of
the board leads to some difficult questions, and to
interesting fields of mathematics, such as number
theory, topology, and group theory.

The title is from a talk by J. A. Gallian on similar material.

A checker is in the Southwest corner of a standard
8 × 8 checkerboard.

Can the checker tour the board?

What about rectangular (a × b) checkerboards?

• The checker moves North, South, East, West
(not diagonally!)

• A tour must visit each square exactly once
and return to the starting point.

Prop. A checker can tour any board with an even
number of squares.

Prop. A checker cannot tour a board with an odd
number of squares.

Proof. NORTH = SOUTH and EAST = WEST.

TOTAL
= NORTH + SOUTH + EAST + WEST
= (2 × NORTH) + (2 × EAST)

is an even number.

TOTAL = # squares on the checkerboard.

Allow the checker to step off the edge of the board.

(The board is now toroidal, rather than flat.)

Prop. A checker can tour any board if allowed to
step off the edge.
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Find a route that always travels North or East.

This is easy on the 8 × 8 checkerboard.

Defn. A board is hamiltonian if it has such a tour.

Prop. Any square checkerboard is hamiltonian.

Eg. The 3 × 5 checkerboard is not hamiltonian.

Proof by contradiction.

The tour must have 15 steps: E + N = 15.

E is divisible by 5.
N is divisible by 3.

E cannot be 0 or 15,
so E is either 5 or 10,
so N is either 10 or 5.

Neither of these is divisible by 3. →←

Exer. More generally, the a × b checkerboard is
not hamiltonian if a and b are relatively prime

(that is, if gcd(a, b) = 1)
and a, b ≥ 2.

In general, deciding whether a checkerboard is
hamiltonian involves the geometry of lattice points
in the plane.

Defn. A lattice point is a point with integer coor-
dinates.
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Stand at origin:
(4, 6) is not visible gcd(4, 6) = 2.
(6, 3) is not visible gcd(6, 3) = 3.
(3, 5) is visible gcd(3, 5) = 1.

Defn. A lattice point is visible (or primitive) if its
coordinates are relatively prime.

Recall: the 3×5 checkerboard is not hamiltonian.
(3 and 5 are relatively prime.)

5
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There are no visible lattice points on the line seg-
ment joining (3, 0) and (0, 5).

Prop. If a and b are relatively prime, then

• the a×b checkerboard is not hamiltonian, and

• there are no visible lattice points on the line
segment joining (a, 0) and (0, b).

Eg. • The 8 × 8 checkerboard is hamiltonian.
(E.g., 7E, N, 7E, N, . . . )

• There are visible lattice points on the line seg-
ment joining (8, 0) and (0, 8).

(E.g., (7, 1).)

Thm (R. A. Rankin, Trotter-Erdös). The a × b

checkerboard is hamiltonian if and only if there is
a visible lattice point on the line segment joining
(a, 0) and (0, b). 8

8
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Thm (R. A. Rankin, Trotter-Erdös). The a × b

checkerboard is hamiltonian if and only if there is
a visible lattice point on the line segment joining
(a, 0) and (0, b).

Proof. (⇒, Stephen Curran)

Consider the board to be toroidal.

The path traced out by the checker is a closed path
on the torus — a torus knot.

b

a

Let (s, t) ∈ Z × Z be the knot class of this knot.
(The knot wraps s times longitudinally,
the knot wraps t times meridionally.)

In other words, the checker steps off:
• the East edge of the board s times, and
• the North edge of the board t times.

The tour has
• bs steps East, and
• at steps North.

Therefore, bs + at = ab.

So (s, t) is on the line segment
joining (a, 0) and (0, b).

Since (s, t) is the knot class,
gcd(s, t) = 1.

∴ (s, t) is a visible latt pt on the line segment.
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Thm (R. A. Rankin, Trotter-Erdös). The a × b

checkerboard is hamiltonian if and only if there is
a visible lattice point on the line segment joining
(a, 0) and (0, b).

Proof (⇐). We have bs + at = ab

with gcd(s, t) = 1.

Hence, there are e and n with
e + n = gcd(a, b),
gcd(e, b) = 1, and
gcd(n, a) = 1.

Tour the board in a periodic pattern:
e steps East, n steps North;
e steps East, n steps North;
e steps East, n steps North;

. . .

until return to the start.

Change the rules:

A tour must visit each square exactly once
but need not return to the starting place.

Where can tours end? (starting in SW corner)

Thm. On an n × n (square) checkerboard:
• Tours always end on the main diagonal.
• n even ⇒ ∃ tour to anywhere on main diag.
• n odd ⇒ only to every other vertex.

Harder if the checkerboard is not square, but
solved in terms of the geometry of lattice points.

Eg. If a and b are relatively prime, then
# endpoints

= # visible latt pts in triangle T (a, b)
− 1.

Cor. If a and b are large (and rel prime), then

# endpoints ≈ 3
π2 ab ≈ .304 ab.

Tours can end at the marked squares

• •

• • •

• •

• •

start • • •
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Let’s look at higher dimensions.

Which 3-dimensional checkerbds are hamiltonian?

(North, East, Up)

Answer: all of them.

Same for 4D, 5D, 6D, . . .

The proof depends on two-dimensional boards.

Each level of a 3D board can be thought of as a
2D board.

We can tour a 3-dimensional board level-by-level:
traverse all the cubes in a level,
then move up to the next level.

The idea is that we can choose various paths in
the various levels so that we end up at any desired
cube in the top level.

In particular, there is a tour that ends directly
above the Southwest corner of the bottom level.

Hence the 3D board is hamiltonian.

Conj. If gcd(a, b, c) = 1 (and a, b, c ≥ 2), then
tours in the a× b× c checkerbd can end anywhere.

Different contraints on the motion of the checker.
(Still on a toroidal checkerboard.)

Eg. Knight moves (on a 2D board):

Only consider constraints that allow the checker
to get to every square. (“generating set”)

Eg. If
• a and b are even, and
• checker moves diag’ly (NE, NW, SE, SW),

then the checker cannot get to every square.

If there are only two generators, then visible lattice
points again provide the answers.

When there are more than two generators, mathe-
maticians do not yet know a good general method
to tell whether the checkerboard is hamiltonian,
even for one-dimensional checkerboards.

Eg. Cay(Z12; 3, 4, 6) is not hamiltonian.

3 4 6

Note: 6 is a redundant generator in this example.
(Can get everywhere using only 3 and 4.)

Conj. Any checkerboard is hamiltonian if
• there are at least three generators, and
• none of the generators are redundant.

Not known even for 1D checkerboards!
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Prop. If the generating set is “symmetric,” then
the checkerboard is hamiltonian.

s

-s

Defn. A generating set is symmetric if, for each
allowable move, the inverse is also allowable.

These results are for checkerboards that are in the
shape of a torus.

One can also consider checkerboards that are in
the shape of a projective plane. This is obtained
by applying a twist when gluing the east edge to
the west edge, and the north edge to the south
edge.

On these boards, it is (usually) not possible to
find a tour that starts in the southwest corner.
So a natural question to to ask where tours can
start (“initial squares”), besides where they can
end (“terminal squares”).

These problems have been solved for square (n ×
n) checkerboards. The basic shape of the answer
depends on whether n is even or odd.

The answers are not yet known for a × b checker-
boards, but it should be feasible to find them.

Initial squares in n × n projective checkerboards

odd

• •• •• •• •
• • • • • • • • ••••• • • • •

even

• •• •• •
• •• • • • • • •• • • • • •••

•• • • • • •

Terminal squares in projective checkerboards

odd

even
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For those who have studied group theory:

Let S be a generating set for a finite group G.

Can we tour G by using the generators from S?
List elements of G:

g0, g1, . . . , gn (with gn = g0),
s.t. gi+1 = gisi for some si ∈ S.

Conj. If S is symmetric, then G is hamiltonian.

We are nowhere near a proof of this conjecture.

It is true if
• G is abelian, or
• G has prime-power order, or
• the commutator subgroup of G

is cyclic of prime-power order.

Not known, even for some dihedral groups.

Eg. The dihedral group of order 8
is generated by a rotation and a reflection.

D8 = 〈T, F | T 4 = F 2 = (TF )2 = e〉
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We define the Cayley digraph Cay(G; S) as follows.

The vertices of the digraph are the elements of G.

There is a directed edge
from g to gs

for g ∈ G and s ∈ S.
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